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Continuous optimization has become a prevalent tool across the sciences

and engineering. Modern applications have displayed steady growth in prob-

lem sizes. Such sizes often prohibit the use of classical algorithmic solutions

that heavily rely on costly operations, such as matrix inversion, and do not scale

well. To counter this phenomenon practitioners have turned their focus to sim-

pler first-order heuristics, such as gradient descent, that are often highly suc-

cessful, yet are not well-understood. In this thesis, we study a few nonsmooth

settings where simple algorithms are provably convergent.

We start with the problem of detecting infeasibility of large-scale linear pro-

gramming problems using the primal-dual hybrid gradient method of Cham-

bolle and Pock (2011). The literature on PDHG has focused chiefly on feasible

problems. When the problem is not feasible, the iterates of the algorithm do not

converge. In this scenario, we show that the iterates diverge at a controlled rate

towards a well-defined ray. Leveraging this fact, we design a simple scheme to

extract certificates of infeasibility from the iterates.

We then turn to unconstrained convex optimization and consider the classic

proximal bundle methods, an algorithmic family dating back to the 70s. We

prove convergence rates for bundle methods under a variety of assumptions.

In particular, we show that these algorithms automatically adapt to problem

regularity, exhibiting faster convergence rates. We complement these findings



with a new parallelizable variant of the bundle method that attains near-optimal

rates without prior knowledge of function parameters. These results improve

on the limited existing convergence rates and provide a unified approach across

problem settings and algorithmic details.

After that, we study rapid local convergence guarantees for nonconvex for-

mulations of low-rank matrix recovery problems, a problem family that in-

cludes phase retrieval, blind deconvolution, matrix completion, and robust

PCA. Standard approaches for solving these problems use smooth penalty func-

tions and often exhibit an undesirable phenomenon: the condition number, clas-

sically defined, scales poorly with the dimension. In contrast, we show that nat-

ural nonsmooth penalty formulations have two clear advantages: (1) they do

not suffer from the same type of ill-conditioning, and (2) they are robust against

noise and gross outliers. Consequently, we prove that off-the-shelf algorithms

for nonsmooth optimization converge at a rapid dimension-independent rate

when initialized close to the solution, even when a constant fraction of the mea-

surements are adversarially corrupted.

To complement these local convergence guarantees, we turn to the question

of escaping saddle points of nonsmooth functions. Recent work has shown that

stochastically perturbed gradient methods can efficiently strict saddle points of

smooth functions. We extend this body of work to nonsmooth optimization,

by analyzing an inexact analogue of a stochastically perturbed gradient method

applied to the Moreau envelope. The main conclusion is that a variety of algo-

rithms can escape strict saddle points of the Moreau envelope at a controlled

rate.
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1

INTRODUCTION

“Good problems and mushrooms of certain kinds have

something in common; they grow in clusters.”

— George Pólya, How to Solve It: A New Aspect of Mathematical Method

Optimization has become a widespread tool throughout the sciences and

engineering. Modern applications dealing with learning and estimation tasks

have led to a steady increase in problem sizes. Classical algorithms, such as sim-

plex and interior-point methods, rely on costly operations and tend to struggle

with such large-scale applications. Motivated by this drawback, practitioners

have switched to simpler first-order heuristics, e.g., gradient descent, that are

often highly successful, yet are not well-understood.

This thesis investigates several large-scale settings where simple first-order

algorithms are provably convergent. In particular, in

• Chapter 3: We study huge-scale linear programming problems and propose a

practical approach to detect infeasibility using the iterates of the primal-dual

hybrid gradient method.

• Chapter 4: We analyze a classical and widely-used algorithm for convex op-

timization called the proximal bundle method. We design adaptive stepsize

rules that lead to optimal convergence for a number of nonsmooth settings.

• Chapter 5: We consider nonconvex formulations for low-rank matrix recov-

ery problems. We link notions of strong identifiability, e.g., restricted isome-

try properties, with favorable conditioning of nonsmooth optimization prob-
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lems, leading to fast local convergence of off-the-shelf numerical algorithms,

such as subgradient and prox-linear methods, for a suite of high-impact data

science tasks.

• Chapter 6: We focus on the blind deconvolution problem and leverage the

results in Chapter 5 to develop a two-stage method that can handle a constant

fraction of gross outliers.

• Chapter 7: We investigate the question of escaping saddle points of non-

smooth functions and design efficient algorithms that escape strict saddle

points of the Moreau envelope of weakly convex functions.

In what follows, we describe the main contributions of these chapters in detail.

Infeasibility detection for large-scale linear programming

Our first subject of study is classical Linear Programming (LP). Formally, we

consider the canonical primal-dual problems,

minimize c>x

subject to Ax = b

x ≥ 0 ,

maximize b>y

subject to A>y ≤ c . (1.1)

where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given. The state-of-the-art algorithmic

solutions — simplex [63] and interior point methods [188, 210] — have con-

tinuously improved over the past few decades and exhibit great practical per-

formance for medium scale-problems, thus, leaving little room for first order

methods to make inroads.

However, for large-scale problems, where the input data bearly fits in mem-

ory, these classical algorithms tend to struggle due to their dependence on ma-
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trix inversion. To counter this drawback, a recent paper [14] proposed to apply

the Primal-Dual Hybrid Gradient method (PDHG) [43] — a first-order method for

general convex optimization problems — to LP. When specialized to (1.1) PDHG

updates

xk+1 = projRn
+
(xk − ηA>yk − ηc)

yk+1 = yk + τA(2xk+1 − xk) − τb .
(1.2)

Said paper showed empirically that with the right enhancements, a PDHG-

based solver presents moderate to significant gains compared to state-of-the-art

solvers in the large scale regime.

Nonetheless, the existing theory for PDHG falls short of providing theoret-

ical foundations for many of the features that a modern LP solver requires. In

paticular, the literature has mostly focused on settings where the problem at

hand is assumed to have at least one solution. Infeasibility detection and com-

putation of certificates are an essential aspect of solving LP, not only to provide

feedback on modeling errors but also for algorithms that directly exploit LP

certificates such as Benders decomposition, and branch-and-cut [2]. Chapter

3 studies the problem of detecting infeasibility of LP problems using PDHG.

When the problem is not feasible, the iterates of the algorithm do not converge.

In this scenario, we show that the iterates diverge at a controlled rate towards a

well-defined ray. The direction of this ray is known as the infimal displacement

vector v.

The first contribution of Chapter 3 is to prove that v recovers certificates of

primal and dual infeasibility whenever they exist. Based on this fact, we pro-

pose a simple way to extract approximate infeasibility certificates from the iter-

ates of PDHG. We study three different sequences that converge to the infimal
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displacement vector:

(Difference of iterates) (zk+1 − zk),

(Normalized iterates)
zk

k
,

(Normalized average iterates)
2

k + 1
z̄k.

where zk = (xk, yk) denotes the kth iterate and z̄k = 1
k

∑k
j=1 z j, the average of

iterates. All of them are easy to compute, and thus the approach is suitable for

large-scale applications.

Our second contribution is to establish tight convergence rates for these se-

quences. We demonstrate that the normalized iterates and the normalized av-

erage achieve a convergence rate of O
(

1
k

)
, improving over the known rate for

the difference O
(

1
√

k

)
[163]. This rate is general and applies to any fixed-point

iteration of a nonexpansive operator. Thus, the result covers a broad family

of algorithms beyond PDHG, including, for example, the Alternating Direction

Method of Multipliers (ADMM), and can be applied settings beyond linear pro-

gramming, such as quadratic and semidefinite programming. Further, in the

case of linear programming, we show that, under non-degeneracy assumptions,

the iterates of PDHG identify the active set of an auxiliary feasible problem in

finite time, ensuring that the difference of iterates exhibits eventual linear con-

vergence to the infimal displacement vector.
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Optimal convergence rates for the proximal bundle method

Next, we turn to the arguably more general problem of unconstrained convex

optimization. Formally, we aim to minimize

minimizex∈Rd f (x)

where f : Rd → R is a convex function. We consider the classic proximal bundle

methods [143, 242], an algorithmic family dating back to the 70s. They are con-

ceptually similar to model-based methods [66, 193, 85]. That is, methods that

update their iterates by applying a proximal step to an approximation of the

function, known as the model fk:

xk+1 ← arg min
x

fk(x) +
ρk

2
‖x − xk‖

2. (1.3)

However, bundle methods only update the next iterate xk+1 when the decrease

in objective value is at least a fraction of the decrease that the model predicted.

If the next iterate is not updated, they use the solution of (1.3) to update fk. A

common choice for the model is

fk(x) = max
j

f (z j) + 〈g j, x − z j〉

where {z j} are the solutions to (1.3) and g j ∈ ∂ f (z j) are subgradients. Unlike other

local algorithms, bundle methods retain information about the geometry of the

function around many iterates as opposed to the last one.

Though bundle methods are known to converge under different settings

[128, 177, 12] and have been successfully used in applications [221, 220, 73],

nonasymptotic guarantees have remained mostly elusive. In Chapter 4, we

prove convergence rates for bundle methods under a variety of assumptions.

We show that, without any modification, these algorithms adapt to converge
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faster in the presence of smoothness or Hölder growth. Our analysis reveals

that with a constant stepsize, the bundle methods are adaptive, yet they attain

suboptimal convergence rates.

We overcome this shortcoming by proposing nonconstant stepsize schemes

with optimal rates. These schemes use function information such as growth con-

stants, which might be prohibitive in practice. We complete the chapter with a

new parallelizable variant of the bundle method that attains near-optimal rates

without prior knowledge of function parameters. These results improve on the

limited existing convergence rates and provide a unified approach across prob-

lem settings and algorithmic details.

Composite optimization for low-rank matrix recovery

The task of recovering a structured signal from its noisy measurements plays

a central role in data science. Relevant examples include compressed sens-

ing, phase retrieval, matrix completion, and robust PCA. Optimization-based

approaches naturally lead to nonconvex formulations, which are NP-hard in

general. To bypass this issue, researchers developed convex relaxations based

on linear and semidefinite programming [80, 36, 231, 46, 41, 38, 77]. These re-

laxations enjoy strong guarantees and can be solved in polynomial time. Yet,

in practice, they do not scale well. This motivated the community to change

its focus to nonconvex iterative methods better suited for large scale datasets

[54, 39, 190, 228].

In Chapter 5, we investigate nonsmooth nonconvex formulations for a hand-

ful of concrete recovery problems. We show that these nonsmooth formulations

6



present two clear advantages over their smooth counterparts: first, they are ro-

bust against gross outliers, and second, their condition number does not de-

grade as the dimension grows. In turn, this implies that local algorithms, such

as the subgradient and prox-linear method, are robust and exhibit fast dimension-

independent convergence rates.

Let us elaborate. For the analysis we consider a broad class of functions

that extends the convex and smooth classes. Given finite dimensional Euclidian

spaces E and Y, we study f : E→ R ∪ {∞} with

f = h ◦ F (1.4)

where F : E→ Y is a smooth map and h : Y→ R ∪ {∞} is a convex function.

To illustrate our results, recall the quadratic sensing problem, a problem with

applications to X-ray crystallography, astronomy, and microscopy among others

[27, 173, 238]. The objective of the problem is to recover a matrix X̄ ∈ Rd×r from

a set of m quadratic measurements

b = A(X̄X̄>) + ξ ∈ Rm with Ai(M) = p>i Mpi,

where the pi’s are known random vectors and ξ represents noise. Notably, when

the measurement vectors (pi)n
i=1 are sampled values of complex sinusoids and

r = 1, these measurements correspond to X-ray diffraction images, an imagining

modality that enabled the discovery of the double helix [241]. In this context,

we propose to minimize

arg min
X

f (X) where f (X) =
1
m
‖A(XX>) − b‖1. (1.5)

Notice that f decomposes as (1.4) with h(·) = ‖ · ‖1 and F(·) = A(·) − b.

To solve this problem we study the subgradient method, which iterates

Xk+1 ← Xk − αkGk with Gk ∈ ∂ f (Xk)

7



where ∂ f (X) is the subdifferential set of f at X, a generalization of the gradient

mapping, and αk > 0 are stepsizes. We also investigate the prox-linear method,

which recursively updates

Xk+1 ← min
Y

fXk(Y) +
β

2
‖Y − Xk‖

2 where fX(Y) = h(F(X) + ∇F(X)>(Y − X)).

where β > 0 is a fixed parameter. In other words, at each iteration, we minimize

the composition of h with a linear approximation of F at Xk plus a quadratic

term. The quadratic ensures that the next iterate is not far from a region where

the approximation is good. The inner problems are convex and can be solved

efficiently with first-order methods, such as ADMM or PDHG.

Rates for these algorithms were understood for convex functions [109, 31],

but have only recently been studied in the nonconvex setting [68, 82]. Inspired

by this line of work, we show that the subgradient and prox-linear methods

exhibit linear and quadratic convergence, respectively, as long as the function f

satisfies the following local regularity properties. For any X,Y near the solution

set S :

(Sharp growth) f (x) − inf f ≥ µ · dist(x, S ),

(Lipschitz) | f (X) − f (Y)| ≤ L · ‖X − Y‖,

(Quadratic approximation) | f (x) − fX(Y)| ≥
ρ

2
· ‖X − Y‖2.

The first two inequalities parallel the variational description of the minimum

and maximum singular values of linear maps and, in fact, the condition number

L/µ determines the efficiency rates of the methods. While the third condition is

linked to the size of the basin of attraction where the algorithms are fast.

In turn, these regularity conditions are closely related to the restricted isom-

etry property (RIP) of 1
mA; a seminal concept that ignited a decade of theoretical

8



Figure 1.1: Expected quadratic sensing loss E f (x) = E|(p>x)2 − (p>1)2|

and computational advances in compressive sampling [80, 38, 231]. By leverag-

ing this connection, we prove that the quadratic sensing loss (1.5) satisfies the

desired regularity conditions, with high probability, as soon as the number of

measurements m exceeds a constant multiple of d · r, the information-theoretical

limit required for recovery. Further, we show these properties hold even when

a constant fraction of the measurements is corrupted by gross outliers.

We use this framework to analyze several statistical recovery problems. In

particular, Chapter 5 sketches a similar picture for bilinear sensing, matrix com-

pletion, and robust PCA.

In Chapter 6, we specialize these local convergence rates to the so-called

blind deconvolution problem — a rank-one bilinear recovery problem with appli-

cations to signal processing — and complement them with a robust spectral ini-

tialization method. We prove that using this initialization algorithm in tandem

with any of the two local refinement methods provides a convergent algorithm

that can stand a constant fraction of gross outliers.

Even though the initialization procedure is necessary to make the theory

hold, numerical experiments show that a randomly initialized subgradient

9



method consistently solves the blind deconvolution problem. In a preliminary

attempt to understand this phenomenon, Chapter 6 characterizes the critical

points of the nonsmooth blind deconvolution problem and shows that the set

of spurious critical points concentrate near a co-dimension two subspace. Thus,

suggesting that there is a vast region of the space with benign geometry.

Escaping strict saddle points of weakly-convex functions

Though nonconvex optimization problems are NP-hard in general, simple non-

convex optimization techniques, e.g., gradient descent, are broadly used and

often highly successful in high-dimensional statistical estimation and machine

learning problems. For smooth formulations, a common explanation for this

phenomenon is that nonconvex functions found in machine learning have be-

nign geometry: all local minima are (nearly) global minima, and all saddle

points are strict — meaning that they have a direction of negative curvature.

This explanation is well-grounded: several important estimation and learning

problems have amenable geometry [106, 226, 23, 105, 227, 240] and recent works

[124, 123] have shown that when this property holds, stochastically perturbed

gradient methods can efficiently converge to a global minimum.

While impressive in scope, these works fall short of establishing rates in the

nonsmooth setting. In Chapter 7, we propose and analyze an algorithm that

extends these ideas to the context of ρ-weakly convex functions; functions f for

which x 7→ f (x)+
ρ

2‖x‖
2 is convex. This is a large family of nonsmooth nonconvex

functions that contains, for example, the composite class (1.4).

Weakly convex functions admit a global C1 smoothing: for all µ < ρ−1, define

10



Figure 1.2: Function f (x, y) = |x|+ 1
4 (y2−1)2, a point (x, f (x)) with x an approximate

second-order critical point of fµ and its corresponding quadratic q(·).

the Moreau envelope and the proximal mapping to be

fµ(x) = min
y∈Rd

f (y) +
1

2µ
‖y − x‖2 and proxµ f (x) = arg min

y∈Rd

{
f (y) +

1
2µ
‖y − x‖2

}
,

respectively. Moreover, the first order critical points of f and fµ agree. Although

the Moreau envelope fµ is not C2 in general, we prove that for generic semialge-

braic functions it is C2 around any x with ‖∇ fµ(x)‖ ≈ 0.

Inspired by these facts, we investigate the problem of finding an (ε1, ε2)-

second-order critical point x of fµ:

‖∇ fµ(x)‖ ≤ ε1 and λmin(∇2 fµ(x)) ≥ −ε2. (1.6)

We argue that the geometry of f around any such x is favorable. Indeed, (1.6)

implies the existence of an approximate quadratic minorant q of f with small

slope and curvature at a nearby point, see Figure 1.2.

We propose an efficient outer-inner loop scheme for the task of finding x

satistying (1.6). The outer loop executes a perturbed and inexact variation of

the proximal point method, while the inner loop solves the proximal subprob-

lem. For the inner loop, we consider model-based methods (1.3), and estab-
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lish nonasymptotic complexity guarantees. The theory covers a comprehensive

class of algorithms, including variants of the subgradient, prox-gradient, and

prox-linear methods.

1.1 A comment about structure and related publications

This manuscript assumes a certain familiarity with nonsmooth analysis and

high dimensional probability. However, for convenience, we have compiled

most of the necessary notation and background in Chapter 2. The remaining

chapters in this thesis follow a similar structure. They start with a few sections,

introducing the problem of interest, an algorithmic solution, and theoretical re-

sults, followed by a section with numerical experiments. We defer long proofs

to the last section of each chapter named “Analysis”, which might be omitted in

a first read.

This thesis wouldn’t have been possible without my incredible collaborators:

• Chapter 3 is based on joint work with David Applegate, Haihao Lu, and

Miles Lubin [13]. This work was done during an internship at Google.

• Chapter 4 is based on joint work with Ben Grimmer [76]. This project was a

byproduct of a topics course taught by Adrian Lewis.
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2

PRELIMINARIES

“Aunque siembren las raı́ces como les dé la gana,

los palos de guanábana no dan manzanas.”

— Residente, Hijos del cañaveral

In this chapter, we summarize the notation and results we will use throughout

this thesis. We note that the material presented here is not new but serves as the

starting point for our studies.

2.1 Notation

Henceforth, the symbols E and Y will denote a Euclidean spaces with inner

product 〈·, ·〉 and the induced norm ‖x‖2 =
√
〈x, x〉. The symbol B will denote the

closed unit ball in E, while a closed ball of radius ε > 0 around a point x will

be written as Bε(x). For any point x ∈ E and a set Q ⊂ E, the distance and the

nearest-point projection in `2-norm are defined by

dist(x; Q) = inf
y∈Q
‖x − y‖2 and projQ(x) = arg min

y∈Q
‖x − y‖2,

respectively. The symbol cl(Q) denotes the closure of Q. For any pair of func-

tions f and g on E, the notation f . g will mean that there exists a numerical

constant C such that f (x) ≤ Cg(x) for all x ∈ E. Given a linear map between Eu-

clidean spaces,A : E→ Y, the adjoint map will be written asA∗ : Y→ E. Given

a map T : Rd → Rd, its range is defined as range(T ) = {T (z) | z ∈ Rd}. Given

two mappings T1,T2 : Rd → Rd, we denote their composition as T1 ◦ T2, that is
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T1 ◦ T2(z) = T1(T2(z)). We will use Id for the d-dimensional identity matrix and

0 for the zero matrix with variable sizes. The symbol [m] will be shorthand for

the set {1, . . . ,m}.

We will always endow the Euclidean space of vectors Rd with the usual dot-

product 〈x, y〉 = x>y and the induced `2-norm. More generally, the `p norm of a

vector x will be denoted by ‖x‖p = (
∑

i |xi|
p)1/p. We use supp(x) := {i ∈ [d] | xi , 0}

to denote the support of the vector x. We will equip the space of rectangular

matrices Rd1×d2 with the trace product 〈X,Y〉 = Tr(X>Y) and the induced Frobe-

nius norm ‖X‖F =
√

Tr(X>X). The operator norm of a matrix X ∈ Rd1×d2 will be

written as ‖X‖op. The symbol σ(X) will denote the vector of singular values of a

matrix X in nonincreasing order. With this notation, we may equivalently write

‖X‖op = σ1(X) and ‖X‖F = ‖σ(X)‖2. We also define the row-wise matrix norms

‖X‖b,a = ‖(‖X1·‖b, ‖X2·‖b . . . , ‖Xd1·‖b)‖a. We denote the pseudo inverse of X by X†.

Given a matrix M ∈ Rd×d we use λ1(M), . . . , λd(M) to denote its eigenvalues. We

define the spectral radius of a matrix M as ρ(M) = max j∈[d] |λ j(M)|. We use the

symbol M � 0 to denote that M is positive definite. Every positive definite ma-

trix M � 0 defines an inner product and norm given by 〈x, y〉M = x>My and

‖x‖2M = 〈x, x〉M, respectively. The symbols Sd, Sd
+, O(d), and GL(d) will denote the

sets of symmetric, positive semidefinite, orthogonal, and invertible matrices,

respectively.

2.2 Nonsmooth analysis

Nonsmooth functions will play a central role in this work. Consequently, we

will require some basic constructions of generalized differentiation, as described
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for example in the monographs [214, 182, 24]. Consider a function f : E → R ∪

{+∞} and a point x, with f (x) finite. The subdifferential of f at x, denoted by ∂ f (x),

is the set of all vectors ξ ∈ E satisfying

f (y) ≥ f (x) + 〈ξ, y − x〉 + o(‖y − x‖2) as y→ x. (2.1)

Here o(r) denotes any function satisfying o(r)/r → 0 as r → 0. Thus, a vector

ξ lies in the subdifferential ∂ f (x) precisely when the linear function y 7→ f (x) +

〈ξ, y − x〉 lower-bounds f up to first-order around x. Standard results show that

for a convex function f the subdifferential ∂ f (x) reduces to the subdifferential

in the sense of convex analysis, in the sense that

f (y) ≥ f (x) + 〈ξ, y − x〉 for all y ∈ E.

While for a differentiable function it consists only of the gradient ∂ f (x) = {∇ f (x)}.

We say that a point x is stationary for f whenever the inclusion 0 ∈ ∂ f (x) holds.

Equivalently, stationary points are precisely those that satisfy first-order nec-

essary conditions for minimality: the directional derivative is nonnegative in

every direction.

For any closed convex set C ⊆ E, we define its normal cone at x̄ ∈ C to be

NC(x̄) := {g ∈ Rd | 〈g, x − x̄〉 ≤ 0 for all x ∈ C} .

Analogously, NC(x̄) can be seen as the set of all points x such that projC(x) = x̄.

For convex functions the subdifferential satisfies a nice of set of calculus rules.

For any pair of closed convex functions f1 : E→ R, f2 : E→ R ∪ {∞}, and closed

convex set C, we have

∂( f1 + f2)(x) = ∂ f1(x) + ∂ f2(x) and ∂ιC(x) = NC(x) for all x ∈ E. (2.2)
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Additionally, for any closed convex functions h : Y → R and g : E → R ∪ {+∞}

and C1-smooth map F : E→ Y, the chain rule holds:

∂(h ◦ F + g)(x) = ∇F(x)∗∂h(F(x)) + ∂g(x).

We say that a function f : E → R ∪ {+∞} is ρ-weakly convex1 if the function

x 7→ f (x) +
ρ

2‖x‖
2
2 is convex. This encompasses a broad family of nonsmooth

nonxonvex functions. In particular, composite functions f = h ◦ F satisfying the

approximation guarantee

| fx(y) − f (y)| ≤
ρ

2
‖y − x‖22 ∀x, y

are automatically ρ-weakly convex [83, Lemma 4.2]. Subgradients of weakly

convex functions are very well-behaved. Indeed, notice that in general the little-

o term in the expression (2.1) may depend on the basepoint x, and may there-

fore be nonuniform. The subgradients of weakly convex functions, on the other

hand, automatically satisfy a uniform type of lower-approximation property.

Indeed, a lower-semicontinuous function f is ρ-weakly convex if and only if it

satisfies:

f (y) ≥ f (x) + 〈ξ, y − x〉 −
ρ

2
‖y − x‖22 ∀x, y ∈ E, ξ ∈ ∂ f (x).

Although such functions are nonsmooth in general, they admit a smoothing: for

all µ < ρ−1, we define the Moreau envelope and the proximal mapping to be

fµ(x) := min
y∈Rd

f (y) +
1

2µ
‖y − x‖2 and proxµ f (x) := arg min

y∈Rd

{
f (y) +

1
2µ
‖y − x‖2

}
,

(2.3)

1Weakly convex functions also go by other names such as lower-C2, uniformly prox-
regularity, paraconvex, and semiconvex. We refer the reader to the seminal works on the topic
[213, 204, 192, 215, 11].
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respectively. These two constuctions are well-defined thanks to weak-convexity

and moreover the Moreau envelope is a C1 function [66]. The proximal map can

be characterized via the subdifferential as

x ∈ (I + ∂ f )(x+) ⇐⇒ x+ = prox f (x). (2.4)

2.3 High-dimensional probability

We will leverage the concentration of measure phenomena to control several

random quantities. Here, we summarize the main inequalities that we use and

refer the interested reader to the excellent monographs [235, 236, 25].

We start with the quintessential Hoeffding’s inequality for symmetric

Bernoulli random variables X, i.e., P(X = −1) = P(X = 1) = 1/2.

Theorem 2.3.1 (Theorem 2.2.2 in [235]). Let X1, . . . , XN be independent symmetric

Bernoulli random variables. Then for any t ≥ 0, we have

P

 N∑
i=1

Xi ≥ t

 ≤ exp
(
−

t2

2N

)
.

Similarly, Bernstein’s Inequality gives a bound that depends on the variance.

Theorem 2.3.2 (Theorem 2.8.4 in [235]). Let X1, . . . , XN be independent mean-zero

random variables, such that for |Xi| ≤ K for all i. Then for any t ≥ 0, we have

P


∣∣∣∣∣∣∣

N∑
i=1

Xi

∣∣∣∣∣∣∣ ≥ t

 ≤ 2 exp
(
−

t2

2
(
σ2 + Kt/3

))
here σ2 =

∑
E[X2

i ] is the variance of the sum.
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A common way to generalize concentration for unbounded random vari-

ables is to consider variables X with Gaussian-like tails: for some η > 0,

P(|X| ≥ t) ≤ 2 exp
(
−
η2t2

2

)
for all t > 0.

In turn, this is equivalent (up to constants) to

E exp
(

X2

η2

)
≤ 2. (2.5)

A random variable X is η-sub-gaussian whenever this inequality holds. One of

the benefits of using this definition is that it defines a norm. The sub-gaussian

norm2 of a random variable X is given by

‖X‖ψ2 = inf
{

t > 0 : E exp
(

X2

t2

)
≤ 2

}
.

Theorem 2.3.3 (Theorem 2.6.3 in [235]). Let X1, . . . , XN be independent, mean zero,

sub-gaussian random variables and (a1, . . . , aN) ∈ RN . Then, for every t ≥ 0, we have

P


∣∣∣∣∣∣∣

N∑
i=1

aiXi

∣∣∣∣∣∣∣ ≥ t

 ≤ 2 exp
(
−

ct2

K2‖a‖22

)
where K = maxi ‖Xi‖ψ2 .

Concentration also manifests for random variables with heavier tails, albeit

at worst rates. We define sub-exponential norm of a random variable X as

‖X‖ψ1 = inf
{

t > 0 : E exp
(
|X|
t

)
≤ 2

}
and say that X is η-sub-exponential if ‖X‖ψ1 ≤ η.

Theorem 2.3.4 (Theorem 2.8.2 in [235]). Let Z1, . . . ,Zm be an independent, mean

zero, sub-exponential random variables and let a ∈ Rm be a fixed vector. Then, for any

t ≥ 0 we have that

P

 m∑
i=1

aiZi ≤ −t

 ≤ exp
(
−c min

{
t2

K2‖a‖22
,

t
K‖a‖∞

})
where K := maxi ‖Zi‖ψ1 and c > 0 is a numerical constant.

2Also known as Orlicz-2 norm.
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More generally, we say a that a random vector X in Rd is η-sub-gaussian or η-

sub-exponential if its projection 〈u, X〉 onto any direction u ∈ Sd−1 is sub-gaussian

or sub-exponential, respectively.
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3

INFEASIBILITY DETECTION WITH THE PRIMAL-DUAL HYBRID

GRADIENT METHOD

“Sonhar mais um sonho impossı́vel

Lutar quando é fácil ceder.”

— Maria Bethânia, Sonho Impossı́vel

3.1 Introduction

First-order methods (FOMs) have been extensively studied by the optimization

community since the late 2000s, following a long period where interior-point

methods dominated research in continuous optimization. FOMs are appealing

for their simplicity and low computational overhead, in particular when solving

large-scale optimization problems that arise in machine learning and data sci-

ence. These methods have matured in many aspects [21] and are known to be

useful for obtaining moderately accurate solutions to convex and non-convex

optimization problems in a reasonable amount of time. Despite this progress,

FOMs have made only modest inroads into linear programming (LP), a funda-

mental problem in mathematical optimization.

FOMs applied to LP provide relatively simple methods whose most expen-

sive operations are matrix-vector multiplications with the (typically sparse) con-

straint matrix. Such matrix-vector products are amenable to scale efficiently

given increasingly ubiquitous computing resources like multi-threaded CPUs,
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Algorithm 1: Primal-dual hybrid gradient

Data: x0 ∈ Rd

Step k: (k ≥ 0)
Update xk+1 ← proxη f (xk − ηA>yk),
Update yk+1 ← proxτh

(
yk + τA(2xk+1 − xk)

)
.

GPUs [232], or distributed clusters [93]. In contrast, interior-point and simplex-

based methods that dominate current practice are limited in how they use avail-

able computing resources because they depend on matrix inversion. To mark

this distinction, Nesterov [187] defines methods that use at most matrix-vector

products as capable of handling large-scale problems and methods that use ma-

trix inversion as handling medium-scale problems. In the context of LP, these def-

initions of scale perhaps belie the reliability and practical efficiency of interior-

point and simplex methods, but nevertheless the contrast in the computing re-

quirements of the algorithms is an important one. Even though such compu-

tational aspects are outside the scope of this work, it is this practical potential

to efficiently solve large-scale LP that motivates the theoretical developments in

this work.

While FOMs are typically studied in more general settings, the underlying

assumptions and convergence rates in these settings do not necessarily hold or

may not be tight for the special case of LP. Of particular relevance to this work,

theory for FOMs is often developed under the assumption that an optimal solu-

tion exists, whereas LP solvers need to be able to detect infeasibility (i.e., when

no optimal solution exists) and compute corresponding certificates. Infeasibility

detection and computation of certificates are an essential aspect of solving LP,

not only to provide feedback on modeling errors but also for algorithms that di-

rectly exploit LP certificates like Benders decomposition and branch-and-cut [2].
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This chapter addresses the question of how to detect infeasibility in LP using

the Primal-Dual Hybrid Gradient method (PDHG). PDHG is a popular first-order

method introduced by Chambolle and Pock [43] to solve convex-concave minimax

problems, that is, problems of the form

min
x∈Rn

max
y∈Rm
〈Ax, y〉 + g(x) − h(y) (3.1)

where g : Rn → R ∪ {∞} and h : Rm → R ∪ {∞} are proper lower semicontinuous

convex functions and A ∈ Rm×n. LP can be recast as a minimax problem through

duality, and hence PDHG is applicable. The method consists of alternating up-

dates between the primal and dual variables, see Algorithm 1, where prox is the

proximal operator (see the definition in (2.3)). In particular, when instantiated

for LP, these updates correspond to matrix-vector products and projections onto

simple sets (such as the positive orthant). In contrast with other methods like

the Alternating Direction Method of Multipliers (ADMM), PDHG does not require

projections onto linear subspaces, which involve matrix inversions by direct or

indirect methods.

The behavior of PDHG for feasible problems (i.e., problems that have an op-

timal solution) has been studied in depth under several regularity assumptions.

In their seminal work, Chambolle and Pock [43] show that the algorithm con-

verges at a rate of O(1/k) given appropriate choices for the step sizes η and τ.

However, the situation for infeasible problems remains largely unstudied.

While it is relatively straightforward to formulate always-feasible auxiliary

problems that can be used to detect infeasibility, for example, by penalizing

violations of primal and dual constraints, this approach is unappealing for two

reasons: First is the aesthetic interest of having a single algorithm that robustly

handles all possible input [136]. Second is the practical interest in effectively
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using available computing resources, as solving such auxiliary problems would

approximately double the necessary work. Instead, we aim to use one execution

of PDHG and ask the following question:

Do the PDHG iterates encode information about infeasibility?

We answer this question in the affirmative. We show that if the primal (and/or

dual) problem is infeasible, the iterates of PDHG recover primal (and/or dual)

infeasibility certificates. Moreover, we completely characterize the behavior of

the iterates under different infeasibility settings. Before diving into our main

contributions, let us present an illustrative example. Recall that for a primal-

dual LP pair, there exist three exhaustive and mutually exclusive possibilities:

(1) both primal and dual are feasible, (2) both primal and dual are infeasible, and

(3) one of the two problems is unbounded, and consequently, the other problem

is infeasible. Small numerical experiments reveal that the behavior of PDHG is

different depending on the setting.

Example 3.1.1. Consider the LP problem with constants α, β ∈ R:

minimize x0 + x1 − αx2

subject to x0 + 2x1 ≤ 2

3x0 + x1 ≤ 2

x0 + x1 ≥ β .

Figure 3.1 displays four choices of α and β

1. Both feasible. Set α = 0 and β = 1, then both primal and dual problems are

feasible. In this case, both the primal and dual variables converge to a solution.
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(a) Both feasible (b) Both infeasible (c) Unbound. dual (d) Unbound. primal

Figure 3.1: Four different settings depicted in Example 3.1.1. Every subplot
shows the component-wise value of the iterates against the iteration count. The
first and the second rows correspond to the primal and dual iterates, respec-
tively.

2. Both infeasible. Set α = 1 and β = 2, then both primal and dual are infeasible.

We observe that both primal and dual iterates diverge at a rate proportional to the

number of iterations.

3. Unbounded dual. Set α = 0 and β = 2, then the dual problem is unbounded

and, thus, the primal problem is infeasible and the dual is feasible. Then the dual

iterates diverge, and, interestingly, the primal iterates converge.

4. Unbounded primal. Set α = 1 and β = 1, then the primal problem is unbounded

and, thus, the dual problem is infeasible and the primal is feasible. Then the primal

iterates diverge, and the dual iterates converge.

From the experiments, we see that the iterates have a very stable asymptotic

behavior. In particular, if the primal is feasible, then the dual variables converge,

and analogously if the dual is feasible, then the primal iterates converge. Simi-

larly, whenever the primal is infeasible, the dual iterates diverge at a controlled

linear rate and vice-versa. Such behavior has not been previously observed or

characterized in the literature.
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Main contributions

For notational convenience, we use z = (x, y) as the primal-dual pair, and z̄k :=

1
k

∑k
j=1 z j as the average of iterates. We propose to detect infeasibility using three

sequences:

(Difference of iterates) dk = (zk+1 − zk) , (3.2a)

(Normalized iterates)
zk

k
, (3.2b)

(Normalized average iterates)
2

k + 1
z̄k . (3.2c)

Our proposal to detect infeasibility is as follows:

Use these three sequences’ primal and dual components as candi-

dates for dual and primal infeasibility certificates. The algorithm

should periodically check if any of these iterates satisfy the condi-

tions that define an infeasibility certificate within numerical toler-

ances. If at any point this happens, it should conclude that the prob-

lem is (primal or dual) infeasible.

The overhead cost of extracting the certificates is negligible, making it suitable

for large-scale problems. Most of the content of this work justifies this strategy

theoretically.

Operator theory shows that all three of these sequences converge to a point v

known as the infimal displacement vector. Section 3.2 will give a formal definition

of this and other relevant concepts. We list our contributions assuming, for now,

the existence of such a vector v.
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Sublinear convergence rate to the infimal displacement vector (Section 3.3).

It is natural to wonder how fast the three sequences (3.2) converge to the infimal

displacement vector. We study this question through the lenses of general oper-

ators and fixed-point iteration. To the best of our knowledge, the only known re-

sult in this vein ensures a rate of O
(

1
√

k

)
for the difference of iterates (3.2a), which

is known to be tight [163, 71]. In contrast, we show that two other sequences, the

normalized iterates (3.2b) and the normalized average iterates (3.2c), converge

at a faster rate of O
(

1
k

)
in this same situation. Furthermore, this faster sublin-

ear result generalizes to any fixed-point iteration of a nonexpansive operator, not

only the firmly nonexpansive operators studied in [163]. Specifically, it also ap-

plies to many popular first-order methods, including but not limited to PDHG,

ADMM [205], and Mirror-prox [185], and it extends to other settings beyond LP

such as quadratic convex programming and semidefinite programming. Fur-

thermore, we show that this result is tight for PDHG; i.e., there exist instances

with a convergence rate lower bounded by Ω
(

1
k

)
. This result suggests that cur-

rent ADMM-based codes like OSQP [225] that use exclusively the difference of

iterates to detect infeasibility should additionally consider the normalized iter-

ates and normalized average iterates.

Characterization of the iterates for infeasible problems (Section 3.4). We

characterize the behavior of PDHG for all the LP feasibility scenarios (see Table

3.1). In particular, we show that if the primal (or dual) iterates diverge, then the

iterates diverge in the direction of a ray, where the direction of the ray recovers

certificates of dual (or primal) infeasibility. Such direction turns out to be the

infimal displacement vector (vx, vy). This justifies using the sequences (3.2) as

infeasibility certificate candidates. Furthermore, we show that when the primal

problem is feasible, then the dual iterates, without any normalization, converge
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to some y? that is closely related to v. An analogous result holds if the dual is

feasible. This describes the dynamics of PDHG for unbounded problems. The

next table summarizes our findings for the four possible cases.

Primal
Dual

Feasible Infeasible

Feasible xk, yk both converge xk diverges, yk converges
Infeasible xk converges, yk diverges xk, yk both diverge

Table 3.1: Behavior of PDHG for solving under different feasibility assumptions.

Eventual linear convergence for nondegenerate problems (Section 3.5). In

the process of characterizing the dynamics of PDHG, we show that the iterates

(xk, yk) always converge to a unique ray {(x?, y?) + λv | λ ∈ R+}. We show that

under a non-degeneracy condition (a direct extension of the strict complemen-

tary condition to the infeasible LPs), the iterates (xk, yk) fix their active set after

finitely many iterations. In turn, this leads to the eventual linear convergence of

the difference of iterates (3.2a). Formally, we show that there exists K ≥ 0 such

that for all sufficiently large k ≥ K we have

‖dk − v‖ ≤ O
(
γk−K

)
for some γ ∈ (0, 1) .

We further show that even after the active set is fixed, the normalized iterates

and normalized average do not exhibit faster convergence. Thus, it is strictly

better to use the difference of iterates to detect infeasibility in this regime.

Computational experiments (Section 6.5). We verify our theoretical results

by presenting numerical experiments displaying the efficacy of the different cer-

tificate candidates (3.2). Specifically, our experiments show that using all three

sequences in (3.2) is beneficial. On the one hand, if the active set’s finite time

identification occurs relatively quickly, then the differences of iterates (3.2a) ex-

hibit faster convergence. On the other hand, for some problems, identifying the
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active set might not happen in a reasonable amount of time. In this case, both the

normalized iterates (3.2b) recovers approximate infeasibility certificates much

more efficiently than the differences.

Related work

Chambolle and Pock [44] review PDHG among other methods and describe

its applications in computer vision. O’Connor and Vandenberghe [194] show

that PDHG is in fact a particular application of Douglas-Rachford Splitting

(DRS) [81, 108, 101, 162].

Lan et al. [138] and Renegar [211] develop FOMs for LP, considered as a spe-

cial case of semidefinite programming, with O
(

1
k

)
convergence rates. Gilpin et

al. [107] obtain a restarted FOM for LP with a linear convergence rate. These

analyses assume an optimal solution exists. Pock and Chambolle [203] apply

PDHG with diagonal preconditioning to LP on a small number of test instances.

They note that on small-scale problems, interior-point methods clearly dom-

inate, while their method outperforms MATLAB’s LP solver on one larger LP

motivated by a computer vision application. Most recently, Basu et al. [17] apply

accelerated gradient descent to a specialized LP instance, obtaining solutions to

industrial problems with up to 1012 variables.

Classically, the primal simplex method for LP detects primal infeasibility

while solving a “phase-one” auxiliary problem for an initial feasible basis and

detects dual infeasibility based on conditions when computing a step size (i.e.,

the ratio test) [169]. Infeasibility certificates are extracted from the iterates of

interior-point methods without substantial extra work [230]. Infeasibility detec-
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tion is only the first step of diagnosing the cause of the infeasibility in an LP

model [55].

Most research on infeasibility detection capabilities for FOMs for convex op-

timization has focused on ADMM or equivalently Douglas-Rachford Splitting.

Eckstein and Bertsekas [92] show that when no solution exists, then the iterates

diverge. Recent practical successes motivated further research in this direction,

characterizing the asymptotic behavior of the iterates under additional assump-

tions. For example, the line of work [18, 19, 183] studies Douglas-Rachford ap-

plied to problems that look for a point at the intersection of two non-intersecting

convex sets. On the other hand, Raghunathan and Di Cairano [206] investigate

the asymptotic dynamics of ADMM for convex quadratic problems when the

matrices involved are full rank.

Banjak et al. [16] show that the infimal displacement vector of ADMM re-

covers certificates of infeasibility for convex quadratic problems with conic con-

straints. Based on this, they proposed to use the difference of iterates to test

infeasible. Complementing this work, [163] establishes a O
(

1
√

k

)
convergence

rate for the difference of iterates of any algorithm that induces a firmly nonex-

pansive operator and introduced a scheme that utilizes multiple runs of ADMM

to detect infeasibility. This type of scheme aims to handle pathological scenarios

that do not occur in LP.

O’Donoghue et al. [196] propose to apply ADMM to a homogeneous self-

dual embedding of a convex conic problem1. A nice byproduct of this ap-

proach is that it automatically produces infeasibility certificates. Subsequent

work [195] extends this approach to Linear Complementarity Problems, which

1Linear objective with conic constraints.
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cover quadratic convex losses with conic constraints.

To our knowledge, the only work analyzing the behavior of PDHG on po-

tentially infeasible instances is by Malitsky [168], which considers linearly con-

strained problems. This analysis applies only to linear equality constraints, not

to linear inequalites present in LP.

Finite time identifiability has a long history in the field of optimization. This

phenomenon is first documented for the projected gradient descent method

[91, 34, 32, 29]. Soon after it is studied for other methods, such as the Proximal

Point Method [96] and Projected subgradient descent [97], among others [10].

Identifiability is also exploited as tool for algorithmic design for the so called

“UV-algorithms” [176]. Recent works [179, 158, 159] study finite time identifi-

cation for popular FOMs. In particular, Liang et al. [159] show that the iterates

of PDHG identify the active constraints in finite time, provided the limit point

is nondegenerate. All of these works assume the underlying problem is feasi-

ble. The significant number of algorithms exhibiting this behavior motivated

researchers to develop general theory (even beyond the realms of optimization)

[243, 174, 175, 151, 86, 148]. We refer the interested reader to [148] for an elegant

geometrical definition that generalizes most notions of nondegeneracy.

Outline of the chapter. Section 3.2 presents all the necessary background. In

Section 3.3, we show a convergence rate of O(1/k) for the normalized iterates

and normalized average generated by the fixed-point iteration of a nonexpan-

sive operator. Then, Section 3.4 shows a complete characterization of the behav-

ior of PDHG under different infeasibility assumptions. In Section 3.5, we study

a condition that ensures finite time identifiability of the active set. We show
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that under this condition, the difference of iterates exhibits eventual linear con-

vergence. We present numerical experiments that complement the theoretical

results in Section 3.6. Section 3.7 contains all the omitted proofs of the first sec-

tions.

3.2 Preliminaries of the chapter

In this section, we introduce the notation we use throughout the chapter, sum-

marize the LP formulations we solve, introduce PDHG algorithm for LP, and

discuss some existing results.

Notation. We use the symbols N and R to denote the natural numbers and

reals. Our results take place in a finite dimensional spaces Rd. We denote the

cone of nonnegative vectors as Rd
+. Often, ‖ · ‖will denote a norm with respect to

which an operator is (firmly) nonexpansive; see a formal definition below. Since

we study primal and dual problems, we use z = (x, y) ∈ Rn+m as a placeholder

for primal and dual variables. We will sometimes refer to a vector v ∈ Rn+m and

use vx and vy to denote its primal and dual components. In this chapter, we use

superscripts to denote iteration counts, consequently zk is the kth iterate.

Linear programming [62, 170]. LP problems can be parameterized using

multiple equivalent forms. For our theoretical results we focus on the standard

form of LP:

minimize c>x

subject to Ax = b (∈ Rm)

x ≥ 0 (∈ Rn) ,

(P)
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where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are given. The dual of this problem is given

by

maximize b>x

subject to A>y ≤ c (∈ Rn) .
(D)

Although the proofs in this chapter are tailored to this form, the techniques we

use should extend easily to any other form.

Farkas’ Lemma states that a feasible solution of (P) exists if, and only if, the

following set is empty

{y ∈ Rm | b>y < 0 and A>y ≥ 0} . (3.3)

We call the elements of this set certificates of primal infeasibility, as their existence

guarantees that the primal problem is infeasible. Analogously, the certificates of

infeasibility for the dual problem (D) are

{x ∈ Rn | c>x < 0, Ax = 0 and x ≥ 0} . (3.4)

Primal-dual hybrid gradient. Chambolle and Pock [43] establish conver-

gence to a saddle point at a rate of O(1/k) provided that a saddle exists and

ητ‖A‖22 < 1.2 The primal-dual problems (P)-(D) can be recast as a convex-concave

saddle point problem. In particular we choose g(x) = c>x + ι{x≥0}(x) and h(y) = b>y.

In this case the proximal updates can be computed in closed form. In fact, a

PDHG update reduces to

x+ = projRn
+
(x − ηA>y − ηc)

y+ = y + τA(2x+ − x) − τb .
(3.5)

2More precisely, Chambolle and Pock proved this rate for the primal-dual gap of the aver-
aged iterates.
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Observe that the most complex operations in the update formula are matrix-

vector products, and all other operations are separable by component.

An update of PDHG (Algorithm 1) can be equivalently defined with a dif-

ferential inclusion of the form

M

xk − xk+1

yk − yk+1

 ∈
∂g(xk+1)

∂h(yk+1)

 +

A>yk+1

−Axk+1

 with M :=


1
η
In −AT

−A 1
τ
Im

 , (3.6)

this follows from (2.4). We will later leverage this inclusion in our proofs.

Operators and the fixed-point iteration. We will find it useful to think of

iterative algorithms from an operator viewpoint. Given an arbitrary map T :

Rd → Rd, the corresponding fixed-point iteration is defined as

zk+1 = T (zk) . (3.7)

Most first-order methods can be described in this form. The primal-dual hybrid

gradient method can be encoded as T (x, y) = (x+, y+) where the output pair is de-

fined in (3.5). When looking at an algorithm from this perspective, we transform

the problem of finding a solution of the optimization problem to that of finding

a fixed-point of the operator, i.e., z? = T (z?). This idea has proven fruitful for

proving optimal converge rates for a variety of algorithms [71].

Here we make a minimal assumption that is sufficient to analyze PDHG in

the infeasible case. An operator T is said to be nonexpansive if it is 1-Lipschitz

continuous with respect to a matrix norm ‖ · ‖, meaning that for any z1, z2 ∈ Rd

we have

‖T (z1) − T (z2)‖ ≤ ‖z1 − z2‖ . (3.8)

Nonexpansiveness does not ensure the convergence of iterates in the feasible

case. Yet a slightly stronger condition does. An operator T is firmly nonexpansive
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if it satisfies

‖T (z1) − T (z2)‖2 ≤ ‖z1 − z2‖
2 − ‖(T − I)(z1) − (T − I)(z2)‖2 for all z1, z2 ∈ Rd .

Note that the norm here is not necessarily the Euclidean norm. All the results

concerning (firmly) nonexpansiveness in this section and the next one are with

respect to the norm in which these properties hold. The following is a beautiful

geometrical result proved by Pazy that defines a pivotal object in our studies.

Lemma 3.2.1 (Lemma 4 in [201]). Let T be a nonexpansive operator, then the set

cl(range(T − I)) is convex. Consequently, there exists a unique minimum norm vector

in this set:

vT := arg min
z∈cl(range(T−I))

1
2
‖z‖2 . (3.9)

This vector is known as the infimal displacement vector. We drop the subscript

T and make the corresponding operator clear from the context. Intuitively, v

is the minimum size perturbation we should subtract from T to ensure it has a

fixed point.

Theorem 3.2.2 ([201] and [15]). Let T be a nonexpansive operator and (zk) be a se-

quence generated by the fixed-point iteration (3.7). Then, we have

lim
k→∞

zk

k
= v . (3.10)

If further T is firmly nonexpansive, then

lim
k→∞

zk+1 − zk = v . (3.11)

That is the normalized iterate converges to the infimal displacement vector

when T is nonexpansive and if T is firmly nonexpansive the difference of iter-

ates also converge. One might wonder whether the the stronger condition is

necessary. This turns out to be the case.
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The following proposition shows two things: first, (3.11) is provably stronger

than (3.10) and second, the convergence of the iterates ensures converges of the

normalized average. Recall from the previous section that we use z̄k := 1
k

∑k
j=1 z j

to denote the average.

Proposition 3.2.3. Let (zk)∞k=1 ⊆ Rd be an arbitrary sequence and let v ∈ Rd be a fixed

vector. Then the following implications hold:

1. Difference convergence implies normalized iterate convergence.

lim
k→∞

(zk+1 − zk) = v =⇒ lim
k→∞

zk

k
= v .

2. Normalized iterate convergence implies normalized average convergence.

lim
k→∞

zk

k
→ v =⇒ lim

k→∞

2z̄k

(k + 1)
→ v .

Moreover, these implications cannot be reversed as there exist simple counterexamples

in R.

The proof of this proposition is technical, so it is deferred to Section 3.7.1.

Naturally when concerned with practical algorithms one would like to have

convergence rates for (3.10) and (3.11). As far as we know, the state-of-the-art

result in this vein is due to Liu, Ryu, and Yin [163].

Theorem 3.2.4 ([163]). Let T be a firmly nonexpansive operator and (zk) be a sequence

generated by (3.7). Then, for any ε > 0, then there exists a point zε such that

(Average iterate rate).∥∥∥∥∥v −
2

k + 1
(z̄k − z0)

∥∥∥∥∥ ≤
√

2
k + 1

‖z0 − zε‖ + ε ,

35



(Last iterate rate). ∥∥∥∥∥v −
1
k

(zk − z0)
∥∥∥∥∥ ≤

√
1
k
‖z0 − zε‖ + ε ,

(Difference rate).

min
j≤k
‖v − z j+1 − z j‖ ≤

√
1
k
‖z0 − zε‖ + ε .

Remark 1. In the paper [163], this result is presented only for the difference of iterates,

yet a simple modification of their argument proves the other two results.

The theorem guarantees a rate of convergence that depends on a target ac-

curacy ε. The rate could get worse as ε → 0. Indeed, zε could diverge as ε goes

to zero, see Example 3.7.3 in Section 3.7.3. We will see in the next section that

for LP it is possible to get rates that are independent of the accuracy ε.

Since the algorithm of interest is PDHG, we might wonder whether or not

its operator is firmly nonexpansive. It turns out that it is, but with respect to the

norm induced by the matrix M.

Proposition 3.2.5. If ητ‖A‖22 < 1, then the operator defined by a PDHG iteration is

firmly nonexpansive with respect to the norm the ‖ · ‖M with M defined as in (3.6).

Proof. This is a known result [116], yet we include a proof for the interested

reader. A Schur complement argument proves that the condition ητ‖A‖22 < 1

ensures that M � 0 is positive definite. Then a direct application of Proposition

4.2 in [20] proves the result. �
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3.3 Sublinear convergence of nonexpansive operators

This section presents the O(1/k) convergence rate of the normalized iterates

and the normalized average for nonexpansive operators. This rate applies to

a broader class of operators than the previously known results (restated in The-

orem 3.2.4) as it does not require the operator to be firmly nonexpansive. The re-

sulting rate applies to many popular FOMs for convex optimization, including

but not limited to PDHG [43], the Alternating Method of Multipliers (ADMM)

or equivalently Douglas-Rachford Splitting (DRS) [205], and Mirror-Prox [185].

Theorem 3.3.1 presents our main result in this section.

Theorem 3.3.1. Let T be a nonexpansive operator for some norm ‖ · ‖ and define v to

be the minimum norm element in cl(range(T − I)). Then, for any ε > 0, there exists zε

such that the following two inequalities hold

(Average iterate rate).∥∥∥∥∥v −
2

(k + 1)

(
z̄k − z0

)∥∥∥∥∥ ≤ 4
k + 1

‖z0 − zε‖ + ε . (3.12)

(Last iterate rate). ∥∥∥∥∥v −
1
k

(zk − z0)
∥∥∥∥∥ ≤ 2

k
‖z0 − zε‖ + ε . (3.13)

Furthermore, if range(T−I) is closed, then there exists a finite z? such that T (z?) = z?+v

and for any such z? and all k:

(Average iterate rate).∥∥∥∥∥v −
2

(k + 1)

(
z̄k − z0

)∥∥∥∥∥ ≤ 4
k + 1

‖z0 − z?‖ . (3.14)
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(Last iterate rate). ∥∥∥∥∥v −
1
k

(zk − z0)
∥∥∥∥∥ ≤ 2

k
‖z0 − z?‖ . (3.15)

Remark 2. We comment that when range(T − I) is not closed, Theorem 3.3.1 may not

imply a O(1/k) sublinear convergence rate. In fact, as ε→ 0, the vector ‖zε‖ could grow

to infinity, see Example 3.7.3 in Section 3.7.3 for a one dimensional example. When

range(T − I) is closed, we obtain a O(1/k) sublinear rate.

Remark 3. When range(T − I) is closed, the above result together with the lower bound

proved later in Theorem 3.5.3 shows that the normalized iterates and normalized aver-

age of a nonexpansive operator exhibit a Θ
(

1
k

)
convergence rate. It is faster than the

difference of iterates, by noticing that the difference of iterates converges at rate Θ
(

1
√

k

)
(see Theorem 8 of [71]).

The next Lemma is used in the proof of Theorem 3.3.1.

Lemma 3.3.2. Suppose the assumptions of Theorem 3.3.1. Fix ε > 0, then there exists

a point zε, such that the following two inequalities hold for all k ≥ 0:

1. ‖T k+1(zε) − T k(zε) − v‖ ≤ ε.

2. ‖(T k(zε) − zε) − kv‖ ≤ kε.

Furthermore, if range(T−I) is closed, then there exists a point z? such that T (z?) = z?+v.

For all such z?, for all k ≥ 0:

3. T k+1(z?) − T k(z?) = v.

4. T k(z?) − z? = kv.
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Proof. Without loss of generality we assume that ε ≤ 1. Notice v ∈ cl(range(T−I)),

thus there exists zε such that

‖T (zε) − zε − v‖ ≤
ε2

max{1, 2(‖v‖ + 1)}
. (3.16)

We start by proving the first claim. Fix an arbitrary k ≥ 0. We will make use

of two facts in the proof. Since T is a nonnexpansive operator, an application of

the triangle inequality yields

‖T k(zε) − T k−1(zε)‖ − ‖v‖ ≤ ‖T (zε) − zε‖ − ‖v‖ ≤ ‖T (zε) − zε − v‖ ≤
ε2

2(‖v‖ + 1)
. (3.17)

Noticing v is the nearest point to zero in W = cl(range(T − I)) with respect to the

norm ‖‖ and the set W is convex, it follows from the optimality conditions of this

problem that

〈w, v〉 ≥ ‖v‖2 for all w ∈ W . (3.18)

Armed with these two facts, we derive for any arbitrary k:

‖T k(zε) − T k−1(zε) − v‖2 = ‖T k(zε) − T k−1(zε)‖2 − 2〈T k(zε) − T k−1(zε), v〉 + ‖v‖2

≤ ‖T k(zε) − T k−1(zε)‖2 − 2‖v‖2 + ‖v‖2

=
(
‖T k(zε) − T k−1(zε)‖ + ‖v‖

) (
‖T k(zε) − T k−1(zε)‖ − ‖v‖

)
≤ (‖T (zε) − zε − v‖ + 2‖v‖)

ε2

2(‖v‖ + 1)

≤
(
ε2 + 2‖v‖

) ε2

2(‖v‖ + 1)
≤ ε2 ,

where the first inequality utilizes (3.18) by noticing T k(zε) − T k−1(zε) ∈ W, the

second inequality uses (3.17) and the triangle inequality, the third inequality is

from (3.16), and the last inequality uses ε ≤ 1. This proves the first statement.

The second claim follows by induction. The base case k = 0 holds directly.

For the inductive step, assume that the statement holds for k − 1. Then

‖(T k(zε) − zε) − kv‖ ≤ ‖T k(zε) − T k−1(zε) − v‖ + ‖T k−1(zε) − zε − (k − 1)v‖ ≤ kε ,
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where we used the first claim and the inductive hypothesis.

Furthermore, if range(T − I) is closed, the statements follow by taking ε = 0

in the previous proofs. �

Proof of Theorem 3.3.1. Let zε be the point given by Lemma 3.3.2. We proceed to

prove the first two statements.

1. It follows from z j = T j(z0) that∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

(z j − z0) − v

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

(
T j(z0) − z0 − jv

)∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

(
(T j(z0) − T j(zε)) + (zε − z0) + (T j(zε) − zε − jv)

)∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

(
T j(z0) − T j(zε)

)∥∥∥∥∥∥∥ +
2

(k + 1)

∥∥∥z0 − zε
∥∥∥ + ε ,

where the inequality uses Lemma 3.3.2 and the triangle inequality. Applying

the triangle inequality to the first term yields∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

(
T j(z0) − T j(zε)

)∥∥∥∥∥∥∥ ≤ 2
k(k + 1)

k∑
j=1

∥∥∥T j(z0) − T j(zε)
∥∥∥

≤
2

k(k + 1)

k∑
j=1

∥∥∥z0 − zε
∥∥∥ =

2
(k + 1)

∥∥∥z0 − zε
∥∥∥ ,

where the second inequality follows since T is nonexpansive.

2. Notice that∥∥∥∥∥1
k

(zk − z0) − v
∥∥∥∥∥ =

∥∥∥∥∥1
k

(
(T k(z0) − z0) − (T k(zε) − zε) + (T k(zε) − zε − kv)

)∥∥∥∥∥
≤

∥∥∥∥∥1
k

((
T k(z0) − z0

)
− (T k(zε) − zε)

)∥∥∥∥∥ + ε

≤
1
k

(
‖T k(z0) − T k(zε)‖ + ‖z0 − zε‖

)
+ ε

≤
2
k
‖z0 − zε‖ + ε ,
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where the first inequality uses triangle inequality and Lemma 3.3.2, and the last

inequality is from non-expansiveness of T .

Finally, if range(T − I) is closed, we obtain the results following the same

argument as above with ε = 0, using the results for closed range(T − I) from

Lemma 3.3.2. �

A drawback of (3.12) and (3.13) in Theorem 3.3.1, as well as the results

in Theorem 3.2.4, is that the constants accompanying the rates depend on ε.

Nonetheless, we can bypass this issue, using (3.14) and (3.15), for problems

where range(T − I) is closed. The next proposition guarantees that range(T − I) is

indeed closed for a broad family of algorithms for solving LP.

Proposition 3.3.3. Let T : Rd → Rd be an operator that can be decomposed as T =

Tk◦· · ·◦T1 where T j is either an affine mapping or a projection onto a polyhedron. Then,

range(T ) is a finite union of polyhedra.

Proof. The proof follows inductively. Assume that C = range(T j ◦ · · · ◦ T1) is a

finite union of polyhedra. Without loss of generality, we can assume that C is

equal to a single polyhedron. Now we consider two cases:

Case 1. Assume that T j+1 is an affine transformation. This is a well-known

consequence of Fourier-Motzkin elimination [170].

Case 2. Assume that T j+1 is a projection onto a polyhedron Q. First, we

start with an intuitive sketch of the proof and then formalize it. In this case,

different pieces of the polyhedron C are going to be projected to different

faces of the polyhedron Q. Each one of these pieces is a polyhedron and
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since there are only finitely many faces of Q, the projection is a finite union

of polyhedra.

More formally, any polytope Q defines a finite polyhedral partition of the

space {PF}F∈∆ where ∆ is the collection of faces of the polyhedron Q.3 Each

cell PF corresponds to the region of the space that projects onto F, that

is projQ(PF) = F. Define a partition of the polyhedron C as {CF}F∈∆ given

by CF = PF ∩ C. Within each cell PF the projection projQ |PF is an affine

transform. Thus, by Case 1 we have that projQ(CF) is a polyhedron and

thus

T j+1(C) = projQ(C) =
⋃
F∈F

projQ(CF)

is a finite union of polyhedra.

�

As a result of Proposition 3.3.3 applied to the PDHG update for solving an

LP problem, range(T − I) is a polyhedron, thus closed:

Corollary 3.3.4. Let T be the PDHG operator for an LP problem, then range(T − I) is

a finite union of closed polyhedra.

Proof. Notice that the operator T − I is composite of linear operators and projec-

tion operators, thus we obtain the results by using Proposition 3.3.3. �

Remark 4. Proposition 3.3.3 shows that range(T − I) is closed when T is an operator

that corresponds to other first-order algorithms, such as ADMM and mirror-prox, to

solve an LP problem. Further, one can extend the result to cover convex quadratic

problems with polyhedral constraints.
3I.e., each cell PF ⊆ Rd is a polyhedron and ∪F∈∆PF = Rd.
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3.4 The complete behavior of PDHG for solving LP problems

In Figure 3.1, we saw low-dimensional examples of the dynamics of PDHG

when solving LP problems in different feasibility settings. Indeed, such con-

vergence/divergence dynamics generally hold when using PDHG to solve ar-

bitrary LP problems. In this section, we present a complete description of the

behavior of PDHG for feasible and infeasible LP problems and discuss how to

recover the infeasibility certificate from the iterates of PDHG. The next theorem

compiles the full characterization. The proof of this theorem will be deferred to

Section 3.4.3.

Theorem 3.4.1. Consider the primal (P) and dual (D) problems. Assume that ητ‖A‖22 <

1, let T be the operator induced by (3.5), and let {zk}k be a sequence generated by the

fixed-point iteration for an arbitrary starting point z0, i.e., zk = T k(z0) Then, one of the

following holds:

1. If both primal and dual are feasible, then the iterates (xk, yk) converge to a

primal-dual solution z? = (x?, y?) and v = (T − I)(z?) = 0.

2. If both primal and dual are infeasible, then both primal and dual iterates

diverge to infinity towards the direction of the infimal displacement vector v =

(vx, vy). Moreover, the primal and dual components of the infimal displacement

vector vx and vy give certificates of dual and primal infeasibility, respectively.

3. If the primal is infeasible and the dual is feasible, then the dual iterates di-

verge to infinity in the direction of vy, while the primal iterates converge to a vector

x?. Furthermore, the dual-component vy is a certificate of primal infeasibility, and

there exists a vector y? such that v = (T − I)(x?, y?).
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4. If the primal is feasible and the dual is infeasible, then the same conclusions

as in the previous item hold by swapping primal with dual.

To show this characterization, we establish two intermediate results: first,

the infimal displacement vector v is nonzero if, and only if, either the primal

or dual problems are infeasible; and second, the iterates (xk, yk) “converge” to a

well-defined ray of the form (x?, y?) +λv for λ ∈ R+. The first result describes the

asymptotic divergent behavior of the primal (resp. dual) iterates when the dual

(resp. primal) problem is infeasible. The second one, ensures the asymptotic

convergence of the primal (resp. dual) iterates without any normalization when

the dual (resp. primal) problem is feasible. These two intermediate results are

proved in Section 3.4.1 and Section 3.4.2, respectively.

3.4.1 The infimal displacement vector recovers certificates

In Section 3.3, we demonstrated that the differences of iterates, the normalized

iterates, and the normalized average for a nonexpansive operator converge to

the infimal displacement vector v. Here, we show that the infimal displacement

vector v for PDHG applied to LP recovers infeasibility certificates whenever it

is nonzero. First, some simple properties of v.

Lemma 3.4.2. Consider the primal (P) and dual (D) problems. Assume that ητ‖A‖22 <

1, let T be the operator induced by (3.5), and let v = (vx, vy) be the infimal displacement

vector of T . Then vx ≥ 0, Avx = 0, and A>vy ≥ 0.

Proof. From Theorem 3.2.2,

1
k

(xk, yk)→ v = (vx, vy) and
1
k

(zk+1 − zk)→ 0 . (3.19)
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Notice that PDHG for LP has the following iteration update in terms of a

differential inclusion,

M

xk − xk+1

yk − yk+1

 ∈
NRn

+
(xk+1) + A>yk+1 + c

−Axk+1 + b

 , (3.20)

where this relation comes from (3.6) and (2.2). Dividing (3.20) by k and letting

k → ∞, we have from (3.19) that

0 ∈ lim
k∈∞

NRn
+
(xk) + A>

1
k

yk ⊆ −Rn
+ + A>vy =⇒ A>vy ≥ 0 , (3.21)

where we utilize the fact that NRn
+
(x) ⊆ −Rn

+ for any x ∈ Rn
+ and limk→∞

1
k yk = vy;

and

0 = lim
k∈∞
−

1
k

Axk = −Avx =⇒ Avx = 0 . (3.22)

Furthermore, note that vx ≥ 0 since vx = limk→∞ xk/k and xk ≥ 0 for all k. �

Now we derive the main result of this section.

Proposition 3.4.3. Consider the primal (P) and dual (D) problems. Assume that

ητ‖A‖22 < 1, let T be the operator induced by (3.5), and let (zk)k∈N be a sequence generated

by the fixed-point iteration for an arbitrary starting point z0. Then, the primal problem

(P) is infeasible if and only if vy is a nonzero vector, and in this case, vy is an infeasibility

certificate for the primal problem. Analogously, the dual problem (D) is infeasible if and

only if vx is a nonzero vector, and in this case, vx is an infeasibility certificate for the

dual problem.

Proof. To establish the first implication in this result we have to prove that if vy

is non-zero, then vy is an infeasibility certificate for the primal problem, namely,

A>vy ≥ 0 and b>vy < 0 ,
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thus the primal problem is infeasible. Similarly if vx is non-zero, then vx is an

infeasibility certificate for the dual problem, namely

Avx = 0, vx ≥ 0, and c>vx < 0 ,

thus the dual problem is infeasible. We proved all the nonstrict inequalities in

Lemma 3.4.2, so it suffices to show the strict ones.

First, consider the case when vx , 0. Let B = {i ∈ [n] | (vx)i > 0} and let

N = {i ∈ [n] | (vx)i = 0}, then B ∪ N = [n] by noticing vx ≥ 0 (from Lemma 3.4.2).

Given a vector x, let xB be the vector of entries of x with indices in B; similarly

given a matrix A, let AB be the submatrix with columns of A with indices in

B. Then for any i ∈ B, we have (vx)i > 0, thus there exists some K such that

(xk/k)i > 0 for all k ≥ K, and furthermore

(xk+1)B = (xk)B − ηA>Byk − ηcB .

Taking the limit k → ∞ and noticing limk→∞(xk+1)B − (xk)B = (vx)B, we obtain

(vx)B = lim
k→∞
−η(A>Byk + cB) .

Thus it holds that

c>vx = c>B(vx)B = −
1
η
‖vx‖

2
2 − lim

k→∞
(yk)>AB(vx)B = −

1
η
‖vx‖

2
2 < 0 , (3.23)

where the last equality uses AB(vx)B = Avx = 0. Combining with vx ≥ 0 and

Avx = 0 proves that vx is a certificate of infeasibility whenever it is nonzero.

Second, consider the case when vy , 0. By taking k → ∞, we have

vy = lim
k→∞

yk+1 − yk = lim
k→∞

τA(2xk+1 − xk) − τb = lim
k→∞

τAxk+2 − τb , (3.24)

where the second equality uses the update rule (3.5), and the third equality uses

limk→∞ 2xk+1 − xk = limk→∞ xk+1 + vx = limk→∞ xk+2.
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Now we claim the following two facts:

Fact 3.4.4. There exists some K such that if (A>vy)i > 0 then xk
i = 0 for all k ≥ K.

Fact 3.4.5. The support (nonzero components) of A>vy satisfies supp(A>vy) ⊆ N.

The first fact is because if (A>vy)i > 0 then we have that (A>yk/k)i ≥ (A>vy)i/2 >

0 for large enough k. Dividing (3.20) by k yields

−
1
k

(A>yk)i +
1
ηk

(
xk − xk+1 − ηc

)
i
∈ NRn

+
(xk+1

i ) .

For large enough k, the second term on the left-hand side of the inclusion will be

as small as (A>yk/k)i/2 and hence the sign of entire expression on the left-hand

side will be negative. If NR+
((xk+1)i) contains a negative number, then (xk+1)i = 0,

which implies that (xk+1)i = 0 for large enough k.

The second fact is because for any entry i in the support of A>vy, namely

(A>vy)i > 0, it follows from the first part that (xk)i = 0 for all k large enough, thus

(vx)i = limk→∞
1
k xk

i = 0, which proves the second fact by the definition of the set

N.

Returning to the proof of Proposition 3.4.3, notice that

lim
k→∞

v>y Axk = lim
k→∞

∑
i∈N

(A>vy)ixk
i = 0 , (3.25)

where the first equality uses Fact 3.4.5, and the second equality uses Fact 3.4.4.

Therefore, it holds that

v>y b = −
1
τ
‖vy‖

2
2 + lim

k→∞
v>y Axk+2 = −

1
τ
‖vy‖

2 < 0 ,

where the first inequality uses (3.24) and the second equality is from (3.25). To-

gether with (3.21), we know vy is an infeasibility certificate for the primal prob-

lem.
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Now we turn to the inverse direction. Recall that it follows from the closed-

ness of the set range(T − I) that there exists a pair z? = (x?, y?) such that

T (z?) = z? + v. If the dual problem is infeasible, we will show that vx , 0 by

contradiction. Assume vx = 0; then it follows from the update rule (3.5) that

x? = projRn
+
(x? − η(A>y? + ηc)) ,

thus A>y? + ηc ≥ 0 by noticing x? ≥ 0, which contradicts the assumption that

the dual problem is infeasible. If the primal problem is infeasible, we will show

that vy , 0 by contradiction. Suppose vy = 0, then it follows from the update rule

(3.5) that

y? = y? + τA(2(x? + vx) − x?) − τb ,

thus Ax? = b by noticing Avx = 0 from (3.22). Furthermore, we know x? ≥ 0,

thus the primal is a feasible problem, which contradicts with assumption.

This concludes the proof.

�

3.4.2 The iterates converge to a ray

Combining facts from the previous sections we know that if both primal and

dual problems are feasible then the iterates (without normalization) will con-

verge to a solution, and when both primal and dual problems are infeasible then

the normalized iterates converge to a vector (vx, vy) with nonzeros on both pri-

mal and dual components. Yet the techniques used to prove these results do not

explain what happens when one of the problems is feasible and the other one is

infeasible. In this scenario the convergence of the primal and dual iterates hap-
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pen at different scales, one with normalization by 1
k and the other without it.

In this section, we fill in this gap by showing that the iterates of PDHG always

converge to ray with direction v, emanating from a point z?. In turn, this allows

us to connect the convergence results for the two scales.

Definition 3.4.6 (Ray). Given a starting point z? ∈ Rn+m and a direction v ∈ Rn+m, we

define their ray as

[z?, v] = {z? + λv | λ ∈ R+} .

With this definition at hand we can now state the main result of this section.

Theorem 3.4.7. Consider the primal (P) and dual (D) problems. Assume that ητ‖A‖22 <

1, let T be the operator induced by (3.5), and let (zk)k∈N be a sequence generated by

the fixed-point iteration for an arbitrary starting point z0. Then, the iterates of PDHG

converge to a ray [z?, v], in particular

‖zk − z? − kv‖ → 0 for some z? ∈ (T − I)−1(v) .

To prove this result, we establish a connection between the iterates of PDHG

applied to the original (possibly infeasible) problem and the iterates of PDHG

applied to a feasible auxiliary LP problem. Let us start by defining this auxiliary

problem. Define the index sets

B = {i ∈ [n] | (vx)i > 0} ,

N1 = {i ∈ [n] | (vx)i = 0, (A>vy)i = 0} ,

N2 = {i ∈ [n] | (vx)i = 0, (A>vy)i > 0} .

(3.26)
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Define the operator T̃ : Rn+m → Rn+m given by T̃ (z) := z+ with

(x+)B = xB − ηA>By − ηcB − (vx)B

(x+)N1 = projR|N1 |
+

(xN1 − ηA>N1
y − ηcN1) − (vx)N1

(x+)N2 = −(vx)N2

y+ = y + τA(2x+ − x) − τb − vy .

(3.27)

In turn, this is a PDHG operator for the auxiliary LP problem:

minimize (cB + (vx)B/η)>xB + c>N1
xN1 + c>N2

xN2

subject to ABxB + AN1 xN1 + AN2 xN2 = b +
vy

τ

xN1 ≥ 0, xN2 = 0 .

(3.28)

Then we claim the following connection between T and T̃ .

Proposition 3.4.8. Given an arbitrary initial solution z0, there exists a large enough

K ∈ N such that

T̃ k(zK) = T k(zK) − kv for all k ≥ 0 . (3.29)

Proof. For any initial solution, we know that there exists some K such that it

holds for any k ≥ K that

(xk)B > 0 and (xk)N2 = 0. (3.30)

The former is because (vx)B > 0, and the latter follows from Fact 3.4.4. With some

abuse of notation, we let z0 ← zK , so that we may study the iterates starting at z0

(rather than starting at zK), for notational convenience. From Lemma 3.4.2:

vx ≥ 0, Avx = 0, and A>vy ≥ 0 .

In addition, from the converse of Fact 3.4.4,

(A>vy)B = 0 .
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We show the stated claim by induction. Denote zk = T k(z0) and z̃k = T̃ k(z0).

First, (3.29) holds with k = 0. Now suppose (3.29) holds for k, and consider k + 1.

Then by induction we have z̃k+1 = T̃ (zk − kv), thus it holds by (3.27) that

(x̃k+1)B = (xk)B − k(vx)B − ηA>B(yk − kvy) − ηcB − (vx)B

= (xk+1)B − (k + 1)(vx)B ,

where the second equality utilizes the update rule of PDHG by noticing A>Bvy = 0

and (xk+1)B > 0. For the components in N1 we get

(x̃k+1)N1 = projR|N1 |
+

((xk)N1 − k(vx)N1 − ηA>N1
(yk − kvy) − ηcN1) − (vx)N1

= projR|N1 |
+

((xk)N1 − ηA>N1
yk − ηcN1)

= (xk+1)N1 − (k + 1)(vx)N1 ,

where the second equality follows from A>N1
vy = 0 and (vx)N1 = 0, the third one

utilizes (vx)N1 = 0 and the update rule of PDHG. Similarly, for the N2 block

(x̃k+1)N2 = −(vx)N2 = 0 = (xk+1)N2 − (k + 1)(vx)N2 ,

where the equations follow from (xk+1)N2 = 0 and (vx)N2 = 0. Finally, for the dual

iterates we have

ỹk+1 = yk − kvy + τA(2x̃k+1 − x̃k) − τb − vy

= yk + τA(2(xk+1 − (k + 1)vx) − (xk − kvx)) − τb − (k + 1)vy

= yk + τA(2xk+1 − xk) − τb − (k + 1)vy

= yk+1 − (k + 1)vy ,

where the third equality utilizes Avx = 0, and the last equality is from the update

rule of PDHG. �

Equipped with this proposition we can now prove the theorem.
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Proof of Theorem 3.4.7. Since T̃ is a PDHG operator, it is firmly nonexpansive

with respect to ‖ · ‖M. Thus, if T̃ has a fixed point, then the iteration T̃ k(zK)

should converge to it. To see that T̃ has a fixed point, let z? be a point such that

(T − I)(z?) = v and let K be the iteration after which T̃ k(T K(z?)) = T k+K(z?) − kv,

which exists thanks to Proposition 3.4.8. We claim that T K(z?) is a fixed point of

T̃ . To see this, note that

T̃ (T K(z?)) = T K+1(z?) − v = T K(z?),

where the last equality follows from Lemma 3.3.2.

Now, let z0 an arbitrary initial point and recall that K is defined in (3.29).

Now that we know that the set of fixed points of T̃ is nonempty, we can define

z? = limk→∞ T̃ k(T K(z0)). We will prove that z? satisfies (T − I)(z?) = v. Due to

Proposition 3.4.8, we know that

z? = T̃ (z?) = T (z?) − v.

Finally, using decomposition (3.29) we get

‖zk+K − z? − kv‖ = ‖T̃ (zk) − z?‖ → 0 . (3.31)

The statement of theorem claimed this convergence where the coefficient ac-

companying v is (k + K). We can get around this by setting z? ← z? − Kv, a point

that also satisfies (T − I)(z?) = v thanks to Lemma 3.3.2. This establishes the

result. �

3.4.3 Proof of Theorem 3.4.1

Proof. As a direct result of Proposition 3.4.3, we know that if both primal and

dual are feasible, then v = 0 and Theorem 3.4.7 ensures that PDHG converges
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to an optimal solution (or equivalently a fixed point of T ). If primal (and/or

dual) is infeasible, then the dual iterate of PDHG (and/or primal) diverges to

infinity, and the diverging direction recovers primal (and/or dual) infeasibility

certificate.

Thus, the only thing left to prove is the final conclusion of item 3 (and anal-

ogously item 4). Assume that the primal problem is infeasible and the dual is

feasible. By Proposition 3.4.3 we know that vx = 0. Then, Theorem 3.4.7 guar-

antees the existence of some z? = (x?, y?) such that xk → x? + kvx = x? and

(T − I)(z?) = v. The proof for the case where the primal is feasible and the dual

is infeasible follows from an analogous argument. This completes the proof of

the theorem. �

3.5 Finite time identifiability and eventual linear convergence

In this section, we introduce a nondegeneracy condition that ensures that after

a finite amount the difference of iterates converges linearly to the infimal con-

vergence vector. To show this, we demostrate under said condition the iterates

“identify” the support of xk, i.e., the support freezes after a finite number iter-

ations. Finite-time identification has a long history in the analysis of iterative

algorithms for feasible problems [91, 34, 32, 29, 97, 151, 159]. Roughly speak-

ing, these algorithms’ behaviors exhibit two phases: a first one that only takes

finitely many steps but suffers from slow sublinear convergence, and then a sec-

ond one after the active set is identified where the convergence is significantly

faster and becomes linear.

For PDHG, finite-time identifiability is known to hold for feasible minimax
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problems under suitable nondegeneracy conditions [159]. In contrast, here we

study this phenomenon for infeasible LP problems. We demonstrate that even

when there is no primal (and/or dual) feasible solution, active set of the iterates with

respect to an auxiliary feasible LP problem is fixed after finitely many iterations.

Recall that the iterates of PDHG converge to a ray [z?, v] = {z? + kv | k ∈ N}

where z? is a solution to the feasible LP problem given by (3.28). Consider the

constraint set defined by said auxiliary problem, that is

Ax = b +
vy

τ
, xN1 ≥ 0 and xN2 = 0 . (3.32)

Here, the active set is the set of inequality constraints that attain their extreme

values, namely, {i ∈ N1 | x?i = 0}. Note that when the problem is feasible, N1 =

{1, . . . , n} and thus the constrained set defined by the auxliary problem (3.32)

matches that of the original problem.

Now, we introduce the nondegeneracy condition for possibly infeasible

problems, which generalizes the classical identifibility theory of PDHG for fea-

sible LP problems [151, 159]. Similar variations of the nondegeneracy condition

have appeared in numerous works that deal with finite time identifiability. Fur-

ther generalizations of this idea have led to conditions beyond the context of

optimization, we refer the interested reader to [148] for a perspective from dif-

ferential geometry.

Definition 3.5.1. A ray [z?, v] is nondegenerate if for any i ∈ N1 (recall N1 is defined

in (3.26)), the pair (x?i , (A
>y? + c)i) satisfies strict complementarity with respect to the

auxiliary problem (3.28): x?i > 0 if, and only if, (A>y? + c)i = 0.

Although here we chose to define nondegeneracy in terms of the extreme

point z?, this definition is independent of the point we take in the ray [z?, v]. This
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follows easily from the fact that (vx)N1 and (A>vy)N1 are zero vectors. Additionally,

notice that when the original problem is feasible, this definition reduces to the

classical strict complementarity of the original problem.

We now state the finite time identifibility of PDHG for infeasible LP:

Lemma 3.5.2. Suppose [z?, v] is a nondegenerate ray. Then, every PDHG iterate se-

quence zk = (xk, yk), converging to the ray [z?, v], fixes the active set of (3.32) after

finitely many steps. Furthermore, this ensures that the support of xk is fixed for all large

enough k.

Proof. First let us prove that the active set of (3.32) is identified in finite time. No-

tice that this is equivalent to saying that the support of xk
N1

freezes after finitely

many iterations. Let i ∈ N1, due to strict complementary it is enough to consider

two cases:

Case 1. Assume that (Ay? + c)i > 0, then complementary slackness implies

(xk)i → 0. By construction, we should have η · (A>yk + c)i > xk
i for all k large

enough. After this condition starts to hold, the PDHG update at i gives

xk+1
i =

(
xk

i − η · (A
>yk + c)i

)
+

= 0 .

Hence, we have xk
i = 0 for all large k.

Case 2. Assume that x?i > 0, then after finitely many iterations we have

xk
i > 0.

Thus, the support of xk
N1

is identified in finite time. Now, we argue that the same

happens to the support of xk. Assume that i ∈ B, then (vx)i > 0 and consequently

for all large k we have xk
i /k > 0, as we wanted. Lastly, if i ∈ N2 then A>vy > 0
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and Fact 3.4.4 guarantees that xk
i = 0 for large enough k. This concludes the

proof. �

When nondegeneracy holds, PDHG eventually identifies the support of the

primal iterate xk. This simplifies the form of each iteration. Let S be the support

of any xk with k large enough. The projection to the positive orthant applied

by PDHG (3.5) becomes a projection to the subspace {x | supp(x) = S }. As a

consequence, one can recast each iteration (3.5) as an affine transformation:xk+1

yk+1

 =

 I −ηDA>

τAD I − 2τηADA>

︸                      ︷︷                      ︸
Q:=

xk

yk

 −
 ηDc

2τηADc + τb

︸             ︷︷             ︸
p:=

(3.33)

where D is a diagonal matrix with ones on the indices (i, i) such that i ∈ S and

zeros everywhere else, and matrix Q and vector p are defined in (3.33).

The next theorem presents upper and lower bounds for the convergence of

the three sequences (3.2) under the nondegeneracy condition. In particular, we

show that the difference of iterates (3.2a) exhibit eventual linear convergence,

while normalized iterates (3.2b) and normalized average iterates (3.2c) exhibit

eventual sublinear convergence.

Theorem 3.5.3 (Eventual convergence rate under nondegeneracy). Consider the

primal (P) and dual (D) problems. Assume that ητ‖A‖22 < 1, and let (zk)k∈N be a sequence

generated by PDHG. Suppose that the iterates zk = (xk, yk) converge to a nondegenerate

ray. Then, the kth power of Q converges limk→∞ Qk = Q∞ to a projection matrix, and

there exists a finite K such that for any k ≥ 0, the active set of xK+k is fixed. Furthermore,

there exist positive constants µ, c1, c2, c3, c4 > 0 such that the following holds:

1. Linear convergence of the differences. For any µ ∈ (
√

1 − ητσmin(A)2, 1), the

differences zK+k+1−zK+k converge at a linear rate to the infimal displacement vector
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v, i.e., for all sufficiently large k

µk‖(Q − I)zK + (Q∞ − I)p‖2 ≤ ‖zK+k+1 − zK+k − v‖2 ≤ µk‖(Q − I)zK − p‖2. (3.34)

2. Sublinear convergence of the iterates. The normalized iterates converge to v

at a Θ
(

1
k

)
rate, i.e., for all sufficiently large k

c1

k
Lk ≤

∥∥∥∥∥1
k

zK+k − v
∥∥∥∥∥

2
≤

c2

k
Uk (3.35)

where Lk = ‖(I − Q∞)p‖2 andUk =
(
‖(Q − I)†(I − Q∞)p − zK‖2 + ‖zK‖2

)
.

3. Sublinear convergence of the average. The normalized average converges to v

at a Θ(1
k ) rate, i.e., for all sufficiently large k,

c3

k + 1
Lk ≤

∥∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

zK+ j − v

∥∥∥∥∥∥∥∥
2

≤
c4

k + 1
Uk (3.36)

where Lk = ‖(I − Q)p‖2 andUk =
(
‖(Q − I)†(I − Q∞)p − zK‖2 + ‖zK‖2

)
.

Some remarks are in order. Although equations (3.35) and (3.36) state a

bound for the normalized iterates and normalized average of PDHG started

from zK , this result implies the same asymptotic bounds (with sightly worse

constants) for the normalized iterates and normalized averaged started from z0.

Thus, the result concludes that under nondegeneracy, the difference of iterates

converges much faster than the iterates and average. Furthermore, such conclu-

sion is tight, as we provide both the upper and lower bounds for each sequence.

The proof of this result shows the same rates for Bilinear games. Recall that

a Bilinear game is a minimax problem of the form

min
x∈Rn

max
x∈Rm

c>x + 〈Ax, y〉 − b>y .

For these problems, the updates of PDHG (Algorithm 1) take the form of (3.33)

with D = I. Thus, all the arguments in the proof of this result follow with K = 0.
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In particular, this shows that the upper bound derived in Theorem 3.3.1 is tight

for Bilinear minimax problems.

Every LP problem that has an optimal solution furthermore has at least one

primal-dual solution that satisfies strict complementarity [170, Theorem 2.35].

Consequently, every infeasible problem has at least one nondegenerate ray.

Thus there exists at least one initial point z0, such that if PDHG is initialized

at this point, then the iterates converge to the nondegenerate ray and thus enjoy

linear convergence.

3.6 Numerical experiments

In this section, we test numerically the proposed approach to check infeasibility

using PDHG. For the experiments, we implemented PDHG for LP problems

with the following primal and dual form

minimize c>x

subject to Ax ≥ b

l ≤ x ≤ u

maximize b>y + l>r+ − u>r−

subject to c − A>y = r

y ≥ 0

, (3.37)

where b ∈ Rm, l ∈ (R∪{−∞})n, u ∈ (R∪{∞})n, A ∈ Rm×n are given and r+ = projR+
(r)

and r− = − projR+
(−r) are the projections of r onto the positive and negative or-

thant, respectively. We chose this form over the standard form (P)-(D) since it

is algorithmically easier to reduce arbitrary LP problems to it. Given that the

PDHG algorithm for this formulation generates iterates (xk, yk), for our compu-

tations we generate rk by finding the closest point to c−A>yk that makes the dual
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objective finite; i.e., rk = projΛ(c − A>yk) with

Λ =


x ∈ Rn : for i ∈ [n], xi



= 0 if li = −∞, ui = ∞,

≥ 0 if li ∈ R, ui = ∞,

≤ 0 if li = −∞, ui ∈ R,


.

All the results proved in this chapter also apply to this form under suitable

modifications of the statements.

For our experiments we use the Netlib dataset of infeasible LP instances [102].

We use this dataset to illustrate the different dynamics that PDHG exhibits. For

all our experiments we measure statistics that quantify how close are the candi-

date iterates (3.2) to being approximate certificates of inteasibility.

Before we describe these statistics, let us define what we mean by approxi-

mate infeasibility certificates. The set of (exact) primal infeasibility certificates

for (3.37) is given by all the vectors (y, r) ∈ Rm
+ × Rn satisfying

b>y + l>r+ − u>r− > 0 , and r = −A>y , (3.38)

while the set of (exact) dual infeasibility certificates is given by all the vectors

x ∈ Rn satisfying

c>x < 0, x ∈ Cv , and Ax ≥ 0 , (3.39)

where the set Cv is given by

Cv =


x ∈ Rn : for i ∈ [n], xi



= 0 if li, ui ∈ R,

≥ 0 if li ∈ R, ui = ∞,

≤ 0 if li = −∞, ui ∈ R,


.

We define an ε-approximate primal infeasibility certificate to be any point (y, r) ∈

Rm
+ × Rn satisfying

b>y + l>r+ − u>r− > 0 , and (b>y + l>r+ − u>r−)−1‖r + A>y‖∞ ≤ ε . (3.40)
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(a) box1 (b) woodinfe

(c) ex72a (d) ex73a

Figure 3.2: Scaled certificate error (3.42) for the three sequences defined in (3.2)
for four instances of the Netlib infeasible dataset [102]. Vertical dotted lines
denote the last observed active set change.

Similarly we say that a point x ∈ Rm is an ε-approximate dual infeasibility cer-

tificate if it satisfies

c>x < 0,
1
−c>x

· ‖x − projCv
(x)‖∞ ≤ ε , and

1
−c>x

· ‖Ax − projRm
+
(Ax)‖∞ ≤ ε .

(3.41)

These definitions parallel the criteria to detect infeasibility used by SCS [224], a

popular open-source solver.

Since all the instances in the Netlib infeasible data set are primal infeasible,

we will only plot information about the dual components of the candidate cer-

tificates (3.2). To illustrate how close is each candidate to being a certificate we
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will plot
‖rk + A>yk‖∞

b>yk + l>rk
+ − u>rk

−

. (3.42)

We call this quantity the scaled certificate error. If the objective term, i.e., the

denominator, is negative at any iteration then we do not plot it for that iteration.

For almost all the problems we consider (3.42) remains positive for almost all

iterations.

Nondegeneracy in practice. Our first batch of experiments showcases the

faster convergence of the difference of iterates in practice. We found empiri-

cally that for a subset of instances in the dataset, the difference of iterates (3.2a)

detects infeasibility faster than the other two sequences. Based on the theory,

we expect that for these instances, the difference exhibits eventual faster con-

vergence. To test this claim, we run an experiment on four of these instances:

box1, woodinfe, ex73a and ext72a.

Figure 3.2 displays the scaled certificate error (3.42) against the number of

iterations for the four instances. For all of them, we can see a clear phase transi-

tion between a first stage of slow convergence and a second stage that displays

linear convergence. This transition is unequivocally marked by the last change

of the active set of the solution (also depicted in the figure). Notice, however,

that the iteration number at which the active set is fixed might be large; the

point at which this happens ranges among multiple orders of magnitude in our

experiments.

Normalized iterates can be faster. Even if eventual identifiability holds, this

might take a significant number of iterations. In these cases it might be benefi-

cial to check infeasibility using the normalized iterated (3.2b) and the normal-

ized average (3.2c). In this batch of experiments we run PDHG on bgdbg1 and
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(a) bgdbg1 (b) chemcom

Figure 3.3: Scaled certificate error (3.42) for the three sequences defined in (3.2)
for two instances of the Netlib infeasible dataset [102].

chemcom, the results are displayed in Figure 3.3. Just as before we plot the

scaled certificate error against the number of iterations.

The normalized average is consistently slower at converging than the nor-

malized iterates. This is most likely due to the fact that it retains a tail of initial

iterates, which are far away from the infimal displacement vector. For both

these problems, the difference takes at least twice the number of iterations than

the normalized iterates to obtain a highly accurate certificate, i.e., ε = 10−8. This

suggests that solvers may benefit from checking infeasibility with both the nor-

malized iterates (3.2b) and difference of iterates (3.2a).

3.7 Analysis

3.7.1 Proof of Proposition 3.2.3

Proof. Assume that (zk+1 − zk) → v. Fix ε > 0. Our goal is to show that for all k

large enough ‖zk/k − v‖ ≤ ε. Due to convergence, there exist K1 ∈ N such that for
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all k ≥ K2 we have ‖zk+1 − zk − v‖ ≤ ε/3. Define

B := max
k≤K1
‖zk+1 − zk − v‖,

let K2 ∈ N be such that for all k ≥ K2 we get K1B/k ≤ ε/3, and let K3 ∈ N be such

that if k ≥ K3 then ‖z0‖/k ≤ ε/3. Then, for any k ≥ max{K1,K2,K3}we have∥∥∥∥∥∥zk

k
− v

∥∥∥∥∥∥ ≤
∥∥∥∥∥1

k
(zk − z0) − v

∥∥∥∥∥ +
1
k
‖z0‖

=

∥∥∥∥∥∥∥1
k

k∑
j=1

(z j − z j−1) − v

∥∥∥∥∥∥∥ +
1
k
‖z0‖

≤
1
k

k∑
j=1

∥∥∥(z j − z j−1) − v
∥∥∥ +

1
k
‖z0‖

≤
K1

k
B +

1
k

k∑
j=K1

∥∥∥(z j − z j−1) − v
∥∥∥ +

1
k
‖z0‖

≤
2
3
ε +

1
3k

k∑
j=K1

ε ≤ ε .

This proves the first statement.

Now, assume that zk

k → v, and fix ε > 0. Just as before define K1 ∈ N to be

such that for all ‖zk/k − v‖ ≤ ε/2, define the constant B = maxk≤K1 ‖z
k/k − v‖, and

let K2 be such that B(K1 + 1)K1/((K2 + 1)K2) ≤ ε/2. Then, we have that for any

k ≥ max{K1,K2},∥∥∥∥∥∥∥ 2
(k + 1)k

k∑
j=1

z j − v

∥∥∥∥∥∥∥ =
2

(k + 1)k

∥∥∥∥∥∥∥
k∑

j=1

z j −
k(k + 1)

2
v

∥∥∥∥∥∥∥
=

2
(k + 1)k

∥∥∥∥∥∥∥
k∑

j=1

(z j − jv)

∥∥∥∥∥∥∥
≤

2
(k + 1)k

k∑
j=1

j

∥∥∥∥∥∥z j

j
− v

∥∥∥∥∥∥
≤

(K1 + 1)K1

(k + 1)k
B +

2
(k + 1)k

∑
j=K1

j

∥∥∥∥∥∥z j

j
− v

∥∥∥∥∥∥
≤
ε

2
+
ε

2

 2
(k + 1)k

k∑
j=K1

j

 ≤ ε .
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The counterexamples can be found in Section 3.7.3. This concludes the proof.

�

3.7.2 Proof of Theorem 3.5.3

We start by making a few simplifying assumptions. First we assume D = I. If

that is not the case, we can consider a submatrix of A where we trim out the

columns indexed by {i ∈ n | Dii = 0}. This has no effect in the end result since

for all these indices xk
i = 0, and thus it does not affect the nonzero entries of xk

nor the entries of yk. Furthermore, without loss of generality we assume that A

is diagonal. This is because, otherwise, we can decompose the matrix Q as

Q =

V 0

0 U


 I ηΣ>

τΣ I − 2ητΣΣ>


V
> 0

0 U>

 (3.43)

where A = UΣV> is the SVD decomposition of A. Then we can change the pri-

mal and dual basis using V and U, which is equivalent to applying orthogonal

maps to the primal and dual variables; thus it does not alter the metric nor the

algorithm. Therefore, we can change the basis to enforce this assumption. No-

tice that the columns and rows of Q can be further permuted so that it becomes

a block diagonal matrix of the form

Q =



B1

. . .

Bmin{n,m}

I


where Bi =

 1 −ησi

τσi 1 − 2τησ2
i

 , (3.44)

where σi is a the ith singular value of A. Note that when n > m (or n < m), we

might also have block corresponding to an identity of size n − m (resp. m − n),

64



the arguments below can be easily extended to cover the identity block (as it

follows from the rationale applied when σi = 0) and so we assume that n = m.

Thus, from now on Q has the form (3.44) with n = m and hence without the last

identity block.

Now, we can compute closed-form formulas for the three certificate candi-

dates (3.2a)-(3.2c). Let K be the smallest integer after which the PDHG iteration

can be written as (3.33). By recursively expanding, we obtain

zk+1+K = Qzk+K − p

= Q2zk−1+K − Qp − p

...

= Qk+1zK −

k∑
i=0

Qi p .

(3.45)

If we take the difference between two consecutive iterates, this yields

zk+1+K − zk+K = Qk(Q − I)zK − Qk p = Qk((Q − I)zK − p) . (3.46)

On the other hand, summing the first k iterates (3.45) gives

k∑
j=1

z j+K =

k∑
j=1

Q jzK −

k∑
j=1

j−1∑
l=0

Ql p . (3.47)

We will show that Qk converges to a matrix Q∞. We define the matrix Q∞ as a

block diagonal matrix

Q∞ =


B∞1

. . .

B∞n

 where B∞i =


I2 if σi = 0

0 otherwise
, (3.48)

where I2 is the 2-by-2 identity matrix. Since each block is independent of each

other, we can analyze Qk by studying Bk
i . A simple calculation reveals that the
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ith block has two eigenvalues of the form

λ±i = (1 − ητσ2
i ) ± i

(
ητσ2

i

(
1 − ητσ2

i

)) 1
2
.

Taking the norm, we find ρ(Bi) = |λ±i | =

√
1 − ητσ2

i . Then, we have that the

iterated product of the ith block Bk
i converges to B∞i . To see this, consider two

cases:

Case 1. Assume that σi > 0. By assumption 0 < 1 − ητσ2
i < 1 hence

Bk
i → 0 = B∞i . This follows since the spectral radius ρ(Bk

i ) = (1−ητσ2
i )k/2 → 0

as k.

Case 2. Assume that σi = 0. Then Bk
i = Bi = I = B∞i .

The matrix Q∞ turns out to be the projection onto the kernel of Q − I (that is,

Q∞(Q − I) = 0). We use ∆ ⊆ [n] to denote the set of indices such that σi > 0.

Differences. We start by analyzing the differences (3.46). To prove the upper

bound, we expand

‖zK+k+1 − zK+k − v‖2 = ‖Qk(((Q − I)zK − p) − Q∞((Q − I)zK − p)‖2

≤ ‖Qk − Q∞‖2‖(Q − I)zK − p‖2

= max
i∈∆
‖Bk

i ‖2‖(Q − I)zK − p‖2

≤ µk‖(Q − I)zK − p‖2 ,

where the first equality comes from taking the limit k → ∞ of (3.46), the first

inequality used the fact that ‖Wz‖2 ≤ ‖W‖2‖z‖2 for any matrix W and vector z, and

the last inequality follows since ρ(Bi) = lim ‖Bk
i ‖

1
k and hence for any µ ∈ (ρ(Bi), 1)

we have that ‖Bk
i ‖ ≤ µ

k for all large enough k.
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Now we turn our attention to the lower bound. Given a vector z, we define

zi to be the vector with the two components that multiply the block Bi in the

matrix-vector product Qz. Using the same expansion as above, we get

‖zK+k+1 − zK+k − v‖22 = ‖Qk(((Q − I)zK − p) − Q∞((Q − I)zK − p)‖22

=
∑
i∈[n]

‖(Bk
i − B∞i )((Q − I)zK − p)i‖

2
2

=
∑
i∈∆

‖Bk
i ((Q − I)zK − p)i‖

2
2

≥
∑
i∈∆

σmin(Bk
i )

2‖((Q − I)zK − p)i‖
2
2

≥ min
i∈∆

σmin(Bk
i )

2
∑
i∈∆

‖((Q − I)zK − p)i‖
2
2

= min
i∈∆

σmin(Bk
i )

2‖(I − Q∞)((Q − I)zK − p)‖22

=

(
min
i∈∆

σmin(Bi)
)2k
‖(Q − I)zK + (Q∞ − I)p‖22 ,

where the second equality and the penultimate one use the block-diagonal

structure of the matrix Q to decompose the norm of the matrix-vector product

into orthogonal components, and the first inequality follows since Bk
i is a rank

two matrix for any i ∈ ∆.

Normalized iterates. We now turn our attention to the normalized iterates.

The upper bound follows almost immediately from Theorem (3.3.1) if we con-

sider the PDHG algorithm started at zK . To show the bound with the theo-

rem, it suffices to note that 1) in this case v = −Q∞p and so we might pick

z? = (Q − I)†(I − Q∞)p, where (I − Q)† is the pseudo inverse of (I − Q); and 2) all

the norms in finite dimensional spaces are equivalent so we can upper bound

‖ · ‖M ≤ C‖ · ‖2 for some constant C > 0. To see the first point note that

Qz? − p − z? = −Q∞p ⇐⇒ (Q − I)z? = (I − Q∞)p

⇐= z? = (Q − I)†(I − Q∞)p .
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Now we turn our attention to the lower bound. Just as before we analyze the

dynamics of Qk by studying the individual blocks Bk
i . We will use the following

identity for blocks satisfying ρ(B) < 1:

k∑
j=0

B j = (I − B)−1(I − Bk+1) . (3.49)

Recall that ∆ = {i | σi > 0}, which corresponds with blocks satisfying ρ(Bi) <

1. Additionally, recall that pi is the vector with the two components of p that

multiply the block Bi in the matrix-vector product Qp. Expanding we get∥∥∥∥∥v −
1
k

zK+k+1
∥∥∥∥∥2

=

∥∥∥∥∥∥∥Q∞p +
1
k

k∑
j=0

Q j p − Qk+1zK

∥∥∥∥∥∥∥
2

=
∑
i∈[n]

∥∥∥∥∥∥∥B∞i pi +
1
k

k∑
j=0

B j
i pi −

1
k

Bk+1
i zK

i

∥∥∥∥∥∥∥
2

=
1
k2

∑
i∈∆

∥∥∥(I − Bi)−1(I − Bk+1
i )pi − Bk+1

i zK
i

∥∥∥2
+

1
k2

∑
i<∆

‖Bk+1
i zK

i ‖
2

≥
1
k2

∑
i∈∆

(σmax(I − Bi))−2
∥∥∥(I − Bk+1

i )pi − (I − Bi)Bk+1
i zK

i

∥∥∥2
,

where for the last two equalities we used the fact that Q is block diagonal, and

the last inequality follows since I − Bi is invertible for i ∈ ∆. Then, taking the

minimum coefficient we get

1
k2

∑
i∈∆

σmax(I − Bi)−2
∥∥∥(I − Bk+1

i )pi − (I − Bi)Bk+1
i zK

∥∥∥2

≥
1
k2 min

j∈∆

{
σmax(I − B j)−2

}∑
i∈∆

∥∥∥(I − Bk+1
i )pi − (I − Bi)Bk+1

i zK
∥∥∥2

=
1
k2 min

j∈∆

{
σmax(I − B j)−2

} ∥∥∥(I − Qk+1)p − (I − Q)Qk+1zK
∥∥∥2

≥
1

2k2 min
j∈∆

{
σmax(I − B j)−2

}
‖(I − Q∞)p‖2 ,

where the last equality uses the fact that the matrices we handle are block diag-

onal, and the last line follows since ‖(I − Qk+1)p − (I − Q)Qk+1zK‖ → ‖(I − Q∞)p‖,

and so the inequality holds for sufficiently large k ≥ 0.
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Normalized average. The upper bound follows from the exact same argu-

ment as the normalized iterates by using Theorem 3.3.1.

The lower bound for this case is sightly more intricate. We expand and apply

(3.49)∥∥∥∥∥∥∥v −
2

k(k + 1)

k∑
j=1

zK+ j

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥Q∞p −
2

k(k + 1)

k∑
j=1

j−1∑
l=0

Ql p +
2

k(k + 1)

k∑
j=1

Q jzK

∥∥∥∥∥∥∥
2

=
∑
i∈[n]

∥∥∥∥∥∥∥B∞i pi −
2

k(k + 1)

k∑
j=1

j−1∑
l=0

Bl
i pi +

2
k(k + 1)

k∑
j=1

B jzK
i

∥∥∥∥∥∥∥
2

=
∑
i∈∆

∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

j−1∑
l=0

Bl
i pi +

2
k(k + 1)

k∑
j=1

B j
i z

K
i

∥∥∥∥∥∥∥
2 ∑

i<∆

∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

B j
i z

K
i

∥∥∥∥∥∥∥
2

=
4

k2(k + 1)2

∑
i∈∆

∥∥∥∥∥∥∥(I − Bi)−1

 k∑
j=1

(I − B j
i )pi + (I − Bk+1

i )zK
i

 − zK
i

∥∥∥∥∥∥∥
2

+
∑
i<∆

∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

B j
i z

K
i

∥∥∥∥∥∥∥
2

.

The second equality follows from the fact that Q and Q∞ are block diagonal.

Then, dropping the second sum and using the fact that

‖(I − Bi)−1z‖2 ≥ σmax(I − Bi)‖z‖2

69



for all z and i ∈ ∆, we can lower bound

4
k2(k + 1)2

∑
i∈∆

∥∥∥∥∥∥∥(I − Bi)−1

 k∑
j=1

(I − B j
i )pi + Bi(I − Bk

i )z
K
i


∥∥∥∥∥∥∥

2

+
∑
i<∆

∥∥∥∥∥∥∥ 2
k(k + 1)

k∑
j=1

B j
i z

K
i

∥∥∥∥∥∥∥
2

≥
4

k2(k + 1)2

∑
i∈∆

σmax(I − Bi)−2

∥∥∥∥∥∥∥
k∑

j=1

(I − B j
i )pi + Bi(I − Bk

i )z
K
i

∥∥∥∥∥∥∥
2

≥
4

k2(k + 1)2 min
i∈∆

{
σmax(I − Bi)−2

}∑
i∈∆

∥∥∥kpi − (I − Bi)−1Bi(I − Bk
i )pi + Bi(I − Bk

i )z
K
i

∥∥∥2

≥
4

k2(k + 1)2 min
i∈∆

{
σmax(I − Bi)−4

}∑
i∈∆

∥∥∥k(I − Bi)pi − Bi(I − Bk
i )pi + (I − Bi)Bi(I − Bk

i )z
K
i

∥∥∥2

=
4

k2(k + 1)2 min
i∈∆

{
σmax(I − Bi)−4

} ∥∥∥k(I − Q)p − Q(I − Qk)p + (I − Q)Q(I − Qk)zK
∥∥∥2

=
4

(k + 1)2 min
i∈∆

{
σmax(I − Bi)−4

} ∥∥∥∥∥(I − Q)p −
1
k

Q(I − Qk)p +
1
k

(I − Q)Q(I − Qk)zK
∥∥∥∥∥2

≥
2

(k + 1)2 min
i∈∆

{
σmax(I − Bi)−4

}
‖(I − Q)p‖2 ,

where the last inequality follows for large enough k since∥∥∥∥∥−1
k

Q(I − Qk)p +
1
k

(I − Q)Q(I − Qk)zK
∥∥∥∥∥2

→ 0.

This completes the proof.

3.7.3 Counterexamples

Example 3.7.1 (Differences don’t converge, but normalized iterates do). Con-

sider the sequence (zk) ⊆ R that alternates zk = (−1)k. For this example, the differences

of iterates zk+1 − zk also alternate between −2 and 2, and, consequently, do not converge.

Nonetheless, since the iterates are bounded 1
k zk → 0.

Example 3.7.2 (Normalized iterates diverge, but normalized averages con-

verge). Consider the sequence (zk) ⊆ R given by zk = (−1)kk
3
2 with k ∈ N. Then, it

is clear that |zk|/k >
√

k, and so the normalized iterates diverge. On the other hand,
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notice that
2

(k + 1)
z̄k =

k∑
j=1

(−1) j 2k
1
2

k + 1
,

and it is easy to show that this series converges using the Leibniz Test.

Example 3.7.3 (Nonexpansive operator with divergent zε). Let T : R→ R given

by

T (z) = z + f (z) where f (z) =


exp(−z2) + 1 if z > 0, or

2 otherwise.
(3.50)

Since the derivative of T is bounded by 1, we get that T is a nonexpansive operator.

Furthermore, range(T − I) = range( f ) = (1, 2], and so v = 1. If we define zε to be a

point such that |v − (T − I)(zε)| ≤ ε, we see that zε > Ω

(
log

(
1
ε

) 1
2
)
, and thus it diverges

as ε → 0.
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4

OPTIMAL CONVERGENCE RATES FOR THE PROXIMAL BUNDLE

METHOD

“If you only read the books that everyone else is reading,

you can only think what everyone else is thinking.”

— Haruki Murakami, Norwegian Wood

4.1 Introduction

Convex optimization has played a fundamental role in recent developments

in high-dimensional statistics, signal processing, and data science. Large-scale

applications have motivated researchers to develop first-order methods with

computationally simple iterations. Although impressive in scope, these meth-

ods often require delicate parameter tunning involving geometrical information

about the objective function. Thus, imposing an obstacle for practitioners that

rarely have access to such information.

In this work, we develop efficiency guarantees for proximal bundle methods,

which date back to the 70s, that solve unconstrained convex problems

minimize
x∈Rd

f (x) (4.1)

where f : Rd → R is a proper closed convex. Our core finding is that classic bun-

dle methods, without any modification, are adaptive, which means that they

speed up in the presence of smoothness or error bounds, with little to no tun-

ning.
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Proximal bundle methods were independently proposed in [143] and [242].

They are conceptually similar to model-based methods [66, 193, 85]. That is,

methods that update their iterates by applying a proximal step to an approxi-

mation of the function, known as the model fk:

xk+1 ← arg min
x

fk(x) +
ρk

2
‖x − xk‖

2.

Unlike these schemes, bundle methods only update their iterates xk when the

decrease in objective value is at least a fraction of the decrease that the model

predicted. Moreover, bundle methods incorporate information from past iter-

ations into their models, allowing fk to capture more than the just objective’s

geometry near xk.

This seemingly subtle change has a rather surprising consequence: the iter-

ates generated by a bundle method, with any constant parameter configuration,

converge to a minimizer of f ; see [129, Thm. 4.9], [118, Thm. XV.3.2.4], or [219,

Thm. 7.16] for different variations of this result. This stands in harsh contrast

to other first-order algorithms; for example, gradient descent and its acceler-

ated variants rely on selecting a stepsize inversely proportional to the level of

smoothness. Similarly, subgradient methods rely on carefully controlled de-

creasing stepsize sequences. These simpler algorithms may fail to converge

when the stepsizes are not carefully managed. Thus, providing a compelling

reason to consider bundle methods.

Although bundle methods are known to converge under a number of as-

sumptions [128, 177, 12, 112, 166, 72, 181, 180] and have been successfully used

in applications [221, 220, 73], nonasympotic guarantees have remained mostly

evasive. The purpose of this chapter is to close this gap. We study convergence

rates for finding an ε-minimizer, e.g., f (x)− inf f ≤ ε, under a variety of different
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assumptions on f . We consider settings where the objective function is either

M-Lipschitz continuous

| f (x) − f (y)| ≤ M‖x − y‖ for all x, y ∈ Rd (4.2)

or differentiable with an L-Lipschitz gradient, often referred to as L-smoothness,

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖ for all x, y ∈ Rd . (4.3)

In either setting, we investigate the method’s rate of convergence with and with-

out the presence of Hölder growth

f (x) − inf f ≥ µ · dist(x, X∗)p for all x ∈ Rd , (4.4)

where X∗ = {x | f (x) = inf f } is the set of minimizers.1 Particularly important

cases are when p = 1 and p = 2, which correspond to sharp growth (µ-SG) [30]

and quadratic growth (µ-QG), generalizing strong convexity, respectively.

4.1.1 Main contributions

Our first contribution is to establish convergence rates under every realiz-

able combination of continuity/smoothness (4.2) or (4.3) and growth assump-

tions (4.4), see Table 4.1. Full theorem statements are given in Section 4.2 and

apply for any Hölder growth exponent (rather than just the cases of p = 1 and

p = 2 shown in the table). Our analysis technique is fairly general as we apply

it seamlessly to every combination of assumptions as well as different stepsize

rules. We show rates for any constant stepsize ρk = ρ, which tend to be sub-

optimal. Yet, they improve under amenable geometry. Tuning the constant ρ

1Here dist(x, S ) = infy∈S ‖x − y‖.
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to depend on a target accuracy ε yields faster convergence rates. Further, we

propose nonconstant stepsize rules ρk with two clear advantages: they yield yet

faster convergence and their convergence does not slow down after reaching

the target accuracy.

Assumptions Rate for generic ρ Rate for tuned ρ Rate for adaptive ρk

M
-L

ip
sc

hi
tz No Growth O

(
M2‖x0 − x∗‖4

ρε3

)
O

(
M2‖x0 − x∗‖2

ε2

)
O

(
M2‖x0 − x∗‖2

ε2

)
µ-QG O

(
M2

min{µ, ρ}ε

)
O

(
M2

µε

)
O

(
M2

µε

)
µ-SG O

(
M2

ρε

)
O

 M2

µ2

√
∆ f

ε

 O
(

M2

µ2 log
(
∆ f

ε

))

L-
Sm

oo
th No Growth O

(
L3‖x0 − x∗‖2

ρ2ε

)
O

(
L‖x0 − x∗‖2

ε

)
O

(
L‖x0 − x∗‖2

ε

)
µ-QG O

(
L3

ρ2µ
log

(
∆ f

ε

))
O

(
L
µ

log
(
∆ f

ε

))
O

(
L
µ

log
(
∆ f

ε

))

Table 4.1: Convergence rates. We denote ∆ f := f (x0) − inf f . The first column
applies for any choice of the parameter ρ, showing progressively faster conver-
gence as more structure is introduced. The second column shows the rate after
optimizing the choice of ρ. The third column further improves these by allowing
nonconstant stepsizes ρk.

The existing convergence theory for the proximal bundle method applies to

settings comparable to the first two rows of our table. Kiwiel [131] derived a

O(ε−3) convergence rate for Lipschitz problems, which agrees with our theory.

Du and Ruszczynski [88] and subsequently Liang and Monteiro [157] showed

a O(log(1/ε)/ε) convergence rate for Lipschitz, strongly convex problems, which

we improve on by removing the extra logarithmic term and thus achieve the

optimal convergence rate for this setting of O(1/ε). To our knowledge, the rest

of our convergence results apply to wholly new settings for the proximal bun-

dle method. In all of the M-Lipschitz settings considered, we show that using a

nonconstant stepsize the bundle method attains the optimal nonsmooth conver-

gence rate. In the L-smooth settings considered, the bundle method converges
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at the same rate as gradient descent. Although, unlike gradient descent, our

convergence theory applies to any configuration of its algorithmic parameters.

Our second contribution is proposing a parallelizable variant of the bundle

method that avoids the reliance on tuning a stepsize or sequence of stepsizes

based on potentially unrealistic knowledge of underlying problem constants.

This approach too seamlessly falls under the umbrella of our analysis. It attains

the optimal nonsmooth convergence rates for Lipschitz problems with any level

of Hölder growth, up to the cost of running a logarithmic number of instances

of the bundle method in parallel.

4.1.2 Related work

In 2000, Kiwiel [131] gave the first convergence rate for the proximal bundle

method, showing that an ε-minimizer xk is found with k ≤ O
(
‖x0−x∗‖4

ε3

)
. More

recently, Du and Ruszczyński [88] gave the first analysis of bundle methods

when applied to problems satisfying a quadratic growth bound. In this case, an

ε-minimizer is found within O(log(1/ε)/ε) iterations. Following this, Liang and

Monteiro [157] showed a variant of the proximal bundle method with proper

stepsize selection attains the optimal convergence rate for convex and strongly

convex optimization, up to logarithmic terms.

Despite historically having weaker convergence rate guarantees than sim-

ple alternatives like the subgradient method, bundle methods have persisted

as a method of choice for nonsmooth convex optimization. See [100, 144] for a

survey of much of the bundle method literature. In practice, bundle methods

have proven to be efficient methods for solving many nonsmooth problems,
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see [221, 220, 73] for further discussion. Extensions that apply to nonconvex

problems have been considered in in [128, 177, 12, 112, 166, 72, 181, 180] and

as well as an extension to problems where only an inexact first-order oracle is

available in [113, 74, 165].

Stronger convergence rates have been established for related level bundle

methods [145], which share many core elements with proximal bundle methods.

Variations of level bundle methods were studied in [130] and [137]. The results

of Lan [137] are particularly impressive as their proposed method has optimal

convergence rates for both smooth and nonsmooth problems while requiring

little input.

Outline of the chapter . Section 4.2 introduces the Proximal Bundle Method

and provides the formal convergence guarantees under different regularity as-

sumptions. This section also introduces simple stepsize rules that guarantee

optimal convergence rates for all nonsmooth settings. Practical implementa-

tions of these rules require access growth constants of the function. To bypass

this issue, in Section 4.3 we propose an adaptive parallel bundle method that ex-

hibits nearly the same convergence rates without knowledge of such constants.

We complement our findings with numerical experiments in Section 4.4. Fi-

nally, Section 4.5 presents a broadly applicable proof technique to analyze bun-

dle methods and uses it to establish the theoretical results.
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Algorithm 2: Proximal Bundle Method
Data: z0 = x0 ∈ Rn, f0(z) = f (x0) + 〈g0, z − x0〉

Step k: (k ≥ 0)
Compute candidate iterate zk+1 ← arg min

z∈X
fk(z) +

ρk

2
‖z − xk‖

2.

If β( f (xk) − fk(zk+1)) ≤ f (xk) − f (zk+1) (Descent step)
set xk+1 ← zk+1,

Else (Null step)
set xk+1 ← xk.

Update fk+1 and ρk+1 without violating Assumption 4.2.1.

4.2 Bundle methods

In this section, we formally define the family of proximal bundle methods that

our theory applies to. We present the convergence rates for the classic method

with constant stepsizes. Additionally, we introduce and analyze nonconstant

stepsize rules that guarantee faster convergence rates.

Proximal bundle methods work by maintaining a model function fk : Rn → R

at each iteration k and a current iterate xk. The method computes a candidate

for the next iterate as

zk+1 = arg min
z∈X

fk(z) +
ρk

2
‖z − xk‖

2.

However, unlike other model-based algorithms, bundle methods do not neces-

sarily move their next iterate to zk+1. Instead, it first checks whether the candi-

date zk+1 has at least β ∈ (0, 1) fraction of the decrease in objective value that our

model fk(·) predicts. If it does, it updates xk+1 = zk+1 as the next iterate, this is

called a Descent Step. Otherwise the method keeps the iterate the same xk+1 = xk

and updates the model function fk+1, called a Null Step.

The proximal bundle method is stated fully in Algorithm 2. Our analysis

does not presume a particular parametrization or form of the models. We only
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assume that the models satisfy mild assumptions, typical of bundle methods in

the literature. To state the assumptions, note the first-order optimality condi-

tions define a subgradient

sk+1 = ρk(zk+1 − xk) ∈ ∂ fk(zk+1) for each k ≥ 0

where ∂ f (x) = {g | f (x′) ≥ f (x) + 〈g, x′ − x〉 ∀x′ ∈ Rd} denotes the subdifferential

of f at x.

Assumption 4.2.1. Let
{
fk : Rd → R

}
and {ρk} be the sequence of models and stepsizes

used throughout the execution of a bundle method. Assume that for any iteration k ≥ 0,

the next model fk+1 and stepsize ρk+1 satisfy the following:

1. Minorant.

fk+1(x) ≤ f (x) for all x ∈ Rd . (4.5)

2. Subgradient lowerbound. There is a subgradient gk+1 ∈ ∂ f (zk+1) such that

fk+1(x) ≥ f (zk+1) + 〈gk+1, x − zk+1〉 for all x ∈ Rd . (4.6)

3. Model subgradient lowerbound. After a null step k

fk+1(x) ≥ fk(zk+1) + 〈sk+1, x − zk+1〉 for all x ∈ Rd . (4.7)

4. Constant stepsize between null steps. After a null step k

ρk+1 = ρk . (4.8)

The first two conditions are natural as they ensure that a new model incor-

porates first-order information from the objective at zk+1. The third condition is

mild and, intuitively, requires the new model to retain some of the approxima-

tion accuracy of the previous model. The last assumption is trivial to enforce

and guarantees the algorithm only changes its stepsize after it decides to move.

79



4.2.1 Model function choices

Several methods for constructing model functions fk that satisfy (4.5)-(4.7) have

been considered. In practice, the main consideration lies in weighing the poten-

tially greater per iteration gains from having more complex models against the

lower iteration costs from having simpler models.

Full-memory proximal bundle method. The earliest proposed bundle meth-

ods [143, 242] rely on using all of the past subgradient evaluations to construct

the models as

fk+1(x) = max
j=0...k+1

{
f (z j) + 〈g j, x − z j〉

}
. (4.9)

In this case, solving the quadratically regularized subproblem at each iteration

amounts to solving a quadratic programming problem.

Finite Memory Proximal Bundle Method. Using cut-aggregation[127, 129],

the collection of k + 1 lower bounds used by (4.9) can be simplified down to

just two linear lower bounds. The only two necessary lower bounds are ex-

actly those required by (4.6) and (4.7). Namely, one could construct the model

functions as

fk+1(x) = max { fk(zk+1) + 〈ρk(zk+1 − xk), x − zk+1〉, f (zk+1) + 〈gk+1, x − zk+1〉} . (4.10)

Then the subproblem that needs to be solved at each iteration can be done in

closed form, see (4.17). Hence the iteration cost using this model is limited pri-

marily by the cost of one subgradient evaluation.
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Spectral bundle methods. Both of the above models rely on constructing

piecewise linear models of the objective. For more structure problems, richer

models can be constructed. For example, in eigenvalue optimization or more

broadly semidefinite programming, better spectral lower bounds can be con-

structed instead of using simple polyhedral bounds [117, 198]. Primal-dual

convergence rate guarantees for such spectral bundle methods were recently

developed by Ding and Grimmer [79].

4.2.2 Convergence rates from constant stepsize choice

We now formalize our convergence theory for the proximal bundle method us-

ing any constant choice of the stepsize parameter ρk = ρ and any β ∈ (0, 1). These

guarantees match those claimed in the first column of Table 4.1. After each the-

orem, we remark on the tuned choice of ρ that gives rise to the claimed rate in

the second column of Table 4.1. We start by considering the setting where only

Lipschitz continuity is assumed.

Theorem 4.2.2 (Lipschitz). For any M-Lipschitz convex objective function f , con-

sider applying the bundle method using a constant stepsize ρk = ρ. Then for any

0 < ε ≤ f (x0) − f (x∗), the number of descent steps before an ε-minimizer is found

is at most
2ρD2

βε
+


log

(
f (x0)− f (x∗)

ρD2

)
− log(1 − β/2)

+

and the number of null steps is at most

12ρM2D4

β(1 − β)2ε3 +
8M2

β(1 − β)2ρ2D2

where D2 = supk ‖xk − x∗‖2 < ∞.
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Remark 5. It follows from [219][(7.64)] that D2 ≤ ‖x0 − x∗‖2 +
2(1−β)( f (x0)− f ∗)

βρ
. Alter-

natively, if the level sets of f are bounded, the fact that f (xk) is non-increasing ensures

D2 ≤ sup{‖x − x∗‖2 | f (x) ≤ f (x0)}.

Remark 6. Selecting ρ = ε/D2 gives an overall complexity bound of

O
(

M2D2

ε2

)
and matches the optimal rate for nonsmooth, Lipschitz convex optimization.

If instead of Lipschitz continuity of the objective, we assume the objective

has Lipschitz gradient, the bundle method adapts to give the following faster

rate.

Theorem 4.2.3 (Smooth). For any L-smooth convex objective function f , consider

applying the bundle method using a constant stepsize ρk = ρ. Then for any 0 < ε ≤

f (x0) − f (x∗), the number of descent steps before an ε-minimizer is found is at most

2ρD2

βε
+


log

(
f (x0)− f (x∗)

ρD2

)
− log(1 − β/2)

+

and the number of null steps is at most

4(L + ρ)3

(1 − β)2ρ3

2ρD2

βε
+


log

(
f (x0)− f (x∗)

ρD2

)
log(1 − β/2)

+

+ 1


where D2 = supk ‖xk − x∗‖2 < ∞.

Remark 7. Selecting ρ = L gives an overall complexity bound of

16LD2

β(1 − β)2ε
.

This matches the standard convergence rate for gradient descent.
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Next, we reconsider the settings of Lipschitz continuity and smoothness

with additional structure in the form of a Hölder growth bound. We find that

the convergence guarantees divide into three regions depending on the growth

exponent p, whether it is large, equal to, or smaller than 2. Here two is the

critical exponent value since the proximal subproblem is adding in quadratic

regularization. Regardless, as p decreases, the bundle method converges faster.

Theorem 4.2.4 (Lipschitz with Hölder growth). For any M-Lipschitz objective

function f satisfying the Hölder growth condition (4.4), consider applying the bun-

dle method using a constant stepsize ρk = ρ. Then for any 0 < ε ≤ f (x0) − f (x∗), the

number of descent steps before an ε-minimizer is found is at most

2ρ
(1 − 2/p)βµ2/pε1−2/p +


log

(
f (x0)− f (x∗)

(ρ/µ2/p)1/(1−2/p)

)
− log(1 − β/2)

+

if p > 2
log

(
f (x0)− f (x∗)

ε

)
− log(1 − βmin{µ/2ρ, 1/2})

 if p = 2
log

(
(ρ/µ2/p)1/(1−2/p)

ε

)
− log(1 − β/2)

+

+
2ρ( f (x0) − f ∗)2/p−1

(1 − 21−2/p)βµ2/p if 1 ≤ p < 2

and the number of null steps is at most

12ρM2

(1 − 2/p)β(1 − β)2µ4/pε3−4/p +
8M2

β(1 − β)2ρ(ρ/µ2/p)1/(1−2/p) if p > 2

2M2

β(1 − β)2 min{µ/2ρ, 1/2}ρε
if p = 2

4M2

β(1 − β)2ρε
+

8M2

β(1 − β)2ρ(ρ/µ2/p)1/(1−2/p) C if 1 ≤ p < 2

with C = max
{

( f (x0)− f ∗)4/p−3

(ρ/µ2/p)(4/p−3)/(1−2/p) , 1
}

min
{

1
1−2−|4/p−3| ,

⌈
log2

(
f (x0)− f ∗

(ρ/µ2/p)1/(1−2/p)

)⌉}
.

Remark 8. When p = 2, selecting ρ = µ gives an optimal overall complexity bound

of O(M2/µε). Selecting ρ = O(ε1−2/p) matches the optimal rate for Lipschitz optimiza-

tion with growth exponent p > 2. When p = 1, selecting ρ = O(1/
√
ε) minimizes

this bound, but the resulting sublinear O(1/
√
ε) rate falls short of the best possible rate
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(linear convergence) for sharp, Lipschitz optimization. In the next section where we con-

sider nonconstant stepsizes, this disconnect will be remedied and a linear convergence

guarantee will follow.

Theorem 4.2.5 (Smooth with Hölder growth). For any L-smooth objective function

f satisfying the Hölder growth condition (4.4), consider applying the bundle method

using a constant stepsize ρk = ρ. Then for any 0 < ε ≤ f (x0) − f (x∗), the number of

descent steps before an ε-minimizer is found is at most
2ρ

(1 − 2/p)βµ2/pε1−2/p +


log

(
f (x0)− f (x∗)

(ρ/µ2/p)1/(1−2/p)

)
− log(1 − β/2)

+

if p > 2
log

(
f (x0)− f (x∗)

ε

)
− log(1 − βmin{µ/2ρ, 1/2})

 if p = 2

and the number of null steps is at most
4(L + ρ)3

(1 − β)2ρ3

 2ρ
(1 − 2/p)βµ2/pε1−2/p +


log

(
f (x0)− f (x∗)

(ρ/µ2/p)1/(1−2/p)

)
− log(1 − β/2)

+

+ 1

 if p > 2

4(L + ρ)3

(1 − β)2ρ3


log

(
f (x0)− f (x∗)

ε

)
− log(1 − βmin{µ/2ρ, 1/2})

 if p = 2 .

Remark 9. Selecting ρ = L gives an overall complexity bound matching gradient de-

scent.

4.2.3 Convergence Rates from Improved Stepsize Choice

Picking ρk to vary throughout the execution of the bundle method allows for

stronger convergence guarantees. These rates are formalized in the following

pair of theorems that consider settings with and without Hölder growth. In the

latter case, we find that our stepsize choice removes the need for piecewise guar-

antees around growth exponent p = 2, which notably simplifies the statement

of our results.
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Intuitively, the stepsize choices aim to mimic the following idealistic (and

impractical) stepsize rule that naturally arises from our theory

ρk =
f (xk) − f (x∗)
‖xk − x∗‖2

. (4.11)

The proof techniques we develop could be extended to study other interest-

ing nonconstant stepsizes. For instance, stepsizes that shrink/grow polynomial

with the number of descent steps, mirroring those used for subgradient meth-

ods. The analysis of such schemes is beyond the scope of this work.

Theorem 4.2.6 (Lipschitz). For any M-Lipschitz objective function f , consider ap-

plying the bundle method using the stepsize policy

ρk = ( f (xk) − f (x∗))/D2 (4.12)

with any choice of D2 ≥ sup{‖x−x∗‖2 | f (x) ≤ f (x0)}. Then for any 0 < ε ≤ f (x0)− f (x∗),

the number of descent steps before an ε-minimizer is found is at most
log

(
f (x0)− f (x∗)

ε

)
− log(1 − β/2)


and the number of null steps is at most(

1
1 − (1 − β/2)2

)
2M2D2

(1 − β)2ε2 .

Theorem 4.2.7 (Lipschitz with Hölder growth). For any M-Lipschitz objective

function f satisfying the Hölder growth condition (4.4), consider applying the bundle

method using the stepsize policy

ρk = µ2/p( f (xk) − f (x∗))1−2/p. (4.13)

Then for any 0 < ε ≤ f (x0) − f (x∗), the number of descent steps before an ε-minimizer

is found is at most 
log

(
f (x0)− f (x∗)

ε

)
− log(1 − β/2)
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and the number of null steps is at most

(
1

1 − (1 − β/2)2−2/p

)
2M2

(1 − β)2µ2/pε2−2/p if p > 1

2M2

(1 − β)2µ2


log

(
f (x0)− f (x∗)

ε

)
− log(1 − β/2)

 if p = 1 .

4.3 The parallel bundle method

We now give a practical scheme for applying the bundle method that attains

the same complexity as our optimally tuned nonconstant stepsizes without any

knowledge of the presence of smoothness or growth bounds. We do this by

employing a logarithmic number of instances of the bundle method with differ-

ent constant stepsizes in parallel that continually share their progress with each

other. By doing so, we recover our optimal rates, up to the cost of running a log-

arithmic number of algorithms which can be mitigated through parallelization.

This scheme is inspired by the ideas of [212].

The core observation behind our parallel method is that our nonconstant

stepsize rules (4.12) and (4.13) before an ε-minimizer is found are always in the

following interval

ρk ∈
[
O(ε),O(ε−1)

]
.

As input, we only assume the following are given: a lower bound ρ̄ and an

upper bound 2Jρ̄ on the range of stepsizes to consider. Provided our stepsize

rules (4.12) and (4.13) lie in this interval,

ρk ∈
[
ρ̄, 2Jρ̄

]
,

we are able to recover our optimal convergence rates. Notice that the interval

[ρ̄, 2Jρ̄] can span the whole range of stepsizes needed for our Hölder growth
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analysis by setting ρ̄ = O(ε) and J = O(log(1/ε2)). Our resulting convergence

guarantees only depends logarithmically on the size of this interval (a cost

which can be mitigated through parallelization), so ρ̄ and 2Jρ̄ can bet set conser-

vatively at little cost.

Description of the algorithm. We propose running J copies of the bundle

method in parallel, which share their progress with each other as described be-

low. Each bundle method j ∈ {0, . . . J − 1} uses a constant stepsize ρ( j) = 2 jρ̄.

Denote the iterates of bundle method j by x( j)
k and its model objectives by f ( j)

k .

Each bundle method j proceeds as normal with the only modification being that

after it takes a descent step, the algorithm checks if any other bundle method j′

has an iterate with an even lower objective value f (x( j′)
k ) < f (x( j)

k+1). If such an im-

provement exists, the bundle method instead descends to the best such iterate,

setting 
x( j)

k+1 ← x( j′)
k

f ( j)
k+1(z) ← f (x( j′)

k ) + 〈g( j′)
k , z − x( j′)

k 〉

and then proceeds.

For analysis sake, we will assume that each parallel instance of the bundle

method operates synchronously, with every instance completing one iteration

before any instance completes a second iteration. This process can be imple-

mented sequentially by cycling through the bundle method instances comput-

ing one iteration for each before repeating. An asynchronous variant of this

procedure could be analyzed as well, using similar techniques as those in [212].

However, this is beyond the focus of this work. Note the choice to use powers

of two here is arbitrary. In the following numerical section, we use powers of

10 and 100 demonstrating the effectiveness of this scheme even when using a
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sparse selection of sample stepsizes.

4.3.1 Convergence Rates for the Parallel Bundle Method

First, we remark that all of our previous convergence theory for constant step-

sizes (Theorems 4.2.2, 4.2.3, 4.2.4, and 4.2.5) immediately apply to the Parallel

Bundle Method fixing ρ = 2 jρ̄ for any j ∈ {0, . . . J − 1}. This follows as our

convergence theory on relies on a lemma ensuring sufficient decrease at each

descent step (Lemma 4.5.1) and the new case of a bundle method restarting at

another method’s lower objective value iterate can only further improve on this

decrease. Hence any individual instance of the bundle method with ρ( j) = 2 jρ̄ in

our parallel scheme will converge at least as fast as Theorems 4.2.2, 4.2.3, 4.2.4,

and 4.2.5 guarantee it would converge on its own.

Further and more importantly, when our nonconstant stepsize rules (4.12)

and (4.13) lie in the interval [ρ̄, 2Jρ̄], we find that their convergence theory (The-

orems 4.2.6 and 4.2.7) also extends to our parallel algorithm. This is formalized

as follows.

Theorem 4.3.1. For any M-Lipschitz objective function f that satisfies the Hölder

growth condition (4.4), consider applying the Parallel Bundle Method with stepsizes

ρ = 2 jρ̄ for j ∈ {0, . . . , J − 1}. Then for any 0 < ε ≤ f (x0) − f (x∗), if

ρ̄ ≤
1
4
µ2/p min{ε1−2/p, ( f (x0) − f (x∗))1−2/p}

and

J ≥ log2

(
µ2/p(max{ε1−2/p, ( f (x0) − f (x∗))1−2/p}

4ρ̄

)
,
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Figure 4.1: Objective gap against iteration count: using ideal stepsize (4.11) (left)
and using the parallel bundle method, plotting each instance deployed with
stepsizes from 100, . . . , 108 (right).

then one of our J bundle methods will find an ε-minimizer within its first

(
2

1 − (1 − β/2)2−2/p

)
16M2

(1 − β)2µ2/pε2−2/p + 2

 log( f (x0)− f ∗

ε
)

− log(1 − β/2)

 if p > 1

2
(

16M2

(1 − β)2µ2 + 1
)  log( f (x0)− f ∗

ε
)

− log(1 − β/2)

 if p = 1

iterations.

4.4 Numerical experiments

In this section, we present two examples that illustrate numerically the

theory for the bundle method. These experiments were implemented

in Julia, see the github repository https://github.com/mateodd25/

proximal-bundle-method.

4.4.1 Sharp linear regression

The first experiment aims to exemplify the fast convergence of the bundle

method under sharp growth. We consider a simple linear regression problem of
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Figure 4.2: Stepsize against iteration count: using ideal stepsize (4.11) (left) and
using the parallel bundle method (right).

the form

min
x∈Rd

f (x) := ‖Ax − b‖

where A ∈ Rn×d is a matrix and b = Ax? for a fixed x?. This problem is equivalent

to the classic least-squares problem after taking squares. Yet, without the square

it is well known that for Gaussian matrices, (A)i j ∼ N(0, 1
√

n ), this function is

sharp and Lipchitz continuous provided n is large enough.

We generate a random Gaussian matrix A ∈ R100×50 and random solution

x? ∼ N(0, Id). We run two algorithms: the proximal bundle method with the

“ideal” stepsize (4.11) and the parallel bundle method described in Section 4.3.

The ideal stepsize is impractical since it requires knowing the optimal solution.

However, the theoretical analysis shows that it gives optimal convergence rates.

In fact, the stepsizes proposed in our results (4.12) and (4.13) try to mimic its

behavior. Thus, the method with ideal stepsize serves as a point of compar-

ison. The parallel bundle method uses 9 parallel instances with stepsizes in

ρ ∈ {1, 10, . . . , 108}. We let both methods run for 150 iterations.

Figure 4.1 displays the objective gap f −min f against the iteration count for

both methods. On the other hand, Figure 4.2 shows the stepsize used at each

iteration. For the parallel bundle method, we display the stepsize used by the
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last instance to reduce the best objective value seen.

As the theory predicts the convergence of both methods is linear. The bundle

method with ideal stepsize exhibits steady progress and reaches an objective

gap of 1.70 · 10−15, while the parallel version slows down around 100 iterations

and only achieves 5.87 · 10−12. This behavior is explained by the stepsize plots.

Figure 4.2 plots how the parallel algorithm roughly emulates the ideal stepsize

until it exceeds the largest instance’s stepsize 108. After which, the instance with

stepsize 108 consistently leads the method’s progress, albeit sublinearly.

4.4.2 Support Vector Machine

To illustrate the adaptive features of the parallel bundle method we consider the

standard Support Vector Machine (SVM) formulation: we are given datapoints

(x1, y1), . . . (xn, yn) with xi ∈ Rd and yi ∈ {±1} and our goal is to solve

min
w∈Rd

1
n

∑
max {0, 1 − yi〈w, xi〉} +

λ

2
‖w‖2 (4.14)

where λ ∈ R is a fixed constant. This problem is not smooth due to the first

term. For this experiment we compare against a subgradient method based on

Pegasos [222], a state-of-the art solver for SVM. Our vanilla implementation of

the parallel bundle method is not tuned for efficiency and does not aim to be

competitive with commercial solvers. Instead, we aim to show that an out-of-

the-box implementation is immediately comparable to a specialized first-order

method for this problem.

We generate SVM problems using three datasets from the LIBSVM Binary

Classification Database [1]. In particular, we use colon-cancer, duke, and
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Figure 4.3: Objective gap against coefficient λ for the three problems, solved
by a subgradient method and by the parallel bundle method: colon-cancer
(left), duke (center), and leu (right).

leu.2 We preprocess the data by deleting empty features, normalizing the fea-

tures, and adding an extracomponent xk = (xk, 1) to allow for affine functions.

The implementation of the subgradient algorithm updates

wk+1 ← (1 − ηkλ)wk + ηk

n∑
i=1

1{1 ≤ yi〈wk, xi〉}yixi

where ηk = 1
λk and 1{·} is one if · holds true and zero otherwise. This is analogous

to Pegasos with the exception that it does full, instead of stochastic, subgradient

evaluations.

For the parallel bundle method, we use stepsizes 11 instances with constant

stepsizes

ρ ∈ {10−15 · 100 j | j = 0, . . . , 10}.

We run both methods for 2000 iterations and measure the objective gap f −min f .

To compute the minimum we use Gurobi with accuracy set to 10−10. Figure

4.3 plots the gap against while varying the regularizer coefficient within λ ∈

{0.001, 0.01, 0.1, 0.5, 1.5, 2.0}.

In this simple setting, the parallel bundle method out of the box performs

similarly to the tuned subgradient method while only requiring a constant

amount of extra work (that can be parallelized). We see that the parallel method
2We refer the reader to LIBSVM for the origin of each of these datasets.
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with the same parameter configuration can handle a wide range of parameters

λ. While for small λ the performance of the subgradient method tends to de-

teriorate, the performance of the bundle method improves (outperforming the

subgradient method by several orders of magnitude).

4.5 Analysis

In this section, we develop the proofs of the convergence rates. We start by

introducing the general strategy that we use to establish all of our results and

then specialize it to each scenario.

4.5.1 Analysis Overview and Proof Sketch

Each iteration of the bundle method can be viewed as an attempt to mimic the

proximal point method, using the model fk instead of the true objective function

f . At each iteration k, we denote the objective gap of the proximal subproblem,

called the proximal gap, by

∆k := f (xk) −
(

f (x̄k+1) +
ρk

2
‖x̄k+1 − xk‖

2
)

where x̄k+1 = arg minx∈Rd

{
f (x) +

ρk
2 ‖x − xk‖

2
}
.

Regardless of which continuity, smoothness and growth assumptions are

made, our analysis works by relating the proximal steps computed by the bun-

dle method on the models fk to proximal steps on f . The following pair of obser-

vations show that the behavior on both descent steps and null steps is controlled

by the proximal gap ∆k.
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(i) Descent steps attain decrease proportional to the proximal gap.

Lemma 4.5.1. A descent step, at iteration k, has

f (xk+1) ≤ f (xk) − β∆k.

(ii) The number of consecutive null steps is bounded by the proximal gap.

Lemma 4.5.2. A descent step, at iteration k, followed by T consecutive null steps

has at most

T ≤
2G2

k+1

(1 − β)2ρk+1∆k+1

where Gk+1 = sup{‖gt+1‖ | k ≤ t ≤ k + T }. This simplifies to

T ≤


2M2

(1 − β)2ρk+1∆k+1
if f is M-Lipschitz, or

4(L + ρk)3

(1 − β)2ρ3
k+1

if f is L-smooth .

With these two observations in hand, convergence guarantees for the bundle

method follow from specifying any choice of the parameter ρk. Given a choice of

ρk, bounding the proximal gap is a classic, well-understand problem, indepen-

dent from the details of the bundle method being used. Standard analysis [219]

of the proximal gap shows the following bound for any minimizer x∗.

Lemma 4.5.3. For any xk ∈ Rn, the proximal gap is lower bounded by

∆k ≥


1

2ρk

(
f (xk) − f (x∗)
‖xk − x∗‖

)2

if f (xk) − f (x∗) ≤ ρk‖xk − x∗‖2

f (xk) − f (x∗) −
ρk

2
‖xk − x∗‖2 otherwise.

(4.15)

Our ideal stepsize (4.11) is chosen to balance the two cases of this classic bound.

All of our analysis follows directly from applying these core lemmas. We

bound the number of descent steps by combining Lemmas 4.5.1 and 4.5.3 to
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give a recurrence relation describing the decrease in the objective gap. Then

Lemmas 4.5.2 and 4.5.3 together allow us to bound the number of consecutive

null steps between each of these descent steps, which can then be summed up

to bound the total number of iterations required.

Proof of the Descent Step Lemma 4.5.1

Let x̄k+1 = arg min{ f (·) +
ρk
2 ‖ · −xk‖

2}. From (4.5), we have

fk(xk+1) ≤ fk(xk+1) +
ρk

2
‖xk+1 − xk‖

2

≤ fk(x̄k+1) +
ρk

2
‖x̄k+1 − xk‖

2

≤ f (x̄k+1) +
ρk

2
‖x̄k+1 − xk‖

2 .

Hence f (xk)− fk(xk+1) ≥ ∆k. Since we have assumed that iteration k was a descent

step, this implies ( f (xk) − f (xk+1))/β ≥ ∆k. Concluding the proof.

Proof of the Null Step Lemma 4.5.2

Consider some descent step, at iteration k, followed by T consecutive null steps.

Denote the proximal subproblem gap at iteration k < t ≤ k + T on the model ft

by

∆̃t := f (xk+1) −
(

ft(zt+1) +
ρk+1

2
‖zt+1 − xk+1‖

2
)
.

Note every such null step t has the same stepsize ρt = ρk+1 and the same prox-

imal center xt = xk+1. The core of this null step bound relies on the following

recurrence showing ∆̃t decreases at each step

∆̃t+1 ≤ ∆̃t −
(1 − β)2ρk+1∆̃

2
t

2G2
k+1

. (4.16)
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Before deriving this inequality, we show how it completes the proof of this

lemma. After T consecutive null steps, the fact that fk+T ≤ f ensures ∆̃k+T ≥

∆k+T = ∆k+1. Thus, to bound T it suffices to bound the minimum iteration at

which the reversed inequality hold. By solving the recurrence, see Lemma 4.5.4

with ε = ∆k+1, we conclude the number of consecutive null steps is at most

T ≤
2G2

k+1

(1 − β)2ρk+1∆k+1
.

Now all that remains is to derive the recurrence (4.16). Consider some null step

k < t ≤ k + T in the sequence of consecutive null steps. We will use the following

claim mulitiple times in the proof.

Claim 1. The following inequalities hold true ‖st+1‖
2 ≤ 2ρk+1∆̃t ≤ G2

k+1.

Proof of the Claim. Due to the ρk+1-strongly convexity of the proximal subprob-

lem ft(z) +
ρk+1

2 ‖z − xk+1‖
2 and the fact that zt+1 is its unique minimizer, we derive

ρk+1

2
‖zt+1 − xk+1‖

2 ≤ ft(xk+1) −
(

ft(zt+1) +
ρk+1

2
‖zt+1 − xk+1‖

2
)

≤ ∆̃t

≤ ∆̃k+1 ≤
1

2ρk
‖gk+1‖

2.

The last inequality follows by (4.6) since

fk+1(zk+2) ≥ f (xk+1) + 〈gk+1, zk+2 − xk+1〉

≥ f (xk+1) −
1
2

(
‖gk+1‖

2

ρk+1
+ ρk+1‖zk+2 − xk+1‖

2
)
.

�

Define the necessary lower bound on ft+1 given by (4.6) and (4.7) as

f̃t+1(·) := max { ft(zt+1) + 〈st+1, · − zt+1〉, f (zt+1) + 〈gt+1, · − zt+1〉} ≤ ft+1(·) .
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Denote the result of a proximal step on f̃t+1 by

yt+2 = arg min
{

f̃t+1(·) +
ρk+1

2
‖ · −xk+1‖

2
}
.

A simple computation gives an explicit form for the minimizer of this problem

θt+1 = min
{

1,
ρk+1 ( f (zt+1) − ft(zt+1))
‖gt+1 − st+1‖

2

}
yt+2 = xk+1 −

1
ρk+1

(θt+1gt+1 + (1 − θt+1)st+1) . (4.17)

Hence the objective of the proximal subproblem at iteration t + 1 is lower

bounded by

ft+1(zt+2) +
ρk+1

2
‖zt+2 − xk+1‖

2

≥ f̃t+1(yt+2) +
ρk+1

2
‖yt+2 − xk+1‖

2

≥ θt+1 ( f (zt+1) + 〈gt+1, yt+2 − zt+1〉)

+ (1 − θt+1) ( ft(zt+1) + 〈st+1, yt+2 − zt+1〉) +
ρk+1

2
‖yt+2 − xk+1‖

2

= ft(zt+1) + θt+1
(
f (zt+1) − f t(zt+1)

)
+ 〈θt+1gt+1 + (1 − θt+1)st+1, yt+2 − zt+1〉 +

ρk+1

2
‖yt+2 − xk+1‖

2

= ft(zt+1) + θt+1
(
f (zt+1) − f t(zt+1)

)
+ θ2

t+1‖gt+1 − st+1‖
2/ρk+1 +

ρk+1

2
‖zt+1 − xk+1‖

2 ,

where the first inequality uses that ft+1 ≥ f̃t+1, the second inequality takes a

convex combination of the two affine functions defining f̃t+1, and the second

equality uses the definition of yt+2. Thus we have

∆̃t+1 ≤ ∆̃t − θt+1 ( f (zt+1) − ft(zt+1)) + θ2
t+1‖gt+1 − st+1‖

2/ρk+1 .
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The amount of decrease guaranteed above can be lower bounded as follows

θt+1 ( f (zt+1) − ft(zt+1)) + θ2
t+1‖gt+1 − st+1‖

2/ρk+1

≥ min
{

f (zt+1) − ft(zt+1),
2ρk+1( f (zt+1) − ft(zt+1))2

‖gt+1 − st+1‖
2

}
≥ min

(1 − β)∆̃t,
2ρk+1(1 − β)2∆̃2

t

‖gt+1 − st+1‖
2


≥ min

(1 − β)∆̃t,
ρk+1(1 − β)2∆̃2

t

‖gt+1‖
2 + ‖st+1‖

2


≥ min

2
ρk+1(1 − β)∆̃2

t

G2
k+1

,
ρk+1(1 − β)2∆̃2

t

2G2
k+1


≥
ρk+1(1 − β)2∆̃2

t

2G2
k+1

where the first inequality uses the definition of θt+1 and drops a norm squared

term, the second inequality uses the definition of a null step, and the fourth

inequality uses Claim 1 and ‖gt+1‖
2 ≤ G2

k+1. This verifies (4.16) and completes the

proof of our general bound.

For any M-Lipschitz objective, our specialized result follows from observing

that Gk ≤ M as subgradients everywhere are uniformly bounded in norm by the

Lipschitz constant. For any L-smooth objective, the following three inequalities

hold for any null step t in the sequence of consecutive null steps following a

descent step k < t:

‖gt+1‖ ≤ ‖gk+1‖ + L‖zt+1 − xk+1‖ (4.18)

‖zt+1 − xk+1‖ ≤ ‖gk+1‖/ρk+1 (4.19)

‖gk+1‖ ≤
√

2(L + ρk+1)∆k+1 . (4.20)

Before proving these three inequalities, we note that combined they give the
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claimed bound as

Gk+1 = sup
t
{‖gt+1‖} ≤ sup

t
{‖gk+1‖ + L‖zt+1 − xk+1‖}

≤ (1 + L/ρk+1)‖gk+1‖

≤ (1 + L/ρk+1)
√

2(L + ρk+1)∆k+1

and thus G2
k+1 ≤ 2(L + ρk+1)3∆k+1/ρ

2
k+1. First (4.18) follows directly from the

gradient being L-Lipschitz continuous. Second (4.19) follows from Claim 1.

Third (4.20) follows from the L-smoothness of f and considering the full proxi-

mal subproblem f (z) +
ρk+1

2 ‖z − xk+1‖
2 since

∆k+1 = f (xk+1) −min
z

{
f (z) +

ρk+1

2
‖z − xk+1‖

2
}

≥ f (xk+1) −min
z

{
f (xk+1) + 〈gk+1, z − xk+1〉 +

L + ρk+1

2
‖z − xk+1‖

2
}

=
‖gk+1‖

2

2(L + ρk+1)
.

4.5.2 Proofs in Section 4.2

Proof of Theorem 4.2.2

For a constant stepsize ρk = ρ, we can simplify the lower bound (4.15) to only

depend on xk through a simple threshold on f (xk) − f ∗ as

∆k ≥


1

2ρ

(
f (xk) − f ∗

D

)2

if f (xk) − f ∗ ≤ ρD2

1
2

( f (xk) − f ∗) otherwise.

(4.21)
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Combining this with Lemma 4.5.1 gives a recurrence relation describing the de-

crease in the objective gap δk = f (xk) − f ∗ on any descent step k of

δk+1 ≤


δk −

βδ2
k

2ρD2 if δk ≤ ρD2

(1 − β/2)δk if δk > ρD2 .

Our analysis of the bundle method then proceeds by considering these two

cases separately. In each case, solving the given recurrence relation bounds the

number of descent steps and applying Lemma 4.5.2 bounds the number of null

steps.

Bounding steps with δk > ρD2. First we show that the number of descent steps

with δk > ρD2 is bounded by 
log

(
f (x0)− f ∗

ρD2

)
− log(1 − β/2)

+

(4.22)

and the number of null steps with δk > ρD2 is at most

8M2

β(1 − β)2ρ2D2 . (4.23)

In this case, our recurrence relation simplifies to have geometric decrease at

each descent step δk+1 ≤ (1 − β/2)δk. This immediately bounds the number of

descent steps by (4.22). Index the descent steps before a ρD2-minimizer is found

by k1 < · · · < kn such that xkn+1 is the first iterate with objective value less than

ρD2. Define k0 = −1. Then for each i = 0 . . . n−1, f (xki+1)− f ∗ ≥ (1−β/2)i−(n−1)ρD2 .

It follows from (4.15) that ∆ki+1 ≥ ( f (xki+1)− f ∗)/2 ≥ (1 − β/2)i−(n−1) ρD2/2. Plugging

this into Lemma 4.5.2 upper bounds the number of consecutive null steps after

the descent step ki by

ki+1 − ki − 1 ≤ (1 − β/2)(n−1)−i 4M2

(1 − β)2ρ2D2 .
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Summing this over i = 0 . . . n − 1 bounds the total number of null steps before a

ρD2-minimizer is found by (4.23) as

n−1∑
i=0

(1 − β/2)(n−1)−i 4M2

(1 − β)2ρ2D2 ≤
8M2

β(1 − β)2ρ2D2 .

Bounding steps with ρD2 ≥ δk > ε. Now we complete our proof of Theo-

rem 4.2.2 by bounding the number of descent steps with ρD2 ≥ δk > ε by

2ρD2

βε
(4.24)

and the number of null steps with ρD2 ≥ δk > ε by

12ρD4M2

(1 − β)2ε3 . (4.25)

After the bundle method has passed objective value ρD2, the recurrence re-

lation becomes

δk+1 ≤ δk −
βδ2

k

2ρD2 .

Solving this recurrence with Lemma 4.5.4 implies δk > ε holds for at most (4.24)

descent stwhereeps. Then we can bound the number of null steps between

these descent steps by noting (4.21) implies ∆k ≥ ( f (xk) − f ∗)2/2ρD2 ≥ ε2/2ρD2.

Then Lemma 4.5.2 upper bounds the number of consecutive null steps by

4D2M2/(1− β)2ε2. Then multiplying this by our bound on the number of descent

steps gives (4.25) as (
2ρD2

βε
+ 1

)
4D2M2

(1 − β)2ε2 ≤
12ρD4M2

β(1 − β)2ε3 .

Proof of Theorem 4.2.3

Our bound on the number of descent steps comes directly from Theorem 4.2.2.

Our claimed bound on the total number of null steps follows by multiply-
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ing this by the constant bound on the number of consecutive null steps from

Lemma 4.5.2.

Proof of Theorem 4.2.4

Assuming Hölder growth (4.4) holds and fixing ρk = ρ, the lower bound (4.15)

simplifies to only depend on a simple threshold with f (xk) − f ∗ as

∆k ≥


µ2/p( f (xk) − f ∗)2−2/p

2ρ
if ( f (xk) − f ∗)1−2/p ≤ ρ/µ2/p

1
2

( f (xk) − f ∗) otherwise .
(4.26)

From this, we arrive at a recurrence relation on the objective gap δk = f (xk) − f ∗

decrease at each descent step k by plugging this lower bound into Lemma 4.5.1

of

δk+1 ≤


δk −

βµ2/pδ
2−2/p
k

2ρ
if δ1−2/p

k ≤ ρ/µ2/p

(1 − β/2)δk if δ1−2/p
k > ρ/µ2/p .

Our analysis proceeds by considering the two cases of this recurrence and the

three cases of p > 2, p = 2, and 1 ≤ p < 2 separately. In each case, solving

the given recurrence relation bounds the number of descent steps and applying

Lemma 4.5.2 bounds the number of null steps.

Given p > 2, bounding steps with δk > (ρ/µ2/p)1/(1−2/p). First we show that the

number of descent steps with δk > (ρ/µ2/p)1/(1−2/p) is bounded by
log

(
f (x0)− f ∗

(ρ/µ2/p)1/(1−2/p)

)
− log(1 − β/2)

+

(4.27)

and the number of null steps with δk > (ρ/µ2/p)1/(1−2/p) is at most

8M2

β(1 − β)2ρ(ρ/µ2/p)1/(1−2/p) . (4.28)
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In this case, our recurrence relation simplifies to have geometric decrease

at each descent step δk+1 ≤ (1 − β/2)δk. This immediately bounds the num-

ber of descent steps by (4.27). Index the descent steps before a (ρ/µ2/p)1/(1−2/p)-

minimizer is found by k1 < · · · < kn such that xkn+1 is the first iterate with objec-

tive value less than (ρ/µ2/p)1/(1−2/p). Define k0 = −1. Then for each i = 0 . . . n − 1,

f (xki+1) − f ∗ ≥ (1 − β/2)i−(n−1)(ρ/µ2/p)1/(1−2/p). It follows from (4.15) that

∆ki+1 ≥ ( f (xki+1) − f ∗)/2 ≥ (1 − β/2)i−(n−1) (ρ/µ2/p)1/(1−2/p)/2.

Plugging this into Lemma 4.5.2 upper bounds the number of consecutive null

steps after the descent step ki by

ki+1 − ki − 1 ≤ (1 − β/2)(n−1)−i 4M2

(1 − β)2ρ(ρ/µ2/p)1/(1−2/p) .

Summing this over i = 0 . . . n − 1 bounds the total number of null steps before a

(ρ/µ2/p)1/(1−2/p)-minimizer is found by (4.28) as

n−1∑
i=0

(1 − β/2)(n−1)−i 4M2

(1 − β)2ρ(ρ/µ2/p)1/(1−2/p) ≤
8M2

β(1 − β)2ρ(ρ/µ2/p)1/(1−2/p) .

Given p > 2, bounding steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε. Next we show that

the total number of descent steps with(ρ/µ2/p)1/(1−2/p) ≥ δk > ε is bounded by

2ρ
(1 − 2/p)βµ2/pε1−2/p (4.29)

and the number of null steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε is at most

12ρM2

(1 − 2/p)β(1 − β)2µ4/pε3−4/p . (4.30)

In this case, the recurrence relation on objective value decrease becomes

δk+1 ≤ δk −
βµ2/pδ

2−2/p
k

2ρ
.
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Applying Lemma 4.5.4 gives our bound on the number of descent steps with

δk > ε in (4.29). Plugging the lower bound ∆k ≥ µ2/p( f (xk) − f ∗)2−2/p/2ρ ≥

µ2/pε2−2/p/2ρ into Lemma 4.5.2, the number of consecutive null steps after a de-

scent step is at most
4M2

(1 − β)2µ2/pε2−2/p .

Then multiplying our limit on consecutive null steps by the number of descent

steps between finding a (ρ/µ2/p)1/(1−2/p)-minimizer and finding an ε-minimizer

gives the bound (4.30) as(
2ρ

(1 − 2/p)βµ2/pε1−2/p + 1
)

4M2

(1 − β)2µ2/pε2−2/p ≤
12ρM2

(1 − 2/p)β(1 − β)2µ4/pε3−4/p .

Given p = 2, bounding steps with δk > ε. Here both cases of our recurrence

relation have a similar form, and so we directly bound the total number of de-

scent steps with δk > ε by 
log

(
f (x0)− f ∗

ε

)
− log(1 − βmin{µ/2ρ, 1/2})

 (4.31)

and the number of null steps with δk > ε by

2M2

β(1 − β)2 min{µ/2ρ, 1/2}ρε
. (4.32)

In this case, our recurrence relation simplifies to have geometric decrease at

each descent step δk+1 ≤ (1 − βmin{µ/2ρ, 1/2})δk. This immediately bounds the

number of descent steps by (4.31). Index the descent steps before an ε-minimizer

is found by k1 < · · · < kn such that xkn+1 is the first iterate with objective value

less than ε. Define k0 = −1. Then for each i = 0 . . . n − 1,

f (xki+1) − f ∗ ≥ (1 − βmin{µ/2ρ, 1/2})i−(n−1)ε .
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It follows from (4.15) that ∆ki+1 ≥ (1 − βmin{µ/2ρ, 1/2})i−(n−1) ε/2. Plugging this

into Lemma 4.5.2 upper bounds the number of consecutive null steps after the

descent step ki by

ki+1 − ki − 1 ≤ (1 − βmin{µ/2ρ, 1/2})(n−1)−i 2M2

(1 − β)2ρε
.

Summing this over i = 0 . . . n−1 bounds the total number of null steps before an

ε-minimizer is found by
n−1∑
i=0

(1 − βmin{µ/2ρ, 1/2})(n−1)−i 2M2

(1 − β)2ρε
≤

2M2

min{µ/2ρ, 1/2}β(1 − β)2ρε
.

Given 1 ≤ p < 2, bounding steps with δk > (ρ/µ2/p)1/(1−2/p). Then we show that

the number of descent steps with δk > (ρ/µ2/p)1/(1−2/p) is bounded by

2ρ( f (x0) − f ∗)2/p−1

(1 − 21−2/p)βµ2/p (4.33)

and the number of null steps with δk > (ρ/µ2/p)1/(1−2/p) is at most

8M2

β(1 − β)2ρ(ρ/µ2/p)1/(1−2/p) C (4.34)

with C = max
{

( f (x0)− f ∗)4/p−3

(ρ/µ2/p)(4/p−3)/(1−2/p) , 1
}

min
{

1
1−2−|4/p−3| ,

⌈
log2

(
f (x0)− f ∗

(ρ/µ2/p)1/(1−2/p)

)⌉}
. Notice that

since p < 2, the power 1 − 2/p of δk in the threshold condition of our recurrence

is negative. In this case, the recurrence relation on objective value decrease be-

comes

δk+1 ≤ δk −
βµ2/pδ

2−2/p
k

2ρ
.

As an intermediate step, for any i ≥ 0, we first bound the number of descent and

null steps with

2i+1(ρ/µ2/p)1/(1−2/p) ≥ δk > 2i(ρ/µ2/p)1/(1−2/p) .

Since descent steps decreases the objective gap by at least βµ2/pδ
2−2/p
k /2ρ, there

are at most
2ρ(2i(ρ/µ2/p)1/(1−2/p))2/p−1

βµ2/p =
2(2/p−1)i+1

β
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descent steps in this interval. Further, noting that in this interval

∆k ≥
µ2/p(2i(ρ/µ2/p)1/(1−2/p))2−2/p

2ρ
= 2(2−2/p)i−1(ρ/µ2/p)1/(1−2/p) ,

we can bound the number of consecutive null steps following any of these de-

scent steps via Lemma 4.5.2. Hence there are at most

2(4/p−3)i+3M2

β(1 − β)2ρ(ρ/µ2/p)1/(1−2/p)

null steps in this interval.

The bundle method halves its objective value at most N = dlog2(( f (x0) −

f ∗)/(ρ/µ2/p)1/(1−2/p))e times before an (ρ/µ2/p)1/(1−2/p)-minimizer is found. Then

summing up these bounds on the descent and null steps in each interval limits

the number of descent steps needed to find a (ρ/µ2/p)1/(1−2/p)-minimizer by (4.33)

as
N−1∑
i=0

2(2/p−1)i+1

β
≤

2
β

N−1∑
i=0

2(2/p−1)i ≤
2(2/p−1)(N−1)+1

(1 − 21−2/p)β
≤

2ρ( f (x0) − f ∗)2/p−1

(1 − 21−2/p)βµ2/p

and similarly, the number of null steps needed by (4.34) as

N−1∑
i=0

2(4/p−3)i+3M2

β(1 − β)2ρ(ρ/µ2/p)1/(1−2/p)

≤
8M2

β(1 − β)2ρ(ρ/µ2/p)1/(1−2/p)

N−1∑
i=0

2(4/p−3)i

≤
8M2

β(1 − β)2ρ(ρ/µ2/p)1/(1−2/p)

max
{

( f (x0) − f ∗)4/p−3

(ρ/µ2/p)(4/p−3)/(1−2/p) , 1
}

min
{

1
1 − 2−|4/p−3| ,N

}
where the last inequality bounds the geometric sum regardless of the sign of the

exponent 4/p − 3.

Given 1 ≤ p < 2, bounding steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε. Finally, we

show that the number of descent steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε is bounded
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by 
log

(
(ρ/µ2/p)1/(1−2/p)

ε

)
− log(1 − β/2)

 (4.35)

and the number of null steps with (ρ/µ2/p)1/(1−2/p) ≥ δk > ε is at most

4M2

β(1 − β)2ρε
. (4.36)

In this case, our recurrence relation simplifies to have geometric decrease

at each descent step δk+1 ≤ (1 − β/2)δk. This immediately bounds the num-

ber of descent steps by (4.35). Index the descent steps after a (ρ/µ2/p)1/(1−2/p)-

minimizer but before an ε-minimizer is found by k1 < · · · < kn such that xkn+1

is the first iterate with objective value less than ε. Then for each i = 0 . . . n − 1,

f (xki+1) − f ∗ ≥ (1 − β/2)i−(n−1)ε. It follows from (4.15) that ∆ki+1 ≥ ( f (xki+1) − f ∗)/2 ≥

(1 − β/2)i−(n−1) ε/2. Plugging this into Lemma 4.5.2 upper bounds the number of

consecutive null steps after the descent step ki by

ki+1 − ki − 1 ≤ (1 − β/2)(n−1)−i 2M2

(1 − β)2ρε
.

Summing this over i = 0 . . . n − 1 bounds the additional number of null steps

before an ε-minimizer is found by (4.36) as

n−1∑
i=0

(1 − β/2)(n−1)−i 2M2

(1 − β)2ρε
≤

4M2

β(1 − β)2ρε
.

Proof of Theorem 4.2.5

Our bound on the number of descent steps comes directly from Theorem 4.2.4.

Our claimed bound on the total number of null steps follows by multiply-

ing this by the constant bound on the number of consecutive null steps from

Lemma 4.5.2.
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Proof of Theorem 4.2.6

Combining the lower bound ∆k ≥
1
2 ( f (xk) − f ∗) with Lemma 4.5.1 shows linear

decrease in the objective every descent step

f (xk+1) − f ∗ ≤
(
1 −

β

2

)
( f (xk − f ∗).

Our bound on the number of descent steps follows immediately from this. Com-

bining the lower bound ∆k ≥
1
2 ( f (xk) − f ∗) with Lemma 4.5.2 shows that at most

2M2D2

(1 − β)2( f (xk+1) − f ∗)2

null steps occur between each descent step. Denote the sequence of descent

steps taken by the bundle method by k1, k2, k3 . . . and as a base case define k0 =

−1. Let kn be the first descent step finding an ε-minimizer, which must have

n ≤ dlog(1−β/2)(
ε

f (x0)− f ∗ )e+. From our linear decrease condition, we know for any

i = 0, 1, 2, 3, . . . n − 1

f (xki+1) − f ∗ ≥ (1 − β/2)i−(n−1) ε

and from our null step bound, we know for any i = 0, 1, 2, . . . n − 1

ki+1 − ki − 1 ≤
2M2D2

(1 − β)2( f (xki+1) − f ∗)2 ≤ (1 − β/2)2(i−(n−1)) 2M2D2

(1 − β)2ε2 .

Then summing up our null step bounds ensures

kn − n ≤
n∑

i=1

(1 − β/2)2(i−1−(n−1)) 2M2D2

(1 − β)2ε2 .

Bounding this geometric series shows us that the bundle method finds an ε-

minimizer with the number of null steps bounded by(
1

1 − (1 − β/2)2

)
2M2D2

(1 − β)2ε2 .
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Proof of Theorem 4.2.7

Our bound on the number of descent steps follows from Theorem 4.2.6. Our

proof of the null step bound follows the same approach as Theorem 4.2.6 with

only minor differences. Applying Lemma 4.5.2 with our stepsize choice (4.13)

bounds the number of consecutive null steps after some descent step k by

2M2

(1 − β)2µ2/p( f (xk+1) − f ∗)2−2/p .

Denote the descent steps −1 = k0 < k1 < k2 < . . . and suppose the xkn+1 is the first

ε-minimizer. Then

ki+1 − ki − 1 ≤ (1 − β/2)(2−2/p)(i−(n−1)) 2M2

(1 − β)2µ2/pε2−2/p

since f (xki+1) − f ∗ ≥
(
1 − β

2

)i−(n−1)
ε. Summing this up gives

kn − n ≤
n∑

i=1

(1 − β/2)(2−2/p)(i−1−(n−1)) 2M2

(1 − β)2µ2/pε2−2/p .

When p > 1, this geometric series shows us that the bundle method finds an

ε-minimizer with the number of null steps bounded by(
1

1 − (1 − β/2)2−2/p

)
2M2

(1 − β)2µ2/pε2−2/p .

When p = 1, we have a constant upper bound on the number of null steps

following a descent step. Hence the number of null steps is bounded by

2M2

(1 − β)2µ2


log

(
f (x0)− f ∗

ε

)
− log(1 − β/2)

 .
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4.5.3 Proofs in Section 4.3

Proof of Theorem 4.3.1

Let δk = min j∈{0,...,J−1}{ f (x( j)
k )− f ∗} denote the lowest objective gap among all of our

J instances of the bundle method after they have taken k synchronous steps.

Then the core of our convergence proof is bounding the number of iterations

where this lowest objective gap is in the interval

(1 − β/2)−nε ≤ δk ≤ (1 − β/2)−(n+1)ε .

for any integer 0 ≤ n < N :=
⌈

log(( f (x0)− f ∗)/ε)
− log(1−β/2)

⌉
. Within this interval, we focus on the

instance

j =

⌈
log2

(
µ2/p((1 − β/2)−nε)1−2/p

4ρ̄

)⌉
.

This instance of the bundle method’s constant stepsize ρ( j) = 2 jρ̄ approximates

the stepsize (4.13) as

1
4
µ2/p((1 − β/2)−nε)1−2/p ≤ ρ( j) ≤

1
2
µ2/p((1 − β/2)−nε)1−2/p .

Then (4.26) bounds this method’s proximal gap before an (1−β/2)−nε-minimizer

is found by

∆
( j)
k ≥

1
2

( f (x( j)
k ) − f ∗) ≥ (1 − β/2)−nε/2 .

Letting δ
( j)
k = f (x( j)

k ) − f ∗, each descent step k improves method j’s objec-

tive gap according to the recurrence δ( j)
k+1 ≤ min{(1 − β/2)δ( j)

k , δk} where the first

term in the minimum comes from Lemma 4.5.1 and the second term comes from

method j taking any further improvement from the other bundle methods. By

assumption, we have δk ≤ (1− β/2)−(n+1)ε, and so after one descent step k′ > k we

must have δ( j)
k′+1 ≤ (1 − β/2)−(n+1)ε. Thus after a second descent step k′′ > k′, our

intermediate target accuracy is met as δk′′+1 ≤ δ
( j)
k′′+1 ≤ (1 − β/2)−nε.
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Applying Lemma 4.5.2 bounds the number of null steps between descent

steps by
2M2

(1 − β)2ρ( j)∆
( j)
k+1

≤
16M2

(1 − β)2µ2/p((1 − β/2)−nε)2−2/p .

Hence the total number of steps before δ( j)
k < 2nε (and consequently δk < 2nε) is

at most

2
(

16M2

(1 − β)2µ2/p((1 − β/2)−nε)2−2/p + 1
)
.

Summing over this bound completes our proof. When p > 1, this gives
N−1∑
n=0

2
(

16M2

(1 − β)2µ2/p((1 − β/2)−nε)2−2/p + 1
)

= 2
N−1∑
n=0

16M2

(1 − β)2µ2/p((1 − β/2)−nε)2−2/p + 2
⌈
log(( f (x0) − f ∗)/ε)
− log(1 − β/2)

⌉
≤

(
2

1 − (1 − β/2)2−2/p

)
16M2

(1 − β)2µ2/pε2−2/p + 2
⌈
log(( f (x0) − f ∗)/ε)
− log(1 − β/2)

⌉
.

When p = 1, the number of steps in each of our intervals is constant. Con-

sequently, the total number of iterations before an ε minimizer is found is at

most
N−1∑
n=0

2
(

16M2

(1 − β)2µ2 + 1
)

= 2
(

16M2

(1 − β)2µ2 + 1
) ⌈

log(( f (x0) − f ∗)/ε)
− log(1 − β/2)

⌉
.

4.5.4 Auxiliary lemmas

Throughout our analysis, we frequently encounter recurrence relations of the

form δk+1 ≤ δk − αδ
q
k for some α > 0 and q > 1. The follow lemma bounds the

number of steps of such a recurrence to reach a desired level of accuracy δk ≤ ε.

Lemma 4.5.4. For any ε > 0, the recurrence δk+1 ≤ δk − αδ
q
k has δk ≤ ε satisfied by

some

k ≤
⌈

1
(q − 1)αεq−1

⌉
.
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Proof. It suffices to show the following upper bound on δk as a function of k

δk ≤

(
1

(q − 1)αk

)1/(q−1)

.

First we show this bound holds with k = 1. This follows as

δ1 ≤ δ0 − αδ
q
0 ≤ max

δ∈R
{δ − αδq} ≤

(
1

qα

)1/(q−1)

.

Then we complete our proof by induction using the following weighted

arithmetic-geometric mean (AM-GM) inequality, which ensures for any a, α, b, β > 0

we have aαbβ ≤
(
αa+βb
α+β

)α+β
. This implies that for any k ≥ 1, (k − (q − 1)−1)(k +

1)1/(q−1) ≤ kq/(q−1) by taking a = k − (q − 1)−1, α = 1, b = k + 1, β = 1/(q − 1). By

expanding the recurrence at k + 1 and applying this inequality we get

δk+1 ≤ δk − αδ
q
k ≤

(
1

(q − 1)αk

)1/(q−1)

− α

(
1

(q − 1)αk

)q/(q−1)

=

(
1

(q − 1)α

)1/(q−1) ( k
kq/(q−1) −

1
(q − 1)kq/(q−1)

)
=

(
1

(q − 1)α

)1/(q−1) k − (q − 1)−1

kq/(q−1)

≤

(
1

(q − 1)α(k + 1)

)1/(q−1)

.

Proving the result. �
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5

COMPOSITE OPTIMIZATION FOR LOW-RANK MATRIX RECOVERY

“I wish there was a way to know you are in the good old days,

before you’ve actually left them.”

— “Andrew Bernard” in the finale of The Office

5.1 Introduction

Recovering a low-rank matrix from noisy linear measurements has become an

increasingly central task in data science. Important and well-studied examples

include phase retrieval [223, 39, 167], blind deconvolution [8, 153, 160, 233], ma-

trix completion [35, 64, 228], covariance matrix estimation [52, 155], and robust

principal component analysis [45, 38]. Optimization-based approaches for low-

rank matrix recovery naturally lead to nonconvex formulations, which are NP

hard in general. To overcome this issue, in the last two decades researchers

have developed convex relaxations that succeed with high probability under

appropriate statistical assumptions. Convex techniques, however, have a well-

documented limitation: the parameter space describing the relaxations is usu-

ally much larger than that of the target problem. Consequently, standard al-

gorithms applied on convex relaxations may not scale well to the large prob-

lems. Consequently, there has been a renewed interest in directly optimizing

nonconvex formulations with iterative methods within the original parameter

space of the problem. Aside from a few notable exceptions on specific prob-

lems [106, 23, 103], most algorithms of this type proceed in two-stages. The first

113



stage—initialization—yields a rough estimate of an optimal solution, often us-

ing spectral techniques. The second stage—local refinement—uses a local search

algorithm that rapidly converges to an optimal solution, when initialized at the

output of the initialization stage.

This chapter focuses on developing provable low-rank matrix recovery al-

gorithms based on nonconvex problem formulations. We focus primarily on

local refinement and describe a set of unifying sufficient conditions leading to

rapid local convergence of iterative methods. In contrast to the current litera-

ture on the topic, which typically relies on smooth problem formulations and

gradient-based methods, our primary focus is on nonsmooth formulations that

exhibit sharp growth away from the solution set. Such formulations are well-

known in the nonlinear programming community to be amenable to rapidly

convergent local-search algorithms. Along the way, we will observe an appar-

ent benefit of nonsmooth formulations over their smooth counterparts. All non-

smooth formulations analyzed in this chapter are “well-conditioned,” resulting

in fast “out-of-the-box” convergence guarantees. In contrast, standard smooth

formulations for the same recovery tasks can be poorly conditioned, in the sense

that classical convergence guarantees of nonlinear programming are overly pes-

simistic. Overcoming the poor conditioning typically requires nuanced problem

and algorithmic specific analysis (e.g. [233, 51, 167, 184, 50]), which nonsmooth

formulations manage to avoid for the problems considered here.

Setting the stage, consider a rank r matrix M] ∈ Rd1×d2 and a linear map

A : Rd1×d2 → Rm from the space of matrices to the space of measurements. The

goal of low-rank matrix recovery is to recover M] from the image vector b =

A(M]), possibly corrupted by noise. Typical nonconvex approaches proceed by
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choosing some penalty function h(·) with which to measure the residualA(M)−

b for a trial solution M. Then, in the case that M] is symmetric and positive

semidefinite, one may focus on the formulation

min
X∈Rd×r

f (X) := h
(
A(XX>) − b

)
subject to X ∈ D, (5.1)

or when M] is rectangular, one may instead use the formulation

min
X∈Rd1×r , Y∈Rr×d2

f (X,Y) := h (A(XY) − b) subject to (X,Y) ∈ D. (5.2)

Here,D is a convex set that incorporates prior knowledge about M] and is often

used to enforce favorable structure on the decision variables. The penalty h is

chosen specifically to penalize measurement misfit and/or enforce structure on

the residual errors.

Algorithms and conditioning for smooth formulations

Most widely-used penalties h(·) are smooth and convex. Indeed, the squared `2-

norm h(z) = 1
2‖z‖

2
2 is ubiquitous in this context. With such penalties, problems

(5.1) and (5.2) are smooth and thus are amenable to gradient-based methods.

The linear rate of convergence of gradient descent is governed by the “local

condition number” of f . Indeed, if the estimate, µI � ∇2 f (X) � LI, holds for all

X in a neighborhood of the solution set, then gradient descent converges to the

solution set at the linear rate 1−µ/L. It is known that for several widely-studied

problems including phase retrieval, blind deconvolution, and matrix comple-

tion, the ratio µ/L scales inversely with the problem dimension. Consequently,

generic nonlinear programming guarantees yield efficiency estimates that are

far too pessimistic. Instead, near-dimension independent guarantees can be ob-

tained by arguing that ∇2 f is well conditioned along the “relevant” directions or
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that ∇2 f is well-conditioned within a restricted region of space that the iterates

never escape (e.g. [233, 167, 184]). Techniques of this type have been elegantly

and successfully used over the past few years to obtain algorithms with near-

optimal sample complexity. One byproduct of such techniques, however, is that

the underlying arguments are finely tailored to each particular problem and al-

gorithm at hand. We refer the reader to the recent surveys [54] for details.

Algorithms and conditioning for nonsmooth formulations

The goal of our work is to justify the following principle:

Statistical assumptions for common recovery problems guarantee

that (5.1) and (5.2) are well-conditioned when h is an appropriate non-

smooth convex penalty.

To explain what we mean by “good conditioning,” let us treat (5.1) and (5.2)

within the broader convex composite problem class:

min
x∈X

f (x) := h(F(x)), (5.3)

where F(·) is a smooth map on the space of matrices and X is a closed con-

vex set. Indeed, in the symmetric and positive semidefinite case, we identify

x with matrices X and define F(X) = A(XX>) − b, while in the asymmetric

case, we identify x with pairs of matrices (X,Y) and define F(X,Y) = A(XY) − b.

Though compositional problems (5.3) have been well-studied in nonlinear pro-

gramming [28, 31, 98], their computational promise in data science has only be-

gun recently to emerge. For example, the papers [90, 66, 83] discuss stochastic

and inexact algorithms on composite problems, while the papers [89, 70], [47],
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and [154] investigate applications to phase retrieval, blind deconvolution, and

matrix sensing, respectively.

A number of algorithms are available for problems of the form (5.3), and

hence for (5.1) and (5.2). Two most notable ones are the projected subgradient

method [68, 109]

xt+1 = projX(xt − αtvt) with vt ∈ ∂ f (xt),

and the prox-linear algorithm [28, 152, 82]

xt+1 = arg min
x∈X

h
(
F(xt) + ∇F(xt)(x − xt)

)
+
β

2
‖x − xt‖

2
2.

Notice that each iteration of the subgradient method is relatively cheap, requir-

ing access only to the subgradients of f and the nearest-point projection onto X.

The prox-linear method in contrast requires solving a strongly convex problem

in each iteration. That being said, the prox-linear method has much stronger

convergence guarantees than the subgradient method, as we will review shortly.

The local convergence guarantees of both methods are straightforward to

describe, and underlie what we mean by “good conditioning”. Define X∗ :=

arg minX f , and for any x ∈ X define the convex model fx(y) = h(F(x) + ∇F(x)(y −

x)). Suppose there exist constants ρ, µ > 0 satisfying the two properties:

• (approximation) | f (y) − fx(y)| ≤ ρ

2‖y − x‖22 for all x, y ∈ X,

• (sharpness) f (x) − inf f ≥ µ · dist(x,X∗) for all x ∈ X.

The approximation and sharpness properties have intuitive meanings. The for-

mer says that the nonconvex function f (y) is well approximated by the convex

model fx(y), with quality that degrades quadratically as y deviates from x. In
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particular, this property guarantees that the quadratically perturbed function

x 7→ f (x) +
ρ

2‖x‖
2
2 is convex on X. Yet another consequence of the approxima-

tion property is that the epigraph of f admits a supporting concave quadratic

with amplitude ρ at each of its points. Sharpness, in turn, asserts that f must

grow at least linearly as x moves away from the solution set. In other words, the

function values should robustly distinguish between optimal and suboptimal

solutions. In statistical contexts, one can interpret sharpness as strong identifia-

bility of the statistical model. The three figures below illustrate the approxima-

tion and sharpness properties for idealized objectives in phase retrieval, blind

deconvolution, and robust PCA problems.
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(a) f (x) = E|(a>x)2 − (a>1)2|

(phase retrieval)

-2 -1 0 1 2

-2

-1

0

1

2

(b) f (x, y) = |xy − 1|
(blind deconvolution)
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-2

-1
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(c) f (x) = ‖xx> − 11>‖1
(robust PCA)

Approximation and sharpness, taken together, guarantee rapid convergence

of numerical methods when initialized within the tube:

T =
{
x ∈ X : dist(x,X∗) ≤

µ

ρ

}
.

For common low-rank recovery problems, T has an intuitive interpretation: it

consists of those matrices that are within constant relative error of the solution.
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We note that standard spectral initialization techniques, in turn, can generate

such matrices with nearly optimal sample complexity. We will cover an exam-

ple of these techniques in Chapter 6. We also refer the interested reader to the

survey [54], and references therein, for details.

Guiding strategy. The following is the guiding algorithmic principle of this

work:

When initialized at x0 ∈ T , the prox-linear algorithm converges

quadratically to the solution set X∗; the subgradient method, in turn,

converges linearly with a rate governed by ratio µ

L ∈ (0, 1), where L is

the Lipschitz constant of f on T .1

In light of this observation, our strategy can be succinctly summarized as fol-

lows. We will show that for a variety of low-rank recovery problems, the pa-

rameters µ, L, ρ > 0 (or variants) are dimension independent under standard

statistical assumptions. Consequently, the formulations (5.1) and (5.2) are “well-

conditioned”, and subgradient and prox-linear methods converge rapidly when

initialized within constant relative error of the optimal solution.

Good conditioning via the Restricted Isometry Property

We begin verifying our thesis by showing that the composite problems, (5.1)

and (5.2), are well-conditioned under the following Restricted Isometry Prop-

1Both the parameters αt and β must be properly chosen for these guarantees to take hold.
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erty (RIP): there exists a norm |||·||| and numerical constants κ1, κ2 > 0 so that

κ1‖W‖F ≤ |||A(W)||| ≤ κ2‖W‖F , (5.4)

for all matrices W ∈ Rd1×d2 of rank at most 2r. We argue that under RIP, the

nonsmooth norm h = |||·||| is a natural penalty function to use. Indeed, as we will

show, the composite loss h(F(x)) in the symmetric setting admits constants µ, ρ, L

that depend only on the RIP parameters and the extremal singular values of M]:

µ = 0.9κ1
√
σr(M]), ρ = κ2, L = 0.9κ1

√
σr(M]) + 2κ2

√
σ1(M]).

In particular, the initialization ratio scales as µ

ρ
�

κ1
κ2

√
σr(M]) and the condi-

tion number scales as L
µ
� 1 + κ2

κ1

√
σ1(M])
σr(M])

. Consequently, the rapid local conver-

gence guarantees previously described immediately take-hold. The asymmet-

ric setting is slightly more nuanced since the objective function is sharp only

on bounded sets. Nonetheless, it can be analyzed in a similar way leading to

analogous rapid convergence guarantees. Incidentally, we show that the prox-

linear method converges rapidly without any modification; this is in contrast

to smooth methods, which typically require incorporating an auxiliary regu-

larization term into the objective (e.g. [233]). We note that similar results in

the symmetric setting were independently obtained in the complimentary work

[154], albeit with a looser estimate of L; the two treatments of the asymmetric

setting are distinct, however.2

After establishing basic properties of the composite loss, we turn our atten-

tion to verifying RIP in several concrete scenarios. We note that the seminal

works [209, 40] showed that if A(·) arises from a Gaussian ensemble, then in
2The authors of [154] provide a bound on L that scales with the Frobenius norm

√
‖M]‖F .

We instead derive a sharper bound that scales as
√
‖M]‖op. As a byproduct, the linear rate of

convergence for the subgradient method scales only with the condition number σ1(M])/σr(M])
instead of ‖M]‖F/σr(M]).
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the regime m & r(d1 + d2) RIP holds with high probability for the scaled `2 norm

|||z||| = m−1/2‖z‖2. More generally when A is highly structured, RIP may be most

naturally measured in a non-Euclidean norm. For example, RIP with respect to

the scaled `1 norm |||z||| = m−1‖z‖1 holds for phase retrieval [94, 89], blind decon-

volution [47], and quadratic sensing [52]; in contrast, RIP relative to the scaled

`2 norm fails for all three problems. In particular, specializing our results to the

aforementioned recovery tasks yields solution methodologies with best known

sample and computational complexity guarantees. Notice that while one may

“smooth-out” the `2 norm by squaring it, we argue that it may be more nat-

ural to optimize the `1 norm directly as a nonsmooth penalty. Moreover, we

show that `1 penalization enables exact recovery even if a constant fraction of

measurements is corrupted by outliers.

Beyond RIP: matrix completion and robust PCA

The RIP assumption provides a nice vantage point for analyzing the problem

parameters µ, ρ, L > 0. There are, however, a number of important problems,

which do not satisfy RIP. Nonetheless, the general paradigm based on the inter-

play of sharpness and approximation is still powerful. We consider two such

settings, matrix completion and robust principal component analysis (PCA),

leveraging some intermediate results from [53].

The goal of the matrix completion problem [35] is to recover a low rank ma-

trix M] from its partially observed entries. We focus on the formulation

arg min
X∈X

f (X) = ‖ΠΩ(XX>) − ΠΩ(M])‖2,
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where ΠΩ is the projection onto the index set of observed entries Ω and

X =

X ∈ Rd×r : ‖X‖2,∞ ≤

√
νr‖M]‖op

d


is the set of incoherent matrices.3 To analyze the conditioning of this formula-

tion, we assume that the indices in Ω are chosen as i.i.d. Bernoulli with param-

eter p ∈ (0, 1) and that all nonzero singular values of M] are equal to one. Using

results of [53], we quickly deduce sharpness with high probability. The error in

approximation, however, takes the following nonstandard form. In the regime

p ≥ c
ε2 ( ν

2r2

d +
log d

d ) for some constants c > 0 and ε ∈ (0, 1), the estimate holds with

high probability:

| f (Y) − fX(Y)| ≤
√

1 + ε‖Y − X‖22 +
√
ε‖X − Y‖F for all X,Y ∈ X.

The following modification of the prox-linear method therefore arises naturally:

Xk+1 = arg min
X∈X

fXk(X) +
√

1 + ε‖X − Xk‖
2
F +
√
ε‖X − Xk‖F .

We show that subgradient methods and the prox-linear method, thus modified,

both converge at a dimension independent linear rate when initialized near the

solution. Namely, as long as ε and dist(X0,X
∗) are below some constant thresh-

olds, both the subgradient and the modified prox-linear methods converge lin-

early with high probability:

dist(Xk,X
∗) .


(
1 − c

νr

)k/2
subgradient

2−k prox-linear
.

Here c > 0 is a numerical constant. Notice that the prox-linear method enjoys a

much faster rate of convergence that is independent of any unknown constants

3Incoherence is necessary for recovery, e.g, M] = e1e>1 cannot be recovered in nontrivial set-
tings [35].
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or problem parameters—an observation fully supported by our numerical ex-

periments.

As the final example, we consider the problem of robust PCA [38, 45], which

aims to decompose a given matrix W into a sum of a low-rank and a sparse

matrix. We consider two different problem formulations:

min
(X,S )∈D1

F((X, S )) = ‖XX> + S −W‖F , (5.5)

and

min
X∈D2

f (X) = ‖XX> −W‖1, (5.6)

whereD1 andD2 are appropriately defined convex regions. Under standard in-

coherence assumptions, we show that the formulation (5.5) is well-conditioned,

and therefore subgradient and prox-linear methods are applicable. Still, for-

mulation (5.5) has a major drawback in that one must know properties of the

optimal sparse matrix S ] in order to define the constraint setD1, in order to en-

sure good conditioning. Consequently, we analyze formulation (5.6) as a more

practical alternative.

The analysis of (5.6) is more challenging than that of (5.5). Indeed, it appears

that we must replace the Frobenius norm ‖X‖F in the approximation/sharpness

conditions with the sum of the row norms ‖X‖2,1. With this set-up, we verify the

convex approximation property in general:

| f (Y) − fX(Y)| ≤ ‖Y − X‖22,1 for all X,Y

and sharpness only when r = 1. We conjecture, however, that an analogous

sharpness bound holds for all r. It is easy to see that the quadratic convergence

guarantees for the prox-linear method do not rely on the Euclidean nature of

the norm, and the algorithm becomes applicable. To the best of our knowledge,
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it is not yet known how to adapt linearly convergent subgradient methods to

the non-Euclidean setting.

Robust recovery with sparse outliers and dense noise

The aforementioned guarantees lead to exact recovery of M] under noiseless or

sparsely corrupted measurements b. A more realistic noise model allows for

further corruption by a dense noise vector e of small norm. Exact recovery is

no longer possible with such errors. Instead, we should only expect to recover

M] up to a tolerance proportional to the size of e. Indeed, we show that appro-

priately modified subgradient and prox-linear algorithms converge linearly and

quadratically, respectively, up to the tolerance δ = O(|||e|||/µ) for an appropriate

norm |||·|||. Finally, we discuss in detail the case of recovering a low rank PSD

matrix M] from the corrupted measurementsA(M]) + ∆ + e, where ∆ represents

sparse outliers and e represents small dense noise. To the best of our knowledge,

theoretical guarantees for this error model have not been previously established

in the nonconvex low-rank recovery literature. Surprisingly, we show it is possi-

ble to recover the matrix M] up to a tolerance independent of the norm or location

of the outliers ∆.

Outline of the chapter. Section 5.2 informally discusses the sharpness and

approximation properties, and their impact on convergence of the subgradient

and prox-linear methods. Section 5.3 analyzes the parameters µ, ρ, L under RIP.

Section 5.4 rigorously discusses convergence guarantees of numerical methods

under regularity conditions. Section 5.5 reviews examples of problems satisfy-

ing RIP and deduces convergence guarantees for subgradient and prox-linear
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algorithms. Sections 5.6 and 5.7 discuss the matrix completion and robust PCA

problems, respectively. Section 5.8 discusses robust recovery up to a noise toler-

ance. Section 5.9 illustrates the developed theory and algorithms with numeri-

cal experiments on quadratic/bi-linear sensing, matrix completion, and robust

PCA problems.

5.2 Regularity conditions and algorithms

As outlined in Section 5.1, we consider the low-rank matrix recovery problem

within the framework of compositional optimization:

min
x∈X

f (x) := h(F(x)), (5.7)

where X ⊂ E is a closed convex set, h : Y → R is a finite convex function and

F : E → Y is a C1-smooth map. We depart from previous work on low-rank

matrix recovery by allowing h to be nonsmooth. We primary focus on those

algorithms for (5.7) that converge rapidly (linearly or faster) when initialized

sufficiently close to the solution set.

Such rapid convergence guarantees rely on some regularity of the optimiza-

tion problem. In the compositional setting, regularity conditions take the fol-

lowing appealing form.

Assumption 5.2.1. Suppose that the following properties hold for the composite opti-

mization problem (5.7) for some real numbers µ, ρ, L > 0.

1. (Approximation accuracy) The convex models fx(y) := h(F(x) + ∇F(x)(y − x))

satisfy the estimate

| f (y) − fx(y)| ≤
ρ

2
‖y − x‖22 ∀x, y ∈ X.
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2. (Sharpness) The set of minimizers X∗ := arg min
x∈X

f (x) is nonempty and we have

f (x) − inf
X

f ≥ µ · dist (x,X∗) ∀x ∈ X.

3. (Subgradient bound) The bound, supζ∈∂ f (x) ‖ζ‖2 ≤ L, holds for any x in the tube

T :=
{

x ∈ X : dist(x,X) ≤
µ

ρ

}
.

As pointed out in the introduction, these three properties are quite intuitive:

The approximation accuracy guarantees that the objective function f is well ap-

proximated by the convex model fx, up to a quadratic error relative to the base-

point x. Sharpness stipulates that the objective function should grow at least

linearly as one moves away from the solution set. The subgradient bound, in

turn, asserts that the subgradients of f are bounded in norm by L on the tube T .

In particular, this property is implied by Lipschitz continuity on T .

Lemma 5.2.2 (Subgradient bound and Lipschitz continuity [214, Theorem 9.13]).

Suppose a function f : E → R is L-Lipschitz on an open set U ⊂ E. Then the estimate

supζ∈∂ f (x) ‖ζ‖2 ≤ L holds for all x ∈ U.

The definition of the tube T might look unintuitive at first. Some thought,

however, shows that it arises naturally since it provably contains no extrane-

ous stationary points of the problem. In particular, T will serve as a basin of

attraction of numerical methods; see the forthcoming Section 5.4 for details.

The following general principle has recently emerged [68, 89, 70, 47]. Under

Assumption 5.2.1, basic numerical methods converge rapidly when initialized

within the tube T . Let us consider three such procedures and briefly describe

their convergence properties. Detailed convergence guarantees are deferred to

Section 5.4.
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Algorithm 2: Polyak Subgradient Method

Data: x0 ∈ Rd

Step k: (k ≥ 0)

Choose ζk ∈ ∂ f (xk). If ζk = 0, then exit algorithm.

Set xk+1 = projX

(
xk −

f (xk) −minX f
‖ζk‖

2
2

ζk

)
.

Algorithm 3: Subgradient method with decreasing stepsize
Data: Real λ > 0 and q ∈ (0, 1).

Step k: (k ≥ 0)

Choose ζk ∈ ∂g(xk). If ζk = 0, then exit algorithm.

Set stepsize αk = λ · qk.

Update iterate xk+1 = projX
(
xk − αk

ζk
‖ζk‖2

)
.

Algorithm 4: Prox-linear algorithm

Data: Initial point x0 ∈ Rd, proximal parameter β > 0.

Step k: (k ≥ 0)

Set xk+1 ← arg min
x∈X

{
h (F(xk) + ∇F(xk)(x − xk)) +

β

2
‖x − xk‖

2
2

}
.

Algorithm 2 is the so-called Polyak subgradient method. In each iteration

k, the method travels in the negative direction of a subgradient ζk ∈ ∂ f (xk), fol-

lowed by a nearest-point projection onto X. The step-length is governed by the

current functional gap f (xk) − minX f . In particular, one must have the value

minX f explicitly available to implement the procedure. This value is some-

times known; case in point, the minimal value of the penalty formulations (5.1)

and (5.2) for low-rank recovery is zero when the linear measurements are ex-

act. When the minimal value minX f is not known, one can instead use Algo-

rithm 3, which replaces the step-length ( f (xk) − minX f )/‖ζk‖2 with a preset geo-

metrically decaying sequence. Notice that the per iteration cost of both subgra-
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dient methods is dominated by a single subgradient evaluation and a projection

onto X. Under appropriate parameter settings, Assumption 5.2.1 guarantees

that both methods converge at a linear rate governed by the ratio µ

L , when initial-

ized within T . The prox-linear algorithm (Algorithm 3), in contrast, converges

quadratically to the optimal solution, when initialized within T . The caveat is

that each iteration of the prox-linear method requires solving a strongly convex

subproblem. Note that for low-rank recovery problems (5.1) and (5.2), the size

of the subproblems is proportional to the size of the factors and not the size of

the matrices.

In the subsequent sections, we show that Assumption 5.2.1 (or a close vari-

ant) holds with favorable parameters ρ, µ, L > 0 for common low-rank matrix

recovery problems.

5.3 Regularity under RIP

In this section, we consider the low-rank recovery problems (5.1) and (5.2), and

show that restricted isometry properties of the map A(·) naturally yield well-

conditioned compositional formulations.4 The arguments are short and ele-

mentary, and yet apply to such important problems as phase retrieval, blind

deconvolution, and covariance matrix estimation.

Setting the stage, consider a linear map A : Rd1×d2 → Rm, an arbitrary rank

4The guarantees we develop in the symmetric setting are similar to those in the recent
preprint [154], albeit we obtain a sharper bound on L; the two sets of results were obtained
independently. The guarantees for the asymmetric setting are different and are complemen-
tary to each other: we analyze the conditioning of the basic problem formulation (5.2), while
[154] introduces a regularization term ‖X>X−YY>‖F that improves the basin of attraction for the
subgradient method by a factor of the condition number of M].
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r matrix M] ∈ Rd1×d2 , and a vector b ∈ Rm modeling a corrupted estimate of

the measurementsA(M]). Recall that the goal of low-rank matrix recovery is to

determine M] given A and b. By the term symmetric setting, we mean that M]

is symmetric and positive semidefinite, whereas by asymmetric setting we mean

that M] is an arbitrary rank r matrix. We will treat the two settings in parallel.

In the symmetric setting, we use X] to denote any fixed d × r matrix for which

the factorization M] = X]X>] holds. Similarly, in the asymmetric case, X] and Y]

denote any fixed d1 × r and r × d2 matrices, respectively, satisfying M] = X]Y].

We are interested in the set of all possible factorization of M]. Consequently,

we will often appeal to the following representations:

{X ∈ Rd1×r : XX> = M]} = {X]R : R ∈ O(r)}, (5.8)

{(X,Y) ∈ Rd1×r × Rr×d2 : XY = M]} = {(X]A, A−1Y]) : A ∈ GL(r)}. (5.9)

Throughout, we will let D∗(M]) refer to the set (5.8) in the symmetric case and

to (5.9) in the asymmetric setting.

Henceforth, fix an arbitrary norm |||·||| on Rm. The following property, widely

used in the literature on low-rank recovery, will play a central role in this sec-

tion.

Assumption 5.3.1 (Restricted Isometry Property (RIP)). There exist constants

κ1, κ2 > 0 such that for all matrices W ∈ Rd1×d2 of rank at most 2r the following bound

holds:

κ1‖W‖F ≤ |||A(W)||| ≤ κ2‖W‖F .

Assumption 5.3.1 is classical and is satisfied in various important problems

with the rescaled `2-norm |||·||| = 1
√

m‖ · ‖2 and `1-norm |||·||| = 1
m‖ · ‖1.5 In Section 5.5

5In the latter case, RIP also goes by the name of Restricted Uniform Boundedness (RUB) [33].
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we discuss a number of such examples including matrix sensing under (sub-

)Gaussian design, phase retrieval, blind deconvolution, and quadratic/bilinear

sensing. We summarize the RIP properties for these examples in Table 5.1 and

refer the reader to Section 5.5 for the precise statements.

Problem MeasurementA(M)i (κ1, κ2) Regime
(sub-)Gaussian sensing 〈Pi,M〉 (c,C) m % rd

(1−2pfail)2 ln(1 + 1
1−2pfail

)

Quadratic sensing I p>i Mpi (c,C
√

r) m % r2d
(1−2pfail)2 ln(1 +

√
r

1−2pfail
)

Quadratic sensing II p>i Mpi − p̃>i Mp̃i (c,C) m % rd
(1−2pfail)2 ln

(
1 + 1

1−2pfail

)
Bilinear sensing p>i Mqi (c,C) m % rd

(1−2pfail)2 ln
(
1 + 1

1−2pfail

)
Table 5.1: Common problems satisfying `1/`2 RIP in Assumption 5.3.1. The table
summarizes the `1/`2 RIP for (sub-)Gaussian sensing, quadratic sensing (e.g.,
phase retrieval), and bilinear sensing (e.g., blind deconvolution) under standard
(sub-)Gaussian assumptions on the data generating mechanism. In all cases, we
set |||·||| = 1

m‖ · ‖1 and assume for simplicity d1 = d2 = d. The symbols c and C refer
to numerical constants, pfail refers to the proportion of corrupted measurements,
κ3 is a constant multiple of (1 − 2pfail). See Section 5.5 for details.

In light of Assumption 5.3.1, it it natural to take the norm |||·||| as the penalty

h(·) in (5.1) and (5.2) . Then the symmetric problem (5.1) becomes

min
X∈Rd×r

f (X) := |||A(XX>) − b|||, (5.10)

while the asymmetric formulation (5.2) becomes

min
X∈Rd1×r , Y∈Rr×d2

f (X,Y) := |||A(XY) − b|||. (5.11)

Our immediate goal is to show that under Assumption 5.3.1, the prob-

lems (5.10) and (5.11) are well-conditioned in the sense of Assumption 5.2.1.

We note that the asymmetric setting is more nuanced that its symmetric coun-

terpart because Assumption 5.2.1 can only be guaranteed to hold on bounded

sets. Nonetheless, as we discuss in Section 5.4, a localized version of Assump-

tion 5.2.1 suffices to guarantee rapid local convergence of subgradient and prox-
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linear methods. In particular, our analysis of the local sharpness in the asym-

metric setting is new and illuminating; it shows that the regularization tech-

nique suggested in [154] is not needed at all for the prox-linear method. This

conclusion contrasts with known techniques in the smooth setting, where regu-

larization is often used.

5.3.1 Approximation and Lipschitz continuity

We begin with the following elementary proposition, which estimates the sub-

gradient bound L and the approximation modulus ρ in the symmetric setting.

In what follows, we will use the expressions

fX(Z) = |||A(XX> + X(Z − X)> + (Z − X)X>) − b|||,

f(X,Y)(X̂, Ŷ) = |||A(XY + X(Ŷ − Y) + (X̂ − X)Y) − b|||.

Proposition 5.3.2 (Approximation accuracy and Lipschitz continuity (symmet-

ric)).

Suppose Assumption 5.3.1 holds. Then for all X,Z ∈ Rd×r the following estimates hold:

| f (Z) − fX(Z)| ≤ κ2‖Z − X‖2F ,

| f (X) − f (Z)| ≤ κ2‖X + Z‖op‖X − Z‖F .
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Proof. To see the first estimate, observe that

| f (Z) − fX(Z)| = |||A(ZZ>) − b||| − |||A(XX> + X(Z − X)> + (Z − X)X>) − b|||

≤ |||A(ZZ> − XX> − X(Z − X)> − (Z − X)X>||| (5.12)

= |||A
(
(Z − X)(Z − X)>

)
|||

≤ κ2

∥∥∥(Z − X)(Z − X)>
∥∥∥

F
(5.13)

≤ κ2‖Z − X‖2F ,

where (5.12) follows from the reverse triangle inequality and (5.13) uses As-

sumption 5.3.1. Next, for any X,Z ∈ Xwe successively compute:

| f (X) − f (Z)| =
∣∣∣|||A(XX>) − b||| − |||A(ZZ>) − b|||

∣∣∣
≤

∣∣∣∣∣∣∣∣∣A(XX> − ZZ>)
∣∣∣∣∣∣∣∣∣ (5.14)

≤ κ2‖XX> − ZZ>‖F (5.15)

=
κ2

2
‖(X + Z)(X − Z)> + (X − Z)(X + Z)>‖F

≤ κ2‖(X + Z)(X − Z)‖F

≤ κ2‖X + Z‖op‖X − Z‖F ,

where (5.14) follows from the reverse triangle inequality and (5.15) uses As-

sumption 5.3.1. The proof is complete. �

The estimates of L and ρ in the asymmetric setting are completely analogous;

we record them in the following proposition.

Proposition 5.3.3 (Approximation accuracy and Lipschitz continuity (asymmet-

ric)).

Suppose Assumption 5.3.1 holds. Then for all X, X̂ ∈ Rd1×r and Y, Ŷ ∈ Rr×d2 the follow-
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ing estimates hold:

| f (X̂, Ŷ) − f(X,Y)(X̂, Ŷ)| ≤
κ2

2
· ‖(X,Y) − (X̂, Ŷ)‖2F ,

| f (X,Y) − f (X̂, Ŷ)| ≤ κ2 max{‖X+X̂‖op,‖Y+Ŷ‖op}
√

2
· ‖(X,Y) − (X̂, Ŷ)‖F .

Proof. To see the first estimate, observe that

| f (X̂, Ŷ) − f(X,Y)(X̂, Ŷ)| =
∣∣∣∣|||A(X̂Ŷ) − b||| − |||A(XY + X(Ŷ − Y) + (X̂ − X)Y) − b|||

∣∣∣∣
≤ |||A(X̂Ŷ − XY − X(Ŷ − Y) − (X̂ − X)Y)|||

= |||A
(
(X − X̂)(Y − Ŷ)

)
|||

≤ κ2

∥∥∥∥(X − X̂)(Y − Ŷ)
∥∥∥∥

F

≤
κ2

2

(
‖X − X̂‖2F + ‖Y − Ŷ‖2F

)
,

where the last estimate follows from Young’s inequality 2ab ≤ a2 + b2. Next, we

successively compute:

| f (X,Y) − f (X̂, Ŷ)| ≤ |||A(XY − X̂Ŷ)||| ≤ κ2‖XY − X̂Ŷ‖F

=
κ2

2
‖(X + X̂)(Y − Ŷ)> + (X − X̂)(Y + Ŷ)>‖F

≤
κ2 max{‖X + X̂‖op, ‖Y + Ŷ‖op}

2
(‖Y − Ŷ‖F + ‖X − X̂‖F).

The result follows by noting that a + b ≤
√

2(a2 + b2) for all a, b ∈ R.

�

5.3.2 Sharpness

We next move on to estimates of the sharpness constant µ. We first deal with

the noiseless setting b = A(M]) in Section 5.3.2, and then move on to the general

case when the measurements are corrupted by outliers in Section 5.3.2.
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Sharpness in the noiseless regime

We begin with with the symmetric setting in the noiseless case b = A(M]). By

Assumption 5.3.1, we have the estimate

f (X) = |||A(XX>) − b||| = |||A(XX> − X]X>] )||| ≥ κ1‖XX> − X]X>] ‖F . (5.16)

It follows that the set of minimizers arg minX∈Rd×r f (X) coincides with the set of

minimizers of the function X 7→ ‖XX> − X]X>] ‖F , namely

D∗(M]) := {X]R : R ∈ O(r)}.

Thus to argue sharpness of f it suffices to estimate the sharpness constant of the

function X 7→ ‖XX> − X]X>] ‖F . Fortunately, this calculation was already done in

[233, Lemma 5.4].

Proposition 5.3.4 ([233, Lemma 5.4]). For any matrices X,Z ∈ Rd×r, we have the

bound

‖XX> − ZZ>‖F ≥
√

2(
√

2 − 1)σr(Z) · min
R∈O(r)

‖X − ZR‖F .

Consequently if Assumption 5.3.1 holds in the noiseless setting b = A(M]), then the

bound holds:

f (X) ≥ κ1

√
2(
√

2 − 1)σr(M]) · dist(X,D∗(M])) for all X ∈ Rd×r.

We next consider the asymmetric case. By exactly the same reasoning as

before, the set of minimizers of f (X,Y) coincides with the set of minimizers of

the function (X,Y) 7→ ‖XY − X]Y]‖F , namely

D∗(M]) := {(X]A, A−1Y]) : A ∈ GL(r)}.

134



Thus to argue sharpness of f it suffices to estimate the sharpness constant of the

function (X,Y) 7→ ‖XY − X]Y]‖F .

Notice that in contrast to the symmetric setting, the sharpness estimate is

only valid on bounded sets. Indeed, this is unavoidable even in the setting

d1 = d2 = 2. To see this, define M] = e2e>2 and for any α > 0 set x = αe1 and

w = 1
α
e1. It is routine to compute

‖xw> − M]‖F

dist((x,w),D∗(M]))
=

√
2

2 + α2 + 1
α2

.

Therefore letting α tend to zero (or infinity) the quotient tends to zero.

The following theorem is a nonsymmetric variant of Proposition 6.2.1.

Theorem 5.3.5 (Sharpness (asymmetric and noiseless)). Fix a constant ν > 0 and

define X] := U
√

Λ and Y] =
√

ΛV>, where M] = UΛV> is any compact singular value

decomposition of M]. Then for all X ∈ Rd1×r and Y ∈ Rr×d2 satisfying

max{‖X − X]‖F , ‖Y − Y]‖F} ≤ ν
√
σr(M])

dist((X,Y),D∗(M])) ≤

√
σr(M])

1 + 2(1 +
√

2)ν

, (5.17)

the estimate holds:

‖XY − M]‖F ≥

√
σr(M])

2 + 4(1 +
√

2)ν
· dist((X,Y),D∗(M])).

Proof. Define δ := 1
1+2(1+

√
2)ν

and consider a pair of matrices X and Y satisfying

(5.17). Let A ∈ GL(r) be an invertible matrix satisfying

A ∈ arg min
A∈GL(r)

{
‖X − X]A‖2F + ‖Y − A−1Y]‖2F

}
. (5.18)
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As a first step, we successively compute

‖XY − X]Y]‖F

= ‖(X − X]A)(A−1Y]) + X]A(Y − A−1Y]) + (X − X]A)(Y − A−1Y])‖F

≥ ‖(X − X]A)(A−1Y]) + X]A(Y − A−1Y])‖F − ‖(X − X]A)(Y − A−1Y])‖F

≥ ‖(X − X]A)(A−1Y]) + X]A(Y − A−1Y])‖F − ‖X − X]A‖F · ‖Y − A−1Y]‖F

≥ ‖(X − X]A)(A−1Y]) + X]A(Y − A−1Y])‖F −
1
2

(‖X − X]A‖2F + ‖Y − A−1Y]‖2F)

= ‖(X − X]A)(A−1Y]) + X]A(Y − A−1Y])‖F −
1
2

dist2((X,Y),D∗(M]))

≥ ‖(X − X]A)(A−1Y]) + X]A(Y − A−1Y])‖F −
δ
√
σr(M])
2

· dist((X,Y),D∗(M])).

(5.19)

We next aim to lower bound the first term on the right. To this end, observe

‖(X − X]A)(A−1Y]) + X]A(Y − A−1Y])‖2F

= ‖(X − X]A)(A−1Y])‖2F + ‖X]A(Y − A−1Y])‖2F

+ 2Tr((X − X]A)(A−1Y])(Y − A−1Y])>(X]A)>).

(5.20)

We claim that the cross-term is non-negative. To see this, observe that first order

optimality conditions in (5.18) directly imply that A satisfies the equality

A>X>] (X − X]A) = (Y − A−1Y])Y>] A−>.

Thus we obtain

Tr((X − X]A)(A−1Y])(Y − A−1Y])>(X]A)>) = Tr(A>X>] (X − X]A)(A−1Y])(Y − A−1Y])>)

= Tr((Y − A−1Y])Y>] A−T (A−1Y])(Y − A−1Y])>)

= ‖(A−1Y])(Y − A−1Y])‖2F .

Therefore, returning to (5.20) we conclude that

‖(X − X]A)(A−1Y]) + X]A(Y − A−1Y])‖F

≥

√
‖(X − X]A)(A−1Y])‖2F + ‖X]A(Y − A−1Y])‖2F

≥
√
σr(M]) ·min{σr(A−1), σr(A)} · dist((X,Y),D∗(M])).

(5.21)
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Combining (5.19) and (5.21), we obtain

‖XY − M]‖F ≥
√
σr(M]) ·

(
min{σr(A−1), σr(A)} −

δ

2

)
· dist((X,Y),D∗(M])) (5.22)

Finally, we estimate min{σr(A−1), σr(A)}. To this end, first note that

‖X] − X]A‖F + ‖Y] − A−1Y]‖F ≤ ‖X] − X‖F + ‖Y] − Y‖F +
√

2 · dist((X,Y),D∗(M]))

≤ 2ν
√
σr(M]) · (1 +

√
2).

(5.23)

We now aim to lower bound the left-hand-side in terms of min{σr(A−1), σr(A)}.

Observe

‖X] − X]A‖F ≥ ‖X] − X]A‖op ≥
√
σr(M]) · ‖I − A‖op ≥

√
σr(M]) · (σ1(A) − 1).

Similarly, we have

‖Y] − A−1Y]‖F ≥ ‖Y] − A−1Y]‖op ≥
√
σr(M]) · ‖I − A−1‖op ≥

√
σr(M]) · (σ1(A−1) − 1).

Hence using (5.23), we obtain the estimate

min{σr(A−1), σr(A)} ≥
(
1 + 2ν · (1 +

√
2)

)−1
= δ.

Using this estimate in (5.22) completes the proof. �

Sharpness in presence of outliers

The most important example of the norm |||·||| for us is the scaled `1-norm |||·||| =

1
m‖ · ‖1. Indeed, all the examples in the forthcoming Section 5.5 will satisfy RIP

relative to this norm. In this section, we will show that the `1-norm has an added

advantage. Under reasonable RIP-type conditions, sharpness will hold even if

up to a half of the measurements are grossly corrupted.
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Henceforth, for any set I, define the restricted map AI := (A(X))i∈I. We in-

terpret the set I as corresponding to (arbitrarily) outlying measurements, while

its complement corresponds to exact measurements. Motivated by the work

[89] on robust phase retrieval, we make the following assumption.

Assumption 5.3.6 (I-outlier bounds). There exists a set I ⊂ {1, . . . ,m} and a con-

stant κ3 > 0 such that the following hold.

(C1) Equality holds bi = A(M])i for all i < I.

(C2) For all matrices W of rank at most 2r, we have

κ3‖W‖F ≤
1
m
‖AIc(W)‖1 −

1
m
‖AI(W)‖1. (5.24)

The assumption is simple to interpret. To elucidate the bound (5.24), let us

suppose that the restricted maps AI and AIc satisfy Assumption 5.3.1 (RIP)

with constants κ̂1, κ̂2 and κ1, κ2, respectively. Then for any rank 2r matrix X we

immediately deduce the estimate

1
m
‖AIc(W)‖1 −

1
m
‖AI(W)‖1 ≥ ((1 − pfail)κ1 − pfailκ̂2) ‖W‖F ,

where pfail = |I|

m denotes the corruption frequency. In particular, the right-hand

side is positive as long as the corruption frequency is below the threshold pfail <

κ1
κ1+κ̂2

.

Combining Assumption 5.3.6 with Proposition 6.2.1 quickly yields sharp-

ness of the objective even in the noisy setting.

Proposition 5.3.7 (Sharpness with outliers (symmetric)). Suppose that Assump-

tion 5.3.6 holds. Then

f (X) − f (X]) ≥ κ3

(√
2(
√

2 − 1)σr(X])
)

dist
(
X,D∗(M])

)
for all X ∈ Rd×r.
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Proof. Defining ∆ := A(X]X>] ) − b, we have the following bound:

m · ( f (X) − f (X])) = ‖A
(
XX> − X]X>]

)
+ ∆‖1 − ‖∆‖1

= ‖AIc(XX> − X]X>] )‖1 +
∑
i∈I

(
|
(
A(XX> − X]X>] )

)
i
+ ∆i| − |∆i|

)
≥ ‖AIc(XX> − X]X>] )‖1 − ‖AI(XX> − X]X>] )‖1

≥ κ3m‖XX> − X]X>] ‖F ≥ κ3m
(√

2(
√

2 − 1)σr(X])
)

dist
(
X,D∗(M])

)
,

where the first inequality follows by the reverse triangle inequality, the second

inequality follows by Assumption (C2), and the final inequality follows from

Proposition 6.2.1. The proof is complete. �

The argument in the asymmetric setting is completely analogous.

Proposition 5.3.8 (Sharpness with outliers (asymmetric)). Suppose that Assump-

tion 5.3.6 holds. Fix a constant ν > 0 and define X] := U
√

Λ and Y] =
√

ΛV>, where

M] = UΛV> is any compact singular value decomposition of M]. Then for all X ∈ Rd1×r

and Y ∈ Rr×d2 satisfying

max{‖X − X]‖F , ‖Y − Y]‖F} ≤ ν
√
σr(M])

dist((X,Y),D∗(M])) ≤

√
σr(M])

1 + 2(1 +
√

2)ν

The estimate holds:

f (X,Y) − f (X],Y]) ≥
κ3

√
σr(M])

2 + 4(1 +
√

2)ν
· dist((X,Y),D∗(M])).

5.4 Guarantees for subgradient & prox-linear methods

In this section, we formally develop convergence guarantees for Algorithms 2,

3, and 4 under Assumption 5.2.1, and deduce performance guarantees in the
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RIP setting. To this end, it will be useful to first consider a broader class than

the compositional problems (5.7). Recall that a function f : E → R ∪ {+∞} is ρ-

weakly convex if the perturbed function x 7→ f (x)+ ρ

2‖x‖
2
2 is convex. In particular,

a composite function f = h ◦ F satisfying the approximation guarantee

| fx(y) − f (y)| ≤
ρ

2
‖y − x‖22 ∀x, y

is automatically ρ-weakly convex [83, Lemma 4.2].

Setting the stage, we introduce the following assumption.

Assumption 5.4.1. Consider the optimization problem,

min
x∈X

f (x). (5.25)

Suppose that the following properties hold for some real numbers µ, ρ > 0.

1. (Weak convexity) The set X is closed and convex, while the function f : E→ R

is ρ-weakly convex.

2. (Sharpness) The set of minimizers X∗ := arg min
x∈X

f (x) is nonempty and the fol-

lowing inequality holds:

f (x) − inf
X

f ≥ µ · dist (x,X∗) ∀x ∈ X.

In particular, notice that Assumption 5.2.1 implies Assumption 5.4.1. Taken

together, weak convexity and sharpness provide an appealing framework for

deriving local rapid convergence guarantees for numerical methods. In this sec-

tion, we specifically focus on two such procedures: the subgradient and prox-

linear algorithms. We aim to estimate both the radius of rapid converge around

the solution set and the rate of convergence. Note that both of the algorithms,
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when initialized at a stationary point could stay there for all subsequent itera-

tions. Since we are interested in finding global minima, we therefore estimate

the neighborhood of the solution set that has no extraneous stationary points.

This is the content of the following simple lemma.

Lemma 5.4.2 ([68, Lemma 3.1]). Suppose that Assumption 5.4.1 holds. Then the

problem (5.25) has no stationary points x satisfying

0 < dist(x;X∗) <
2µ
ρ
.

It is worthwhile to note that the estimate 2µ
ρ

of the radius in Lemma 5.4.2 is

tight [47, Section 3]. Hence, let us define for any γ > 0 the tube

Tγ :=
{

z ∈ X : dist(z,X∗) ≤ γ ·
µ

ρ

}
. (5.26)

Thus we would like to search for algorithms whose basin of attraction is a tube

Tγ for some numerical constant γ > 0. Such a basin of attraction is in essence

optimal.

The rate of convergence of the subgradient methods (Algorithms 2 and 3)

relies on the subgradient bound and the condition measure:

L := sup{‖ζ‖2 : ζ ∈ ∂ f (x), x ∈ T1} and τ :=
µ

L
.

A straightforward argument [68, Lemma 3.2] shows τ ∈ [0, 1]. The following

theorem appears as [68, Theorem 4.1], while its application to phase retrieval

was investigated in [70].

Theorem 5.4.3 (Polyak subgradient method). Suppose that Assumption 5.4.1 holds

and fix a real number γ ∈ (0, 1). Then Algorithm 2 initialized at any point x0 ∈ Tγ

produces iterates that converge Q-linearly to X∗, that is

dist2(xk+1,X
∗) ≤

(
1 − (1 − γ)τ2

)
dist2(xk,X

∗) ∀k ≥ 0.
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The following theorem appears as [68, Theorem 6.1]. The convex version of

the result dates back to Goffin [109].

Theorem 5.4.4 (Geometrically decaying subgradient method). Suppose that As-

sumption 5.4.1 holds, fix a real number γ ∈ (0, 1), and suppose τ ≤
√

1
2−γ . Set

λ := γµ2

ρL and q :=
√

1 − (1 − γ)τ2 in Algorithm 3. Then the iterates xk generated by

Algorithm 3, initialized at any point x0 ∈ Tγ, satisfy:

dist2(xk;X∗) ≤
γ2µ2

ρ2

(
1 − (1 − γ)τ2

)k
∀k ≥ 0.

Let us now specialize to the composite setting under Assumption 5.2.1. Since

Assumption 5.2.1 implies Assumption 5.4.1, both subgradient Algorithms 2 and

3 will enjoy a linear rate of convergence when initialized sufficiently close the

solution set. The following theorem, on the other hand, shows that the prox-

linear method will enjoy a quadratic rate of convergence (at the price of a higher

per-iteration cost). Guarantees of this type have appeared, for example, in [89,

31, 82].

Theorem 5.4.5 (Prox-linear algorithm). Suppose Assumption 5.2.1 holds. Choose

any β ≥ ρ in Algorithm 4 and set γ := ρ/β. Then Algorithm 4 initialized at any point

x0 ∈ Tγ converges quadratically:

dist(xk+1,X
∗) ≤ β

µ
· dist2(xk,X

∗) ∀k ≥ 0.

We now apply the results above to the low-rank matrix factorization problem

under RIP, whose regularity properties were verified in Section 5.3. In particu-

lar, we have the following efficiency guarantees of the subgradient and prox-

linear methods applied to this problem.

Corollary 5.4.6 (Convergence guarantees under RIP (symmetric)). Suppose As-

sumptions 5.3.1 and 5.3.6 are valid with |||·||| = 1
m‖ · ‖1 and consider the optimization
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problem

min
X∈Rd×r

f (X) =
1
m
‖A(XX>) − b‖1.

Choose any matrix X0 satisfying

dist(X0,D
∗(M]))√

σr(M])
≤ 0.2 ·

κ3

κ2
.

Define the condition number χ := σ1(M])/σr(M]). Then the following are true.

1. (Polyak subgradient) Algorithm 2 initialized at X0 produces iterates that con-

verge linearly toD∗(M]), that is

dist2(Xk,D
∗(M]))

σr(M])
≤

1 − 0.2

1 +
4κ2

2χ

κ2
3


k

·
κ2

3

100κ2
2

∀k ≥ 0.

2. (geometric subgradient) Algorithm 3 with λ =
0.81κ2

3

√
σr(M])

2κ2(κ3+2κ2
√
χ) , q =√

1 − 0.2
1+4κ2

2χ/κ
2
3

and initialized at X0 converges linearly:

dist2(Xk,D
∗(M]))

σr(M])
≤

1 − 0.2

1 +
4κ2

2χ

κ2
3


k

·
κ2

3

100κ2
2

∀k ≥ 0.

3. (prox-linear) Algorithm 4 with β = ρ and initialized at X0 converges quadrati-

cally:
dist(Xk,D

∗(M])))√
σr(M])

≤ 2−2k
·

0.45κ3

κ2
∀k ≥ 0.

5.4.1 Guarantees under local regularity

As explained in Section 5.3, Assumptions 5.2.1 and 5.4.1 are reasonable in the

symmetric setting under RIP. The asymmetric setting is more nuanced. Indeed,

the solution set is unbounded, while uniform bounds on the sharpness and sub-

gradient norms are only valid on bounded sets. One remedy, discussed in [154],

143



is to modify the optimization formulation by introducing a form of regulariza-

tion:

min
X,Y
|||A(XY) − y||| + λ‖X>X − YY>‖F .

In this section, we take a different approach that requires no modification to the

optimization problem nor the algorithms. The key idea is to show that if the

problem is well-conditioned only on a neighborhood of a particular solution,

then the iterates will remain in the neighborhood provided the initial point is

sufficiently close to the solution. In fact, we will see that the iterates themselves

must converge. The proofs of the results in this section (Theorems 5.4.8, 5.4.9,

and 5.4.11) are deferred to Section 5.10.1.

We begin with the following localized version of Assumption 5.4.1.

Assumption 5.4.7. Consider the optimization problem,

min
x∈X

f (x). (5.27)

Fix an arbitrary point x̄ ∈ X∗ and suppose that the following properties hold for some

real numbers ε, µ, ρ > 0.

1. (Local weak convexity) The set X is closed and convex, and the bound holds:

f (y) ≥ f (x) + 〈ζ, y − x〉 −
ρ

2
‖y − x‖22 ∀x, y ∈ X ∩ Bε(x̄), ζ ∈ ∂ f (x).

2. (Local sharpness) The inequality holds:

f (x) − inf
X

f ≥ µ · dist (x,X∗) ∀x ∈ X ∩ Bε(x̄).

The following two theorems establish convergence guarantees of the two

subgradient methods under Assumption 5.4.7. Abusing notation slightly, we

define the local quantities:

L := sup
ζ∈∂ f (x)

{‖ζ‖2 : x ∈ X ∩ Bε(x̄)} and τ :=
µ

L
.
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Theorem 5.4.8 (Polyak subgradient method (local regularity)). Suppose Assump-

tion 5.4.7 holds and fix an arbitrary point x0 ∈ Bε/4(x̄) satisfying

dist(x0,X
∗) ≤ min

{
3εµ2

64L2 ,
µ

2ρ

}
.

Then Algorithm 2 initialized at x0 produces iterates xk that always lie in Bε(x̄) and

satisfy

dist2(xk+1,X
∗) ≤

(
1 − 1

2τ
2
)

dist2(xk,X
∗), for all k ≥ 0. (5.28)

Moreover the iterates converge to some point x∞ ∈ X∗ at the R-linear rate

‖xk − x∞‖2 ≤
16L3 · dist(x0,X

∗)
3µ3 ·

(
1 − 1

2τ
2
) k

2 for all k ≥ 0.

Theorem 5.4.9 (Geometrically decaying subgradient method (local regularity)).

Suppose that Assumption 5.4.7 holds and that τ ≤ 1
√

2
. Define γ =

ερ

4L+ερ
, λ =

γµ2

ρL ,

and q =
√

1 − (1 − γ)τ2. Then Algorithm 3 initialized at any point x0 ∈ Bε/4(x̄) ∩ Tγ

generates iterates xk that always lie in Bε(x̄) and satisfy

dist2(xk;X∗) ≤
γ2µ2

ρ2

(
1 − (1 − γ)τ2

)k
for all k ≥ 0. (5.29)

Moreover, the iterates converge to some point x∞ ∈ X∗ at the R-linear rate

‖xk − x∞‖2 ≤ λ
1−q · q

k for all k ≥ 0.

We end the section by specializing to the composite setting and analyzing the

prox-linear method. The following is the localized version of Assumption 5.2.1.

Assumption 5.4.10. Consider the optimization problem,

min
x∈X

f (x) := h(F(x)),

where the function h(·) and the set X are convex and F(·) is differentiable. Fix

a point x̄ ∈ X∗ and suppose that the following properties holds for some real

numbers ε, µ, ρ > 0.
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1. (Approximation accuracy) The convex models fx(y) := h(F(x)+∇F(x)(y−x))

satisfy the estimate:

| f (y) − fx(y)| ≤
ρ

2
‖y − x‖22 ∀x ∈ X ∩ Bε(x̄), y ∈ X.

2. (Sharpness) The inequality holds:

f (x) − inf
X

f ≥ µ · dist (x,X∗) ∀x ∈ X ∩ Bε(x̄).

The following theorem provides convergence guarantees for the prox-linear

method under Assumption 5.4.10.

Theorem 5.4.11 (Prox-linear (local)). Suppose Assumption 5.4.10 holds, choose any

β ≥ ρ, and fix an arbitrary point x0 ∈ Bε/2(x̄) satisfying

f (x0) −min
X

f ≤ min
{
βε2

25
,
µ2

2β

}
.

Then Algorithm 4 initialized at x0 generates iterates xk that always lie in Bε(x̄) and

satisfy

dist(xk+1,X
∗) ≤

β

µ
· dist2(xk,X

∗),

f (xk+1) −min
X

f ≤
β

µ2

(
f (xk) −min

X
f
)2
.

Moreover the iterates converge to some point x∞ ∈ X∗ at the quadratic rate

‖xk − x∞‖2 ≤
2
√

2µ
β
·

(
1
2

)2k−1

for all k ≥ 0.

With the above generic results in hand, we can now derive the convergence

guarantees for the subgradient and prox-linear methods for asymmetric low-

rank matrix recovery problems. To summarize, the prox-linear method con-

verges quadratically, as long as it is initialized within constant relative error of
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the solution. The guarantees for the subgradient methods are less satisfactory:

the size of the region of the linear convergence scales with the condition num-

ber of M]. The reason is that the proof estimates the region of convergence using

the length of the iterate path, which scales with the condition number. The de-

pendence on the condition number in general can be eliminated by introducing

regularization ‖X>X − YY>‖F , as suggested in the work [154]. Still the results we

present here are notable even for the subgradient method. For example, we see

that for rank r = 1 instances satisfying RIP (e.g. blind deconvolution), the con-

dition number of M] is always one and therefore regularization is not required

at all for subgradient and prox-linear methods.

Corollary 5.4.12 (Convergence guarantees under RIP (asymmetric)). Suppose

Assumptions 5.3.1 and 5.3.6 are valid6 and consider the optimization problem

min
X∈Rd1×r , Y∈Rr×d2

f (X) =
1
m
‖A(XY) − b‖1.

Define X] := U
√

Λ and Y] =
√

ΛV>, where M] = UΛV> is any compact singular value

decomposition of M]. Define also the condition number χ := σ1(M])/σr(M]). Then

there exists η > 0 depending only on κ2, κ3, and σ(M]) such that the following are true.

1. (Polyak subgradient) Algorithm 2 initialized at (X0,Y0) satisfying ‖(X0,Y0)−(X],Y])‖F√
σr(M])

.

min{1, κ2
3

κ2
2χ
, κ3
κ2
}, will generate an iterate sequence that converges at the linear rate:

dist((Xk,Yk),D∗(M]))√
σr(M])

≤ δ after k &
κ2

2χ
2

κ2
3

· ln
(
η

δ

)
iterations.

2. (geometric subgradient) Algorithm 3 initialized at (X0,Y0) satisfying
‖(X0,Y0)−(X],Y])‖F√

σr(M])
. min{1, κ3

κ2χ
}, will generate an iterate sequence that converges at

the linear rate:

dist((Xk,Yk),D∗(M]))√
σr(M])

≤ δ after k &
κ2

2χ
2

κ2
3

· ln
(
η

δ

)
iterations.

6with |||·||| = 1
m ‖ · ‖1
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3. (prox-linear) Algorithm 4 initialized at (X0,Y0) satisfying f (x0)−minX f
σr(M])

.

min{κ2, κ
2
3/κ2} and ‖(X0,Y0)−(X],Y])‖F√

σr(M])
. 1, will generate an iterate sequence that con-

verges at the quadratic rate:

dist((Xk,Yk),D∗(M]))√
σr(M])

.
κ3

κ2
· 2−2k

for all k ≥ 0.

5.5 Examples of `1/`2 RIP

In this section, we survey three matrix recovery problems from different fields,

including physics, signal processing, control theory, wireless communications,

and machine learning, among others. In all cases, the problems satisfy `1/`2 RIP

and the I-outlier bounds and consequently, the convergence results in Corol-

laries 5.4.6 and 5.4.12 immediately apply. Most of the RIP results in this section

were previously known (albeit under more restrictive assumptions); we provide

self-contained arguments in Section 5.10.2 for the sake of completeness. On the

other hand, using nonsmooth optimization in these problems and the corre-

sponding convergence guarantees based on RIP are, for the most part, new.

For the rest of this section we will assume the following data-generating

mechanism.

Definition 5.5.1 (Data-generating mechanism). A random linear mapA : Rd1×d2 →

Rm and a random index set I ⊂ [m] are drawn independently of each other. We assume

moreover that the outlier frequency pfail := |I|/m satisfies pfail ∈ [0, 1/2) almost surely.

We then observe the corrupted measurements

bi =


A(M]) if i < I, and

ηi if i ∈ I,
(5.30)
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where η is an arbitrary vector. In particular, η could be correlated withA.

Throughout this section, we consider four distinct linear operatorsA.

Matrix Sensing. In this scenario, measurements are generated as follows:

A(M])i := 〈Pi,M]〉 for i = 1, . . . ,m (5.31)

where Pi ∈ Rd1×d2 are fixed matrices.

Quadratic Sensing I . In this scenario, M] ∈ Rd×d is assumed to be a PSD rank

r matrix with factorization M] = X]X>] and measurements are generated as fol-

lows:

A(M])i = p>i M]pi = ‖X>] pi‖
2
2 for i = 1, . . . ,m, (5.32)

where pi ∈ Rd are fixed vectors.

Quadratic Sensing II . In this scenario, M] ∈ Rd×d is assumed to be a PSD

rank r matrix with factorization M] = X]X>] and measurements are generated as

follows:

A(M])i = p>i M]pi − p̃>i M] p̃i = ‖X>] pi‖
2
2 − ‖X

>

] p̃i‖
2
2 for i = 1, . . . ,m, (5.33)

where pi, p̃i ∈ Rd are fixed vectors.

Bilinear Sensing. In this scenario, M] ∈ Rd1×d2 is assumed to be a r matrix with

factorization M] = XY and measurements are generated as follows:

A(M])i = p>i M]qi for i = 1, . . . ,m, (5.34)
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where pi ∈ Rd1 and qi ∈ Rd2 are fixed vectors.

The matrix, quadratic, and bilinear sensing problems have been considered

in a number of papers and in a variety of applications. The first theoretical

properties for matrix sensing were discussed in [95, 209, 40]. Quadratic sens-

ing in its full generality appeared in [52] and is a higher-rank generalization

of the much older (real) phase retrieval problem [37, 41, 110]. Besides phase

retrieval, quadratic sensing has applications to covariance sketching, shallow

neural networks, and quantum state tomography; see for example [155] for a

discussion. Bilinear sensing is a natural modification of quadratic sensing and

is a higher-rank generalization of the blind deconvolution problem [8]; it was

first proposed and studied in [33]. We will comeback to detailed study of the

blind deconvolution problem in Chapter 6.

The reader is reminded that once `1/`2 RIP guarantees, in particular Assump-

tions 5.3.1 and 5.3.6, are established for the above four operators, the guarantees

of Corollaries 5.4.6 and Corollary 5.4.12 immediately take hold for the problems

min
X∈Rd×r

f (X) =
1
m
‖A(XX>) − b‖1

and

min
X∈Rd1×r , Y∈Rr×d2

f (X) =
1
m
‖A(XY) − b‖1,

respectively. Thus, we turn our attention to establishing such guarantees.
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5.5.1 Warm-up: `2/`2-RIP for matrix sensing

In this section, we are primarily interested in the `1/`2-RIP for the above four lin-

ear operators. However, as a warm-up, we first consider the `2/`2-RIP property

for matrix sensing with Gaussian Pi. The following result appears in [209, 40].

Theorem 5.5.2 (`2/`2-RIP for matrix sensing). For any δ ∈ (0, 1) there exist con-

stants c,C > 0 depending only on δ such that if the entries of Pi are i.i.d. standard

Gaussian and m ≥ cr(d1 + d2) log(d1d2), then with probability at least 1 − exp (−Cm),

the estimate

(1 − δ)‖M‖F ≤
1
√

m
‖A(M)‖2 ≤ (1 + δ)‖M‖F ,

holds simultaneously for all M ∈ Rd1×d2 of rank at most 2r. Consequently, Assump-

tion 5.3.1 is satisfied.

Following the general recipe of this Chapter, we see that the nonsmooth for-

mulation

min
X∈Rd1×r , Y∈Rr×d2

1
√

m
‖A(XY) − b‖2 =

√√
1
m

m∑
i=1

(
Tr(YP>i X) − bi

)2
(5.35)

is immediately amenable to subgradient and prox-linear algorithms in the

noiseless setting I = ∅. In particular, a direct analogue of Corollary 5.4.12, which

was stated for the penalty function h = 1
m‖·‖1, holds; we omit the straightforward

details.

5.5.2 The `1/`2-RIP and I-outlier bounds

We now turn our attention to the `1/`2 RIP for more general classes of linear

maps than the i.i.d. Gaussian matrices considered in Theorem 5.5.2. To establish
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such guarantees, one must ensure that the linear maps A have light tails and

are robustly injective on certain spaces of matrices. The first property leads to

tight concentration results, while the second yields the existence of a lower RIP

constant κ1.

Assumption 5.5.3 (Matrix Sensing). The matrices {Pi} are i.i.d. realizations of an

η-sub-Gaussian random matrix7 P ∈ Rd1×d2 . Furthermore, there exists a numerical con-

stant α > 0 such that

inf
M: rankM≤2r
‖M‖F=1

E|〈P,M〉| ≥ α. (5.36)

Assumption 5.5.4 (Quadratic Sensing I). The vectors {pi} are i.i.d. realizations of a η-

sub-Gaussian random variable p ∈ Rd. Furthermore, there exists a numerical constant

α > 0 such that

inf
M∈Sd: rankM≤2r

‖M‖F=1

E|p>Mp| ≥ α. (5.37)

Assumption 5.5.5 (Quadratic Sensing II). The vectors {pi}, { p̃i} are i.i.d. realizations

of a η-sub-Gaussian random variable p ∈ Rd. Furthermore, there exists a numerical

constant α > 0 such that

inf
M∈Sd: rankM≤2r

‖M‖F=1

E|p>Mp − p̃>Mp̃| ≥ α. (5.38)

Assumption 5.5.6 (Bilinear Sensing). The vectors {pi} and {qi} are i.i.d. realizations

of η-sub-Gaussian random vectors p ∈ Rd1 and q ∈ Rd2 , respectively. Furthermore,

there exists a numerical constant α > 0 such that

inf
M: rankM≤2r
‖M‖F=1

E|p>Mq| ≥ α. (5.39)

The Assumptions 5.5.3-5.5.6 are all valid for i.i.d. Gaussian realizations with

7By this we mean that the vectorized matrix vec(P) is a η-sub-gaussian random vector.
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independent identity covariance, as the following lemma shows. We defer its

proof to Section 5.10.2.

Lemma 5.5.7. Assumption 5.5.3 holds for matrices P with i.i.d. standard Gaussian

entries. Assumptions 5.5.4 and 5.5.5 hold for vectors p, p̃ with i.i.d. standard Gaus-

sian entries. Assumption 5.5.6 holds for vectors p and q with i.i.d. standard Gaussian

entries.

We can now state the main RIP guarantees under the above assumptions.

Throughout all the results, we fix the data generating mechanism as in Defini-

tion 5.5.1. Then, we wish to establish the inequalities

κ1‖M‖F ≤
1
m
‖A(M)‖1 ≤ κ2‖M‖F (5.40)

and

κ3‖M‖F ≤
1
m

(
‖AIc(M)‖1 − ‖AI(M)‖1

)
, (5.41)

and, hence, Assumptions 5.3.1 and 5.3.6, respectively, for certain constants κ1, κ2,

and κ3. We defer the proof of this theorem to Section 5.10.2.

Theorem 5.5.8 (`1/`2 RIP and I-outlier bounds). There exist numerical constants

c1, . . . , c6 > 0 depending only on α, η such that the following hold for the correspond-

ing measurement operators described in Equations (5.31), (5.32), (5.33), and (5.34),

respectively

1. (Matrix sensing) Suppose Assumption 5.5.3 holds. Then provided m ≥

c1
(1−2pfail)2 r(d1 + d2 + 1) ln

(
c2 + c2

1−2pfail

)
, we have with probability at least 1 −

4 exp
(
−c3(1 − 2pfail)2m

)
that every matrix M ∈ Rd1×d2 of rank at most 2r sat-

isfies (5.40) and (5.41) with constants κ1 = c4, κ2 = c5 and κ3 = c6(1 − 2pfail).
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2. (Quadratic sensing I) Suppose Assumption 5.5.4 holds. Then provided

m ≥
c1

(1−2pfail)2 r2(2d + 1) ln
(
c2 + c2

1−2pfail

√
r
)
, we have with probability at least

1− 4 exp
(
−c3(1 − 2pfail)2m/r

)
that every matrix M ∈ Rd×d of rank at most 2r sat-

isfies (5.40) and (5.41) with constants κ1 = c4, κ2 = c5 ·
√

r and κ3 = c6(1− 2pfail).

3. (Quadratic sensing II) Suppose Assumption 5.5.5 holds. Then provided

m ≥
c1

(1−2pfail)2 r(2d + 1) ln
(
c2 + c2

1−2pfail

)
, we have with probability at least 1 −

4 exp
(
−c3(1 − 2pfail)2m

)
that every matrix M ∈ Rd×d of rank at most 2r satis-

fies (5.40) and (5.41) with constants κ1 = c4, κ2 = c5 and κ3 = c6(1 − 2pfail).

4. (Bilinear sensing) Suppose Assumption 5.5.6 holds. Then provided m ≥

c1
(1−2pfail)2 r(d1 + d2 + 1) ln

(
c2 + c2

1−2pfail

)
, we have with probability at least 1 −

4 exp
(
−c3(1 − 2pfail)2m

)
that every matrix M ∈ Rd1×d2 of rank at most 2r sat-

isfies (5.40) and (5.41) with constants κ1 = c4, κ2 = c5 and κ3 = c6(1 − 2pfail).

The guarantees of Theorem 5.5.8 were previously known under stronger as-

sumptions. In particular, item (1) generalizes the results in [154] for the pure

Gaussian setting. The case r = 1 of item (2) can be found, in a sightly different

form, in [94, 89]. Item (3) sharpens slightly the analogous guarantee in [52] by

weakening the assumptions on the moments of the measuring vectors to the

uniform lower bound (5.38). Special cases of item (4) were established in [47],

for the case r = 1, and [33], for Gaussian measurement vectors.

We note that all linear mappings require the same number of measurements

in order to satisfy RIP and I outlier bounds, except for quadratic sensing I op-

erator, which incurs an extra r-factor. This reveals the utility of the quadratic

sensing II operator, which achieves optimal sample complexity. For larger scale

problems, a shortcoming of matrix sensing operator (5.31) is that m · d1d2 scalars

are required to represent the map A. In contrast, all other measurement opera-
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tors may be represented with only m · (d1 + d2) scalars.

5.6 Matrix Completion

In the previous sections, we saw that low-rank recovery problems satisfying RIP

lead to well-conditioned nonsmooth formulations. We claim, however, that the

general framework of sharpness and approximation is applicable even for prob-

lems without RIP. We consider two such problems, namely matrix completion

in this section and robust PCA in Section 5.7, to follow. Both problems will be

considered in the symmetric setting.

The goal of matrix completion problem is to recover a PSD rank r matrix

M] ∈ S
d given access only to a subset of its entries. Henceforth, let X] ∈ Rd×r be

a matrix satisfying M] = X]X>] . Throughout, we assume incoherence condition,

‖X]‖2,∞ ≤
√

νr
d , for some ν > 0. We also make the fairly strong assumption that

the singular values of X] are all equal σ1(X]) = σ2(X]) = . . . = σr(X]) = 1. This as-

sumption is needed for our theoretical results. We let Ω ⊆ [d]×[d] be an index set

generated by the Bernoulli model, that is, P((i, j), ( j, i) ∈ Ω) = p independently

for all 1 ≤ i ≤ j ≤ d. Let ΠΩ : Sd → R|Ω| be the projection onto the entries indexed

by Ω. We consider the following optimization formulation of the problem

min
X∈X

f (X) = ‖ΠΩ(XX>) − ΠΩ(M])‖2 where X =

{
X ∈ Rd×r : ‖X‖2,∞ ≤

√
νr
d

}
.

We will show that both the Polyak subgradient method and an appropriately

modified prox-linear algorithm converge linearly to the solution set under rea-

sonable initialization. Moreover, we will see that the linear rate of convergence

for the prox-linear method is much better than that for the subgradient method.
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To simplify notation, we set

D∗ := D∗(M]) = {X ∈ Rd1×r : XX> = M]}.

We begin by estimating the sharpness constant µ of the objective function.

Fortunately, this estimate follows directly from inequalities (58) and (59a) in

[53].

Lemma 5.6.1 (Sharpness [53]). There are numerical constant c1, c2 > 0 such that the

following holds. If p ≥ c2( ν
2r2

d +
log d

d ), then with probability 1 − c1d−2, the estimate

1
p
‖ΠΩ(XX> − X]X>] )‖2F ≥ c1‖XX> − X]X>] ‖

2
F

holds uniformly for all X ∈ X with dist(X,D∗) ≤ c1.

Let us next estimate the approximation accuracy | f (Z) − fX(Z)|, where

fX(Z) = ‖ΠΩ(XX − M] + X(Z − X)> + (Z − X)X>)‖F .

To this end, we will require the following result.

Lemma 5.6.2 (Lemma 5 in [53]). There is a numerical constant c > 0 such that the

following holds. If p ≥ c
ε2 ( ν

2r2

d +
log d

d ) for some ε ∈ (0, 1), then with probability at least

1 − 2d−4, the estimates

1. 1
√

p‖ΠΩ(HH>)‖F ≤
√

(1 + ε)‖H‖2F +
√
ε‖H‖F ; and

2. 1
√

p‖ΠΩ(GH>)‖F ≤
√
νr‖G‖F

hold uniformly for all matrices H with ‖H‖2,∞ ≤ 6
√

νr
d and G ∈ Rd×r.

An estimate of the approximation error | f (Z) − fX(Z)| is now immediate.
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Lemma 5.6.3 (Approximation accuracy and Lipschitz continuity). There is a nu-

merical constant c > 0 such that the following holds. If p ≥ c
ε2 ( ν

2r2

d +
log d

d ) for some

ε ∈ (0, 1), then with probability at least 1 − 2d−4, the estimates

1
√

p
| f (X) − fY(X)| ≤

√
(1 + ε)‖X − Y‖2F +

√
ε‖X − Y‖F ,

| f (X) − f (Y)| ≤
√

pνr‖X − Y‖F ,

holds uniformly for all X,Y ∈ X.

Proof. The first inequality follows immediately by observing the estimate

| f (X) − fY(X)| ≤ ‖ΠΩ((X − Y)(X − Y)>)‖F ,

and using Lemma 5.6.2. To see the second inequality, observe

| f (X) − f (Y)| ≤ ‖ΠΩ(XX> − YY>)‖F

=
1
2
‖ΠΩ((X − Y)(X + Y)> − (X + Y)(X − Y)>)‖F

≤ ‖ΠΩ((X − Y)(X + Y)>)‖F

≤
√

pνr‖X − Y‖F ,

where the last inequality follows by Part 2 of Lemma 5.6.2. �

Note that the approximation bound in Lemma 5.6.2 is not in terms of the

square Euclidean norm. Therefore the results in Section 5.4 do not apply di-

rectly. Nonetheless, it is straightforward to modify the prox-linear method to

take into account the new approximation bound. The proof of the following

lemma appears in Section 5.10.3.

Lemma 5.6.4. Suppose that Assumption 5.2.1 holds with the approximation property

replaced by

| f (y) − fx(y)| ≤ a‖y − x‖22 + b‖y − x‖2 ∀x, y ∈ X,
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for some real a, b ≥ 0. Consider the iterates generated by the process:

xk+1 = arg min
x∈X

{
fxk(x) + a‖x − xk‖

2
2 + b‖x − xk‖2

}
.

Then as long as x0 satisfies dist(x0,X
∗) ≤ µ−2b

2a , the iterates converge linearly:

dist(xk+1,X
∗) ≤

2(b + adist(x,X∗))
µ

· dist(xk,X
∗) ∀k ≥ 0.

Combining Lemma 5.6.4 with our estimates of the sharpness and approx-

imation accuracy, we deduce the following convergence guarantee for matrix

completion.

Corollary 5.6.5 (Prox-linear method for matrix completion). There are numerical

constants c0, c,C > 0 such that the following holds. If p ≥ c
ε2 ( ν

2r2

d +
log d

d ) for some

ε ∈ (0, 1), then with probability at least 1 − c0d−2, the iterates generated by the modified

prox-linear algorithm

Xk+1 = arg min
X∈X

{
fXk(X) +

√
p(1 + ε) · ‖X − Xk‖

2
2 +
√

pε‖X − Xk‖2

}
(5.42)

satisfy

dist(Xk+1,D
∗) ≤

√
ε +
√

1 + ε · dist(Xk,D
∗)

C
· dist(Xk,D

∗) ∀k ≥ 0.

In particular, the iterates converge linearly as long as dist(X0,D
∗) < C−2

√
ε

2
√

(1+ε)
.

Proof. By invoking Proposition 6.2.1 and Lemmas 5.6.1 and 5.6.3 we may appeal

to Lemma 5.6.4 with a =
√

p(1 + ε), b =
√

pε, and µ =

√
2c1 p(

√
2 − 1). The result

follows immediately. �

To summarize, there exist numerical constants c0, c1, c2, c3 > 0 such that the

following is true with probability at least 1 − c0d−2. In the regime

p ≥
c2

ε2

(
ν2r2

d
+

log d
d

)
for some ε ∈ (0, c1),
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the prox-linear method will converge at the rapid linear rate,

dist(Xk,D
∗) ≤

c2

2k ,

when initialized at X0 ∈ X satisfying dist(X0,D
∗) < c2.

As for the prox-linear method, the results of Section 5.4 do not immediately

yield convergence guarantees for the Polyak subgradient method. Nonethe-

less, it straightforward to show that the standard Polyak subgradient method

still enjoys local linear convergence guarantees. The proof is a straightforward

modification of the argument in [68, Theorem 3.1], and appears in Section 5.10.3.

Theorem 5.6.6. Suppose that Assumption 5.2.1 holds with the approximation property

replaced by

| f (y) − fx(y)| ≤ a‖y − x‖22 + b‖y − x‖2 ∀x, y ∈ X,

for some real a, b ≥ 0. Consider the iterates {xk} generated by the Polyak subgradient

method in Algorithm 2. Then as long as the sharpness constant satisfies µ > 2b and x0

satisfies dist(x0,X
∗) ≤ γ · µ−2b

2a for some γ < 1, the iterates converge linearly

dist2(xk+1,X
∗) ≤

(
1 −

(1 − γ)µ(µ − 2b)
L2

)
· dist2(xk,X

∗) ∀k ≥ 0.

Finally, combining Theorem 5.6.6 with our estimates of the sharpness and

approximation accuracy, we deduce the following convergence guarantee for

matrix completion.

Corollary 5.6.7 (Subgradient method for matrix completion). There are numerical

constants c0, c,C > 0 such that the following holds. If p ≥ c
ε2 ( ν

2r2

d +
log d

d ) for some

ε ∈ (0, 1), then with probability at least 1 − c0d−2, the iterates generated by the iterates

{Xk} generated by the Polyak Subgradient method in Algorithm 2 satisfy

dist(Xk+1,D
∗)2 ≤

(
1 −

C(C − 2
√
ε)

2νr

)
· dist2(Xk,D

∗) ∀k ≥ 0.
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In particular, the iterates converge linearly as long as dist(X0,D
∗) < C−2

√
ε

4
√

(1+ε)
.

Proof. First, observe that we have the bound L ≤
√

pνr by Lemma 5.6.3. By

invoking Proposition 6.2.1 and Lemmas 5.6.1 and 5.6.3 we may appeal to The-

orem 5.6.6 with γ = 1/2, a =
√

p(1 + ε), b =
√

pε, and µ =

√
2c1 p(

√
2 − 1). The

result follows immediately. �

To summarize, there exist numerical constants c0, c1, c2, c3 > 0 such that the

following is true with probability at least 1 − c0d−2. In the regime

p ≥
c2

ε2

(
ν2r2

d
+

log d
d

)
for some ε ∈ (0, c1),

the Polyak subgradient method will converge at the linear rate,

dist(Xk,D
∗) ≤

(
1 −

c3

νr

) k
2

c2,

when initialized at X0 ∈ X satisfying dist(X0,D
∗) < c2. Notice that the prox-

linear method enjoys a much faster linear rate of convergence than the sub-

gradient method—an observation fully supported by numerical experiments in

Section 5.9. The caveat is that the per iteration cost of the prox-linear method is

significantly higher than that of the subgradient method.

5.7 Robust PCA

The goal of robust PCA is to decompose a given matrix W into a sum of a low-

rank matrix M] and a sparse matrix S ], where M] represents the principal com-

ponents, S ] the corruption, and W the observed data [45, 38, 245]. In this section,
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we explore methods of nonsmooth optimization for recovering such a decom-

position, focusing on two different problem formulations. We only consider the

symmetric version of the problem.

5.7.1 The Euclidean formulation

Setting the stage, we assume that the matrix W ∈ Rd×d admits a decomposition

W = M] + S ], where the matrices M] and S ] satisfy the following for some pa-

rameters ν > 0 and k ∈ N:

1. The matrix M] ∈ Rd×d has rank r and can be factored as M] = X]X>] for some

matrix X] ∈ Rd×r satisfying ‖X]‖op ≤ 1 and ‖X]‖2,∞ ≤
√

νr
d .8

2. The matrix S ] is sparse in the sense that it has at most k nonzero entries

per column/row.

The goal is to recover M] and S ] given W. The first formulation we consider is

the following:

min
X∈X,S∈S

F
(
(X, S )

)
= ‖XX> + S −W‖F , (5.43)

where the constraint sets are defined by

S :=
{
S ∈ Rd×d : ‖S ei‖1 ≤ ‖S ]ei‖1 ∀i

}
, X =

{
X ∈ Rd×r : ‖X‖2,∞ ≤

√
νr
d

}
.

Note that the problem formulation requires knowing the `1 norms of the rows of

S ]. The same assumption was also made in [53, 103]. While admittedly unreal-

istic, this formulation provides a nice illustration of the paradigm we advocate

here. The following technical lemma will be useful in proving the regularity

conditions needed for rapid convergence. The proof is given in Section 5.10.4.
8Recall that ‖X‖2,∞ = maxi∈[d] ‖Xi·‖2 is the maximum row norm.

161



Lemma 5.7.1. For all X ∈ X and S ∈ S, the estimate holds:

|〈S − S ], XX> − X]X>] 〉| ≤ 10

√
νrk
d
· ‖S − S ]‖F · ‖X − X]‖F .

Equipped with the above lemma, we can estimate the sharpness and approx-

imation parameters µ, ρ for the formulation (5.43).

Lemma 5.7.2 (Regularity constants). For all X ∈ X and S ∈ S, the estimates hold:

F((X, S ))2 ≥

1
2
σ2

r (X]) − 10

√
νrk
d

 · (dist(X,D∗(M]))2 + ‖S − S ]‖
2
F

)
(5.44)

and

|F((X, S )) − FY((X, S ))| ≤ ‖X − Y‖2F . (5.45)

Moreover, for any X1, X2 ∈ X and S 1, S 2 ∈ S, the Lipschitz bounds holds:

|F((X1, S 1)) − F((X2, S 2))| ≤ 2
√
νr‖X1 − X2‖F + ‖S 1 − S 2‖F .

Proof. Let X] ∈ projD∗(M])(X). To establish the bound (5.44), we observe that

‖XX> + S −W‖2F = ‖XX> − M]‖
2
F + 2〈S − S ], XX> − M]〉 + ‖S − S ]‖

2
F

≥
1
2
σ2

r (X])‖X − X]‖
2
F − 20

√
νrk
d
‖S − S ]‖F‖X − X]‖F + ‖S − S ]‖

2
F ,

where the first inequality follows from Proposition 6.2.1 and Lemma 5.7.1. Now

set

a := 10

√
νrk
d
, b := ‖X − X]‖F , c := ‖S − S ]‖F ,

and s := 1
2σ

2
r (X]). With this notation, we apply the Fenchel-Young inequality to

show that for any ε > 0, we have

2abc ≤ aεb2 + (a/ε)c2.
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Thus, for any ε > 0, we have

‖XX> + S −W‖2F ≥ sb2 − 2abc + c2 ≥ (s − aε)b2 + (1 − a/ε)c2.

Now, let us choose ε > 0 so that s − aε = 1 − a/ε. Namely set ε =
−(1−s)+

√
(1−s)2+4a2

2a .

With this choice of ε and the bound s − aε ≥ 1
2σ

2
r (X]) − 10

√
νrk/d, the claimed

bound (5.44) follows immediately. The bound (5.45) follows from the reverse

triangle inequality:

|F((X, S )) − FY((X, S ))| ≤ ‖XX> − YY> − (X − Y)Y> − Y>(X − Y)‖F

= ‖XX> − XY> − YX> + YY>‖F

= ‖(X − Y)(X − Y)>‖F

≤ ‖X − Y‖2F .

Finally observe

|F((X1, S 1)) − F((X2, S 2))| ≤ ‖X1X>1 − X2X>2 ‖F + ‖S 1 − S 2‖F

≤ ‖X1 + X2‖op‖X1 − X2‖F + ‖S 1 − S 2‖F

≤ 2
√
νr‖X1 − X2‖F + ‖S 1 − S 2‖F ,

where we use the bound ‖Xi‖op ≤
√

d‖Xi‖2,∞ ≤
√
νr in the final inequality. The

proof is complete. �

To summarize, there exist numerical constants c0, c1, c2 > 0 such that the

following is true. In the regime√
νrk
d
≤ c0σ

2
r (X]),

the Polyak subgradient method will converge at the linear rate,

dist(Xk,D
∗(M])) ≤

(
1 −

c1σ
2
r (X])
νr

) k
2

· c2µ,
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and the prox-linear method will converge quadratically when initialized at X0 ∈

X satisfying dist(X0,D
∗(M])) < c2σr(X]).

5.7.2 The non-Euclidean formulation

We next turn to a different formulation for robust PCA that does not require

knowledge of `1 row norms of S ]. In particular, we consider the formulation

min
X∈X

f (X) = ‖XX> −W‖1 where X = {X ∈ Rd×r | ‖X‖2,∞ ≤ C‖X]‖2,∞}, (5.46)

for a constant C > 1. Unlike Section 5.7.1, here we consider a randomized model

for the sparse matrix S ]. We assume that there are real ν, τ > 0 such that

1. M] ∈ Rd×d can be factored as M] = X]X>] for some matrix X] ∈ Rd×r satisfying

‖X]‖2,∞ ≤
√

νr
d ‖X]‖op.

2. We assume the random corruption model

(S ])i j = δi jŜ i j ∀i, j

where δi j are i.i.d. Bernoulli random variables with τ = P(δi j = 1) and Ŝ is

an arbitrary and fixed d × d symmetric matrix.

In this setting, the approximation function at X is given by

fX(Z) = ‖XX −W + X(Z − X)> + (Z − X)X>‖1.

We begin by computing an estimate of the approximation accuracy | f (Z)− fX(Z)|.

Lemma 5.7.3 (Approximation accuracy). The estimate holds:

| f (Z) − fX(Z)| ≤ ‖Z − X‖22,1 for all X,Z ∈ Rd×r.
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Proof. As in the proof of Proposition 5.3.2, we compute

| f (Z) − fX(Z)| =
∣∣∣∣‖ZZ> −W‖1 − ‖XX −W + X(Z − X)> + (Z − X)X>‖1

∣∣∣∣
≤ ‖(Z − X)(Z − X)>‖1 =

∑
i, j

|e>i (Z − X)(e>j (Z − X))>|

≤
∑

i, j

‖e>i (Z − X)‖2 · ‖e>j (Z − X)‖2 = ‖Z − X‖22,1,

thereby completing the argument. �

Notice that the error | f (Z) − fX(Z)| is bounded in terms of the non-Euclidean

norm ‖Z − X‖2,1. Thus, although in principle one may apply subgradient meth-

ods to the formulation (5.46), their convergence guarantees, which fundamen-

tally relied on the Euclidean norm, would yield potentially overly pessimistic

performance predictions. On the other hand, the convergence guarantees for

the prox-linear method do not require the norm to be Euclidean. Indeed, the

following is true, with a proof that is nearly identical as that of Theorem 5.4.11.

Theorem 5.7.4. Suppose that Assumption 5.2.1 holds where ‖ · ‖ is replaced by an ar-

bitrary norm |||·|||. Choose any β ≥ ρ and set γ := ρ/β in Algorithm 4. Then Algorithm 4

initialized at any point x0 satisfying dist|||·|||(x0,X
∗) < µ

ρ
converges quadratically:

dist|||·|||(xk+1,X
∗) ≤ ρ

µ
· dist2

|||·|||(xk,X
∗) ∀k ≥ 0.

To apply the above generic convergence guarantees for the prox-linear

method, it remains to show that the objective function f in (5.46) is sharp rela-

tive to the norm ‖ · ‖1,2. A key step in showing such a result is to prove that

‖XX> − X]X>] ‖1 ≥ c · inf
R>R=I

‖X − X]R‖2,1

for a quantity c depending only on X]. One may prove this inequality using

Proposition 6.2.1 together with the equivalence of the norms ‖ · ‖F and ‖ · ‖1,2.
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Doing so however leads to a dimension-dependent c, resulting in a poor rate

of convergence and region of attraction. We instead seek to directly establish

sharpness relative to the norm ‖ · ‖2,1. In the rank one setting, this can be done

using the following theorem.

Theorem 5.7.5 (Sharpness (rank one)). Consider two vectors x, x̄ ∈ Rd satisfying

dist‖·‖1(x, {±x̄}) ≤ (
√

2 − 1)‖x̄‖1.

Then the estimate holds:

‖xx> − x̄x̄>‖1 ≥ (
√

2 − 1) · ‖x̄‖1 · dist‖·‖1(x, {±x̄}).

The proof of this result appears in Section 5.10.4. We leave as an intrigu-

ing open question to determine if an analogous result holds in the higher rank

setting.

Conjecture 5.7.6 (Sharpness (general rank)). Fix a rank r matrix X] ∈ Rd×r and set

D∗ := {X ∈ X : XX> = X]X>] }. Then there exist constants c, γ > 0 depending only on

X] such that the estimate holds:

‖XX> − M‖1 ≥ c · dist‖·‖2,1(X,D
∗),

for all X ∈ X satisfying dist‖·‖2,1(X,D
∗) ≤ γ.

Assuming this conjecture, we can then show that the loss function f is sharp

under the randomized corruption model. We first state the following technical

lemma, whose proof is deferred to Section 5.10.4. In what what follows, given a

matrix X ∈ Rd×r, the notation Xi always refers to the ith row of X.

Lemma 5.7.7. Assume Conjecture 5.7.6. Then there exist constants c1, c2, c3 > 0 so

that for all d satisfying d ≥ c1 log d
τ

, we have that with probability 1 − d−c2 , the following
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bound holds:
d∑

i, j=1

δi j|〈Xi, X j〉 − 〈(X])i, (X]) j〉| ≤

τ +
c3C

√
τνr log d
c

‖X]‖op

 ‖XX> − X]X>] ‖1

for all X ∈ X satisfying dist‖·‖2,1(X,D
∗) ≤ γ.

We remark that we expect c to scale with ‖X]‖op in the above bound, yielding

a ratio ‖X]‖op/c dependent on the conditioning of X]. Given the above lemma,

sharpness of f quickly follows.

Lemma 5.7.8 (Sharpness of Non-Euclidean Robust PCA). Assume Conjec-

ture 5.7.6. Then there exists a constants c1, c2, c3 > 0 so that for all d satisfying

d ≥ c1 log d
τ

, we have that with probability 1 − d−c2 , the following bound holds:

f (X) − f (X]) ≥ c ·

1 − 2τ −
2c3C

√
τνr log d
c

‖X]‖op

 · dist‖·‖2,1(X,D
∗(M]))

for all X ∈ X satisfying and dist‖·‖2,1(X,D
∗(M])) ≤ γ.

Proof. The reverse triangle inequality implies that

f (X) − f (X])

= ‖XX> −W‖1 − f (X])

= ‖XX> − X]X>] ‖1

+

d∑
i, j=1

δi j

(
|〈Xi, X j〉 − 〈(X])i, (X]) j〉 − (S ])i j| − |〈Xi, X j〉 − 〈(X])i, (X]) j〉|

)
− f (X])

= ‖XX> − X]X>] ‖1

+

d∑
i, j=1

δi j

(
|〈Xi, X j〉 − 〈(X])i, (X]) j〉 − (S ])i j| − |〈Xi, X j〉 − 〈(X])i, (X]) j〉| − |(S ])i j|

)
≥ ‖XX> − X]X>] ‖1 − 2

d∑
i, j=1

δi j|〈Xi, X j〉 − 〈(X])i, (X]) j〉|.

The result them follows from the the sharpness of the function ‖XX> − X]X>] ‖1

together with Lemma 5.7.7. �
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Combining Lemma 5.7.8 and Theorem 5.7.4, we deduce the following con-

vergence guarantee.

Theorem 5.7.9 (Convergence for non-Euclidean Robust PCA). Assume Conjec-

ture 5.7.6. Then there exist constants c1, c2, c3 > 0 so that for all τ satisfying

1 − 2τ − 2c3C
√
τνr log d‖X]‖op/c > 0 and d satisfying d ≥ c1 log d

τ
, we have that with

probability 1 − d−c2 , the iterates generated by the prox-linear algorithm

Xk+1 = arg min
x∈X

{
fXk(X) +

1
2γ
‖X − Xk‖

2
2,1

}
(5.47)

satisfy

dist‖·‖2,1(Xk+1,D
∗(M])) ≤

2

c ·
(
1 − 2τ −

2c3C
√
τνr log d
c ‖X]‖op

) ·dist2
‖·‖2,1

(Xk,D
∗(M])), ∀k ≥ 0.

In particular, the iterates converge quadratically as long as the initial iterate X0 ∈ X

satisfies

dist‖·‖2,1(X0,D
∗(M])) < min

(1/2)c ·

1 − 2τ −
2c3C

√
τνr log d
c

‖X]‖op

 , γ
 .

5.8 Recovery up to a tolerance

Thus far, we have developed exact recovery guarantees under noiseless or

sparsely corrupted measurements. We showed that sharpness together with

weak convexity imply rapid local convergence of numerical methods under

these settings. In practical scenarios, however, it might be unlikely that any,

let alone a constant fraction of measurements, are perfectly observed. Instead,

a more realistic model incorporates additive errors that are the sum of a sparse,

but otherwise arbitrary vector and a dense vector with relatively small norm.
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Exact recovery is in general not possible under this noise model. Instead, we

should only expect to recover the signal up to an error.

To develop algorithms for this scenario, we need only observe that the pre-

viously developed sharpness results all yield a corresponding “sharpness up to

a tolerance” result. Indeed, all problems considered thus far, are convex com-

posite and sharp:

min
x∈X

f (x) := h(F(x)) and f (x) − inf
X

f ≥ µ · dist(x,X∗),

where h is convex and η-Lipschitz with respect to some norm |||·|||, F is a smooth

map, and µ > 0. Now consider a fixed additive error vector e, and the perturbed

problem

min
x∈X

f̃ (x) := h(F(x) + e). (5.48)

The triangle inequality immediately implies that the perturbed problem is sharp

up to tolerance 2η|||e|||:

f̃ (x) − inf
X

f̃ ≥ µ · dist(x,X∗) − 2η|||e||| ∀x ∈ X.

In particular, any minimizer x∗ of f̃ satisfies

dist(x∗,X∗) ≤ (2η/µ)|||e|||, (5.49)

where as before we set X∗ = arg minX f . In this section, we show that subgra-

dient and prox-linear algorithms applied to the perturbed problem (5.48) con-

verge rapidly up to a tolerance on the order of η|||e|||/µ. To see the generality of

the above approach, we note that even the robust recovery problems considered

in Section 5.3.2, in which a constant fraction of measurements are already cor-

rupted, may be further corrupted through additive error vector e. We will study

this problem in detail in Section 5.8.1.
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Throughout the rest of the section, let us define the noise level:

ε := η|||e|||.

Mirroring the discussion in Section 5.4, define the annulus:

T̃γ :=
{

z ∈ X :
14ε
µ

< dist(z,X∗) <
γµ

4ρ

}
, (5.50)

for some γ > 0. Note that for the annulus T̃γ to be nonempty, we must ensure

ε < µ2γ

56ρ . We will see that T̃γ serves as a region of rapid convergence for some

numerical constant γ. As before, we also define subgradient bound and the

condition measure:

L̃ := sup{‖ζ‖2 : ζ ∈ ∂ f̃ (x), x ∈ T̃1} and τ̃ := µ/L̃.

In all examples considered in this Chapter, it is possible to show directly that

L̃ ≤ L as defined in Assumption 5.4.1. A similar result is true in the general

case, as well. Indeed, the following Lemma provides a bound for L̃ in terms of

the subgradients of f on a slight expansion of the tube T1 from (5.26); the proof

appears in Section 5.10.5.

Lemma 5.8.1. Suppose ε < µ2

56ρ so that T̃1 is nonempty. Then the following bound

holds:

L̃ ≤ sup
{
‖ζ‖2 : ζ ∈ ∂ f (x), dist(x,X∗) ≤

µ

ρ
, dist(x,X) ≤ 2

√
ε

ρ

}
+ 2

√
8ρε.

We will now design algorithms whose basin of attraction is the annulus T̃γ

for some γ. To that end, the following modified sharpness bound will be useful

for us. The reader should be careful to note the appearance of infX f , not infX f̃

in the following bound.

Lemma 5.8.2 (Approximate sharpness). We have the following bound:

f̃ (x) − inf
X

f ≥ µ · dist(x,X∗) − ε ∀x ∈ X. (5.51)
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Proof. For any x ∈ X, observe f̃ (x) − inf f ≥ f (x) − inf f − ε ≥ µ · dist(x,X∗) − ε, as

claimed. �

Next, we show that f̃ satisfies the following approximate subgradient in-

equality.

Lemma 5.8.3 (Approximate subgradient inequality). The following bound holds:

f (y) ≥ f̃ (x) + 〈ζ, y − x〉 −
ρ

2
‖x − y‖2 − 3ε ∀x, y and ζ ∈ ∂ f̃ (x).

Proof. First notice that | fx(y)− f̃x(y)| ≤ ε for all x, y. Furthermore, we have ∂ f̃ (x) =

∇F(x)∗∂h(F(x) + e) = ∂ f̃x(x). Therefore, it follows that for any ζ ∈ ∂ f̃x(x) we have

〈ζ, y − x〉 ≤ f̃x(y) − f̃x(x)

≤ fx(y) − fx(x) + 2η|||e|||

≤ f (y) − f (x) +
ρ

2
‖x − y‖2 + 2ε

≤ f (y) − f̃ (x) +
ρ

2
‖x − y‖2 + 3ε,

as desired. �

Now consider the following modified Polyak method. It is important to note

that the stepsize assumes knowledge of minX f rather than minX f̃ . This distinc-

tion is important because it often happens that minX f = 0, whereas minX f̃ is in

general unknown; for example, consider any noiseless problem analyzed thus

far. We note that the standard Polyak subgradient method may also be applied

to f̃ without any changes and has similar theoretical guarantees. The proof ap-

pears in Section 5.10.5.
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Algorithm 5: Modified Polyak Subgradient Method

t Data: x0 ∈ Rd

Step k: (k ≥ 0)

Choose ζk ∈ ∂ f̃ (xk). If ζk = 0, then exit algorithm.

Set xk+1 = projX

(
xk −

f̃ (xk) −minX f
‖ζk‖

2 ζk

)
.

Theorem 5.8.4 (Polyak subgradient method). Suppose that Assumption 5.4.1 holds

and suppose that ε ≤ µ2/14ρ. Then Algorithm 5 initialized at any point x0 ∈ T̃1

produces iterates that converge Q-linearly to X∗ up to tolerance 14ε/µ, that is

dist2(xk+1,X
∗) ≤

(
1 −

13τ̃2

56

)
dist2(xk,X

∗) ∀k ≥ 0 with dist(xk,X
∗) ≥ 14ε/µ.

Next we provide theoretical guarantees for Algorithm 5.4.4, where one does

not know the optimal value minX f . The proof of this result is a straightforward

modification of [68, Theorem 6.1] based on the Lemmas 5.8.2 and 5.8.3, and

therefore we omit it.

Theorem 5.8.5 (Geometrically decaying subgradient method). Suppose that As-

sumption 5.4.1 holds, fix a real number γ ∈ (0, 1), and suppose τ̃ ≤ 14
11

√
1

2−γ . Suppose

also ε < µ2γ

56ρ so that T̃γ is nonempty. Set λ := γµ2

4ρL̃ and q :=
√

1 − (1 − γ)τ̃2 in Algo-

rithm 3. Then the iterates xk generated by Algorithm 3 on the perturbed problem (5.48),

initialized at a point x0 ∈ T̃γ, satisfy:

dist2(xk;X∗) ≤
γ2µ2

16ρ2

(
1 − (1 − γ)τ̃2

)k
∀k ≥ 0 with dist(xk,X

∗) ≥ 14ε/µ.

Finally, we analyze the prox-linear algorithm applied to the problem minX f̃ .

In contrast to the Polyak method, one does not need to know the optimal value

minX f . The proof appears in Section 5.10.5.

Theorem 5.8.6 (Prox-linear algorithm). Suppose Assumptions 5.2.1 holds. Choose

any β ≥ ρ in Algorithm 4 applied to the perturbed problem (5.48) and set γ := ρ/β.
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Suppose moreover ε < µ2γ

56ρ so that T̃γ is nonempty. Then Algorithm 4 initialized at any

point x0 ∈ T̃γ converges quadratically up to tolerance 14ε/µ:

dist(xk+1,X
∗) ≤ 7β

6µ · dist2(xk,X
∗) ∀k ≥ 0 with dist(xk+1,X

∗) ≥ 14ε/µ.

5.8.1 Example: sparse outliers and dense noise under `1/`2 RIP

To further illustrate the ideas of this section, we now generalize the results

of Section 5.3.2, in particular Assumption 5.3.6, to the following observation

model.

Assumption 5.8.7 (I-outlier bounds). There exists vectors e,∆ ∈ Rm, a set I ⊂

{1, . . . ,m}, and a constant κ3 > 0 such that the following hold.

(C1) b = A(M]) + ∆ + e.

(C2) Equality holds ∆i = 0 for all i < I.

(C3) For all matrices W of rank at most 2r, we have

κ3‖W‖F ≤
1
m
‖AIc(W)‖1 −

1
m
‖AI(W)‖1.

Given these assumptions we follow the notation of the previous section and

let

f (X) :=
1
m
‖A(XX> − M]) − ∆‖1 and f̃ (X) =

1
m
‖A(XX> − M]) − ∆ − e‖1.

Then we have the following proposition:

Proposition 5.8.8. Suppose Assumption 5.3.1 and 5.8.7 are valid. Then the following

hold:
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1. (Sharpness) We have

f (X) − f (X]) ≥ µ · dist
(
X,D∗(M])

)
for all X ∈ Rd×r and µ := κ3

√
2(
√

2 − 1)σr(X]),

2. (Weak Convexity) The function f is ρ := 2κ2-weakly convex.

3. (Minimizers) All minimizers of f̃ satisfy

dist(X∗,X∗) ≤
2 1

m‖e‖1

κ3

√
2(
√

2 − 1)σr(X])
∀X∗ ∈ arg min

X

f̃ .

4. (Lipschitz Bound) We have the bound

L̃ ≤ 2κ2 ·

κ3

√
2(
√

2 − 1)σr(X])

8κ2
+ σ1(X])

 .
Proof. Sharpness follows from Proposition 6.2.2, while weak convexity follows

from Proposition 5.3.2. The minimizer bound follows from (5.49). Finally, due

to Lemma 5.2.2, the argument given in Proposition (5.3.2), but applied instead

to f̃ , guarantees that

L̃ ≤ 2κ2 · sup

‖X‖op : dist(X,D∗(M])) ≤
κ3

√
2(
√

2 − 1)σr(X])

8κ2

 .
In turn the supremum may be bounded as follows: Let X? = X]R denote the

closest point to X inD∗(M). Then

‖X‖op ≤ ‖X − X]R‖op + ‖X]R‖op ≤
κ3

√
2(
√

2 − 1)σr(X])

8κ2
+ σ1(X]),

as desired. �

In particular, combining Proposition 5.8.8 with the previous results in this

section, we deduce the following. As long as the noise satisfies

1
m
‖e‖1 ≤

c0κ
2
3σr(M])
κ2
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for a sufficiently small constant c0 > 0, the subgradient and prox-linear methods

converge rapidly to within tolerance

δ ≈
1
m‖e‖1

κ3σr(X])
,

when initialized at a matrix X0 satisfying

dist(X0,D
∗(M]))√

σr(M])
≤ c1 ·

κ3

κ2
,

for some small constant c1. The formal statement is summarized in the follow-

ing corollary.

Corollary 5.8.9 (Convergence guarantees under RIP with sparse outliers and

dense noise (symmetric)). Suppose Assumptions 5.3.1 is and 5.8.7 are valid with

|||·||| = 1
m‖ · ‖1 and define the condition number χ = σ1(M])/σr(M]). Then there exists

numerical constants c0, c1, c2, c3, c4, c5, c6 > 0 such that the following hold. Suppose the

noise level satisfies
1
m
‖e‖1 ≤

2(
√

2 − 1)c0κ
2
3σr(M])

28κ2

and define the tolerance

δ =

14
m ‖e‖1

κ3

√
2(
√

2 − 1)σr(M])
.

Then as long as the matrix X0 satisfies

dist(X0,D
∗(M]))√

σr(M])
≤ c1 ·

κ3

κ2
,

the following are true.

1. (Polyak subgradient) Algorithm 2 initialized at X0 produces iterates that con-

verge linearly toD∗(M]), that is

dist2(Xk,D
∗(M]))

σr(M])
≤

1 − c2

1 +
c3κ

2
2χ

κ2
3


k

·
c4κ

2
3

κ2
2

∀k ≥ 0 with dist(Xk,X
∗) ≥ δ.
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2. (geometric subgradient) Algorithm 3 with λ =
c5κ

2
3

√
σr(M])

κ2(κ3+2κ2
√
χ) , q =

√
1 − c2

1+c3κ
2
2χ/κ

2
3

and initialized at X0 converges linearly:

dist2(Xk,D
∗(M]))

σr(M])
≤

1 − c2

1 +
c3κ

2
2χ

κ2
3


k

·
c4κ

2
3

κ2
2

∀k ≥ 0 with dist(Xk,X
∗) ≥ δ.

3. (prox-linear) Algorithm 4 with β = ρ and initialized at X0 converges quadrati-

cally:

dist(Xk,D
∗(M])))√

σr(M])
≤ 2−2k

·
c6κ3

κ2
∀k ≥ 0 with dist(Xk,X

∗) ≥ δ.

5.9 Numerical experiments

In this section, we demonstrate the theory and algorithms developed in the

previous sections on a number of low-rank matrix recovery problems, namely

quadratic and bilinear sensing, low rank matrix completion, and robust PCA.

All experiments were performed using the programming language Julia [22].

The code used for these experiments can be found in the github repository:

https://github.com/COR-OPT/CompOpt-LowRankMatrixRecovery.

5.9.1 Robustness to outliers

In our first set of experiments, we empirically test the robustness of our opti-

mization methods to outlying measurements. We generate phase transition plots,

where each pixel corresponds to the empirical probability of successful recovery

over 50 test runs using randomly generated problem instances. Brighter pixels

represent higher recovery rates. All generated instances obey the following:

176

https://github.com/COR-OPT/CompOpt-LowRankMatrixRecovery


1. The initial estimate is specified reasonably close to the ground truth. In

particular, given a target symmetric positive semidefinite matrix X], we

set

X0 := X] + δ ·
∥∥∥X]

∥∥∥
F
· ∆, where ∆ =

G
‖G‖F

, Gi j ∼i.i.d. N(0, I).

Here, δ is a scalar that controls the quality of initialization and ∆ is a ran-

dom unit “direction”. The asymmetric setting is completely analogous.

2. When using the subgradient method with geometrically decreasing step-

size, we set λ = 1.0, q = 0.98.

3. For the quadratic sensing, bilinear sensing, and matrix completion prob-

lems, we mark a test run as a success when the normalized distance

‖M − M]‖F/‖M]‖F is less than 10−5. Here we set M = XX> in the sym-

metric setting and M = XY in the asymmetric setting. For the robust PCA

problem, we stop when ‖M − M]‖1/‖M]‖1 < 10−5.

Moreover, we set the seed of the random number generator at the beginning of

each batch of experiments to enable reproducibility.

Quadratic and Bilinear sensing. Figures 5.2 and 5.3 depict the phase transi-

tion plots for bilinear (5.34) and symmetrized quadratic (5.33) sensing formu-

lations using Gaussian measurement vectors. In the experiments, we corrupt a

fraction of measurements with additive Gaussian noise of unit entrywise vari-

ance. Empirically, we observe that increasing the variance of the additive noise

does not affect recovery rates. Both problems exhibit a sharp phase transition at

very similar scales. Moreover, increasing the rank of the generating signal does

not seem to dramatically affect the recovery rate for either problem. Under ad-

ditive noise, we can recover the true signal (up to natural ambiguity) even if we
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corrupt as much as half of the measurements.
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Figure 5.2: Bilinear sensing with d1 = d2 = d = 100 using Algorithm 3.

Robust PCA. We generate robust PCA instances for d = 80 and r ∈

{1, 2, 4, 8, 16}. The corruption matrix S ] follows the assumptions in Section 5.7.2,

where for simplicity we set Ŝ i j ∼ N(0, σ2). We observed that increasing or de-

creasing the variance σ2 did not affect the probability of successful recovery, so

our experiments use σ = 1. We use the subgradient method, Algorithm 4, and

the prox-linear algorithm (5.47). Notice that we have not presented any guaran-

tees for the subgradient method on this problem, in contrast to the prox-linear

method. The subproblems for the prox-linear method are solved by ADMM

with graph splitting as in [200]. We set tolerance εk = 10−4

2k for the proximal sub-
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Figure 5.3: Quadratic sensing with symmetrized measurements using Algo-
rithm 3.

problems, which we continue solve for at most 500 iterations. We choose γ = 10

in all subproblems. The phase transition plots are shown in Figure 5.4. It ap-

pears that the prox-linear method is more robust to additive sparse corruption,

since the empirical recovery rate for the subgradient method decays faster as

the rank increases.

Matrix completion. We next perform experiments on the low-rank matrix

completion problem that test successful recovery against the sampling fre-

quency. We generate random instances of the problem, where we let the prob-

ability of observing an entry, P(δi j = 1), range in [0.02, 0.6] with increments

of 0.02. Figure 5.5 depicts the empirical recovery rate using the Polyak sub-
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Figure 5.4: Robust PCA using the subgradient method, Algorithm 3, (top) and
the modified prox-linear method (5.47) (bottom).

gradient method and the modified prox-linear algorithm (5.42). Similarly to

the quadratic/bilinear sensing problems, low-rank matrix completion exhibits

a sharp phase transition. As predicted in Section 5.6, the ratio r2

d appears to be

driving the required observation probability for successful recovery. Finally, we

empirically observe that the prox-linear method can “tolerate” slightly smaller

sampling frequencies.
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Figure 5.5: Low-rank matrix completion using the subgradient method, Algo-
rithm 2 (top), and the modified prox-linear method (5.42) (bottom).
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5.9.2 Convergence behavior

We empirically validate the rapid convergence guarantees of the subgradient

and prox-linear methods, given a proper initialization. Moreover, we compare

the subgradient method with gradient descent, i.e. gradient descent applied to

a smooth formulation of each problem, using the same initial estimate in the

noiseless setting. In all the cases below, the step sizes for the gradient method

were tuned for best performance. Moreover, we noticed that the gradient de-

scent method, equipped with the Polyak step size η := τ ∇ f
‖∇ f ‖2

performed at least

as well as gradient descent with constant step size. That being said, we were

unable to locate any theoretical guarantees in the literature for gradient descent

with the Polyak step-size for the problems we consider here.

Quadratic and Bilinear sensing. For the quadratic and bilinear sensing prob-

lems, we apply gradient descent on the smooth formulations

1
m

∥∥∥A(XX>) − b
∥∥∥2

2
and

1
m
‖A(XY) − b‖22 .

In Figure 5.6, we plot the performance of Algorithm 3 for matrix sensing prob-

lems with different rank / corruption level; remarkably, the level of noise does

not significantly affect the rate of convergence. Additionally, the convergence

behavior is almost identical for the two problems for similar rank/noise config-

urations. Figure 5.7 depicts the behavior of Algorithm 2 versus gradient descent

with empirically tuned step sizes. The subgradient method significantly outper-

forms gradient descent. For completeness, we also depict the convergence rate

of Algorithm 4 for both problems in Figure 5.8, where we solve the proximal

subproblems approximately.
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Figure 5.6: Quadratic (left) and bilinear (right) matrix sensing with d = 200,m =

8 · rd, using the subgradient method, Algorithm 3.
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Figure 5.7: Algorithm 2 (solid lines) against gradient descent (dashed lines) with
step size η. Left: quadratic sensing, η = 10−4. Right: bilinear sensing, η = 10−3.

Matrix completion. In our comparison with smooth methods, we apply gra-

dient descent on the following minimization problem:

min
X∈Rd×r:‖X‖2,∞≤C

∥∥∥ΠΩ(XX>) − ΠΩ(M)
∥∥∥2

F
. (5.52)

Figure 5.9 depicts the convergence behavior of Algorithm 2 (solid lines) ver-

sus gradient descent applied to Problem (5.52) with a tuned step size η = 0.004

(dashed lines), initialized under the same conditions for low-rank matrix com-

pletion instances. As the theory suggests, higher sampling frequency implies

better convergence rates. The subgradient method outperforms gradient de-
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Figure 5.8: Quadratic (left) and bilinear (right) matrix sensing with d = 100,m =

8 · rd, using the prox-linear method, Algorithm 4.

scent in all regimes.
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Figure 5.9: Low rank matrix completion with d = 100. Left: r = 4, right: r = 8.
Solid lines use Algorithm 2, dashed lines use gradient descent with step η =

0.004.

Figure 5.10 depicts the performance of the modified prox-linear method

(5.42) in the same setting as Figure 5.9. In most cases, the prox-linear algo-

rithm converges within just 15 iterations, at what appears to be a rapid linear

rate of convergence. Each convex subproblem is solved using a variant of the

graph-splitting ADMM algorithm [200].
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Figure 5.10: Low rank matrix completion with d = 100 using the modified prox-
linear Algorithm (5.42). Left: r = 4, right: r = 8.

Robust PCA. For the robust PCA problem, we consider different rank/corruption

level configurations to better understand how they affect convergence for the

subgradient and prox-linear methods, using the non-Euclidean formulation of

Section 5.7.2. We depict all configurations in the same plot for a fixed optimiza-

tion algorithm to better demonstrate the effect of each parameter, as shown in

Figure 5.11. The parameters of the prox-linear method are chosen in the same

way reported in Section 5.9.1. In particular, our numerical experiments appear

to support our sharpness Conjecture 5.7.6 for the robust PCA problem.
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Figure 5.11: `1-robust PCA with d = 100 and p := P(δi j = 1). Left: Algorithm 3,
right: Algorithm (5.42).
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Recovery up to tolerance

In this last section, we test the performance of the prox-linear method and the

modified Polyak subgradient method (Algorithm 5) for the quadratic sensing

and matrix completion problems, under a dense noise model of Section 5.8. In

the former setting, we set pfail = 0.25, so 1/4th of our measurements is corrupted

with large magnitude noise. For matrix completion, we observe p = 25% of the

entries. In both settings, we add Gaussian noise e which is rescaled to satisfy

‖e‖F = δσr(X]), and test δ := 10−kσr(X]), k ∈ {1, . . . , 4}. The relevant plots can

be found in Figures 5.12 and 5.13. The numerical experiments fully support the

developed theory, with the iterates converging rapidly up to the tolerance that is

proportional to the noise level. Incidentally, we observe that the modified prox-

linear method (5.42) is more robust to additive noise for the matrix completion

problem, with Algorithm 5 exhibiting heavy fluctuations and failing to converge

for the highest level of dense noise.
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Figure 5.12: Quadratic sensing with r = 5 (left) and matrix completion with r = 8
(right), d = 100, using Algorithm 5.
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Figure 5.13: Quadratic sensing with r = 5 (left) and matrix completion with r = 8
(right), d = 100, using Algorithm (5.42).

5.10 Analysis

5.10.1 Proofs in Section 5.4

In this section, we prove rapid local convergence guarantees for the subgradient

and prox-linear algorithms under regularity conditions that hold only locally

around a particular solution. We will use the Euclidean norm throughout this

section; therefore to simplify the notation, we will drop the subscript two. Thus

‖ · ‖ denotes the `2 on a Euclidean space E throughout.

We will need the following quantitative version of Lemma 5.4.2.

Lemma 5.10.1. Suppose Assumption 5.4.7 holds and let γ ∈ (0, 2) be arbitrary. Then

for any point x ∈ Bε/2(x̄) ∩ Tγ\X∗, the estimate holds:

dist (0, ∂ f (x)) ≥
(
1 − γ

2

)
µ.

Proof. Consider any point x ∈ Bε/2(x̄) satisfying dist(x,X∗) ≤ γ µ
ρ
. Let x∗ ∈ projX∗(x)
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be arbitrary and note x∗ ∈ Bε(x̄). Thus for any ζ ∈ ∂ f (x) we deduce

µ · dist(x,X∗) ≤ f (x) − f (x∗) ≤ 〈ζ, x − x∗〉 +
ρ

2
‖x − x∗‖2 ≤ ‖ζ‖dist(x,X∗) +

ρ

2
dist2(x,X∗).

Therefore we deduce the lower bound on the subgradients ‖ζ‖ ≥ µ − ρ

2 ·

dist(x,X∗) ≥
(
1 − γ

2

)
µ, as claimed. �

Proof of Theorem 5.4.8

Let k be the first index (possibly infinite) such that xk < Bε/2(x̄). We claim that

(5.28) holds for all i < k. We show this by induction. To this end, suppose (5.28)

holds for all indices up to i−1. In particular, we deduce dist(xi,X
∗) ≤ dist(x0,X

∗) ≤

µ

2ρ . Let x∗ ∈ projX∗(xi) and note x∗ ∈ Bε(x̄), since

‖x∗ − x̄‖ ≤ ‖x∗ − xi‖ + ‖xi − x̄‖ ≤ 2‖xi − x̄‖ ≤ ε.

Thus we deduce

‖xi+1 − x∗‖2 =
∥∥∥∥projX

(
xi −

f (xi)−minX f
‖ζi‖2

ζi

)
− projX(x∗)

∥∥∥∥2

≤

∥∥∥∥(xi − x∗) − f (xi)−minX f
‖ζi‖2

ζi

∥∥∥∥2
(5.53)

= ‖xi − x∗‖2 +
2( f (xi) −minX f )

‖ζi‖
2 · 〈ζi, x∗ − xi〉 +

( f (xi) − f (x∗))2

‖ζi‖
2

≤ ‖xi − x∗‖2 +
2( f (xi) −min f )

‖ζi‖
2

(
f (x∗) − f (xi) +

ρ

2
‖xi − x∗‖2

)
+

( f (xi) − f (x∗))2

‖ζi‖
2 (5.54)

Here, the estimate (5.53) follows from the fact that the projection projQ(·) is non-

expansive, (5.54) uses local weak convexity.
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Then, rearranging we get

= ‖xi − x∗‖2 +
f (xi) −min f
‖ζi‖

2

(
ρ‖xi − x∗‖2 − ( f (xi) − f (x∗))

)
≤ ‖xi − x∗‖2 +

f (xi) −min f
‖ζi‖

2

(
ρ‖xi − x∗‖2 − µ‖xi − x∗‖

)
(5.55)

= ‖xi − x∗‖2 +
ρ( f (xi) −min f )

‖ζi‖
2

(
‖xi − x∗‖ −

µ

ρ

)
‖xi − x∗‖

≤ ‖xi − x∗‖2 −
µ( f (xi) −min f )

2‖ζi‖
2 · ‖xi − x∗‖ (5.56)

≤

(
1 −

µ2

2‖ζi‖
2

)
‖xi − x∗‖2. (5.57)

where (5.56) follow from the estimate dist(xi,X
∗) ≤ µ

2ρ , while (5.55) and (5.57) use

local sharpness. We therefore deduce

dist2(xi+1;X∗) ≤ ‖xi+1 − x∗‖2 ≤
(
1 −

µ2

2L2

)
dist2(xi,X

∗). (5.58)

Thus (5.28) holds for all indices up to k − 1. We next show that k is infinite. To

this end, observe

‖xk − x0‖ ≤

k−1∑
i=0

‖xi+1 − xi‖ =

k−1∑
i=0

∥∥∥∥projX
(
xi −

f (xi)−minX f
‖ζi‖2

ζi

)
− projX(xi)

∥∥∥∥
≤

k−1∑
i=0

f (xi) −minX f
‖ζi‖

≤

k−1∑
i=0

〈
ζi
‖ζi‖
, xi − projX∗(xi)

〉
+

ρ

2‖ζi‖
‖xi − projX∗(xi)‖2

≤

k−1∑
i=0

dist(xi,X
∗) +

2ρ
3µ

dist2(xi,X
∗) (5.59)

≤
4
3
·

k−1∑
i=0

dist(xi,X
∗) (5.60)

≤
4
3
· dist(x0,X

∗) ·
k−1∑
i=0

(
1 −

µ2

2L2

) i
2

(5.61)

≤
16L2

3µ2 · dist(x0,X
∗) ≤

ε

4
,

where (5.59) follows by Lemma 5.10.1 with γ = 1/2, the bound in (5.60) follows

by (5.58) and the assumption on dist(x0,X
∗), finally (5.61) holds thanks to (5.58).
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Thus applying the triangle inequality we get the contradiction ‖xk − x̄‖ ≤ ε/2.

Consequently all the iterates xk for k = 0, 1, . . . ,∞ lie in Bε/2(x̄) and satisfy (5.28).

Finally, let x∞ be any limit point of the sequence {xi}. We then successively

compute

‖xk − x∞‖ ≤
∞∑

i=k

‖xi+1 − xi‖ ≤

∞∑
i=k

f (xi) −min f
‖ζi‖

≤
4L
3µ
·

∞∑
i=k

dist(xi,X
∗)

≤
4L
3µ
· dist(x0,X

∗) ·
∞∑

i=k

(
1 −

µ2

2L2

) i
2

≤
16L3

3µ3 · dist(x0,X
∗) ·

(
1 −

µ2

2L2

) k
2

.

This completes the proof.

Proof of Theorem 5.4.9

Fix an arbitrary index k and observe

‖xk+1 − xk‖ =

∥∥∥∥∥∥projQ(xk) − projQ

(
xk − αk

ξk

‖ξk‖

)∥∥∥∥∥∥ ≤ αk = λ · qk.

Hence, we conclude the uniform bound on the iterates:

‖xk − x0‖ ≤

∞∑
i=0

‖xi+1 − xi‖ ≤
λ

1−q

and the R-linear rate of convergence

‖xk − x∞‖ ≤
∞∑

i=k

‖xi+1 − xi‖ ≤
λ

1−qqk,

where x∞ is any limit point of the iterate sequence.

Let us now show that the iterates do not escape Bε/2(x̄). To this end, observe

‖xk − x̄‖ ≤ ‖xk − x0‖ + ‖x0 − x̄‖ ≤ λ
1−q + ε

4 .
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We must therefore verify the estimate λ
1−q ≤

ε
4 , or equivalently γ ≤ ερL(1−γ)τ2

4µ2(1+
√

1−(1−γ)τ2)
.

Clearly, it suffices to verify γ ≤ ερ(1−γ)
4L , which holds by the definition of γ. Thus

all the iterates xk lie in Bε/2(x̄). Moreover τ ≤
√

1
2 ≤

√
1

2−γ , the rest of the proof is

identical to that in [68, Theorem 5.1].

Proof of Theorem 5.4.11

Fix any index i such that xi ∈ Bε(x̄) and let x ∈ X be arbitrary. Since the function

z 7→ fxi(z) +
β

2‖z − xi‖
2 is β-strongly convex and xi+1 is its minimizer, we deduce(

fxi(xi+1) +
β

2
‖xi+1 − xi‖

2
)

+
β

2
‖xi+1 − x‖2 ≤ fxi(x) +

β

2
‖x − xi‖

2. (5.62)

Setting x = xi and appealing to approximation accuracy, we obtain the descent

guarantee

‖xi+1 − xi‖
2 ≤

2
β

( f (xi) − f (xi+1)). (5.63)

In particular, the function values are decreasing along the iterate sequence. Next

choosing any x∗ ∈ projX∗(xi) and setting x = x∗ in (5.62) yields(
fxi(xi+1) +

β

2
‖xi+1 − xi‖

2
)

+
β

2
‖xi+1 − x∗‖2 ≤ fxi(x∗) +

β

2
‖x∗ − xi‖

2.

Appealing to approximation accuracy and lower-bounding β

2‖xi+1− x∗‖2 by zero,

we conclude

f (xi+1) ≤ f (x∗) + β‖x∗ − xi‖
2. (5.64)

Using sharpness we deduce the contraction guarantee

f (xi+1) − f (x∗) ≤ β · dist2(xi,X
∗)

≤
β

µ2 ( f (xi) − f (x∗))2

≤
β( f (xi) − f (x∗))

µ2 · ( f (xi) − f (x∗)) ≤
1
2
· ( f (xi) − f (x∗)),

(5.65)
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where the last inequality uses the assumption f (x0) − minX f ≤ µ2

2β . Let k > 0 be

the first index satisfying xk < Bε(x̄). We then deduce

‖xk − x0‖ ≤

k−1∑
i=0

‖xi+1 − xi‖ ≤

√
2
β
·

k−1∑
i=0

√
f (xi) − f (xi+1) (5.66)

≤

√
2
β
·

k−1∑
i=0

√
f (xi) − f (x∗)

≤

√
2
β
·
√

f (x0) − f (x∗) ·
k−1∑
i=0

(
1
2

) i
2

(5.67)

≤
1

√
2 − 1

√
f (x0) − f (x∗)

β
≤ ε/2,

where (5.66) follows from (5.63) and (5.67) follows from (5.65). Thus we con-

clude ‖xk − x̄‖ ≤ ε, which is a contradiction. Therefore all the iterates xk, for

k = 0, 1, . . . ,∞, lie in Bε(x̄). Combing this with (5.64) and sharpness yields the

claimed quadratic converge guarantee

µ · dist(xk+1,X
∗) ≤ f (xk+1) − f (x̄) ≤ β · dist2(xk,X).

Finally, let x∞ be any limit point of the sequence {xi}. We then deduce

‖xk − x∞‖ ≤
∞∑

i=k

‖xi+1 − xi‖ ≤

√
2
β
·

∞∑
i=k

√
f (xi) − f (xi+1)

≤

√
2
β
·

∞∑
i=k

√
f (xi) −min

X
f

≤
µ
√

2
β
·

∞∑
i=k

(
β

µ2 ( f (x0) −min f )
)2i−1

(5.68)

≤
µ
√

2
β
·

∞∑
i=k

(
1
2

)2i−1

≤
µ
√

2
β

∞∑
j=0

(
1
2

)2k−1+ j

≤
2
√

2µ
β
·

(
1
2

)2k−1

,

where (5.68) follows from (5.65). The theorem is proved.
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5.10.2 Proofs in Section 5.5

Proof of Lemma 5.5.7

In order to prove that the assumption in each case, we will prove a stronger

“small-ball condition” [172, 171], which immediately implies the claimed lower

bounds on the expectation by Markov’s inequality. More precisely, we will show

that there exist numerical constants µ0, p0 > 0 such that

1. (Matrix Sensing)

inf
M: rankM≤2r
‖M‖F=1

P(|〈P,M〉| ≥ µ0) ≥ p0,

2. (Quadratic Sensing I)

inf
M∈Sd: rankM≤2r

‖M‖F=1

P(|p>Mp| ≥ µ0) ≥ p0,

3. (Quadratic Sensing II)

inf
M∈Sd: rankM≤2r

‖M‖F=1

P
(
|p>Mp − p̃>Mp̃| ≥ µ0

)
≥ p0,

4. (Bilinear Sensing)

inf
M: rankM≤2r
‖M‖F=1

P(|p>Mq| ≥ µ0) ≥ p0.

These conditions immediately imply Assumptions 5.5.3-5.5.6. Indeed, by

Markov’s inequality, in the case of matrix sensing we deduce

E|〈P,M〉| ≥ µ0P (|〈P,M〉| > µ0) ≥ µ0 p0.

The same reasoning applies to all the other problems.
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Matrix sensing. Consider any matrix M with ‖M‖F = 1. Then, since g := 〈P,M〉

follows a standard normal distribution, we may set µ0 to be the median of |g|

and p0 = 1/2 to obtain

inf
M: rankM≤2r
‖M‖F=1

P(|〈P,M〉| ≥ µ0) = P(|g| ≥ µ0) ≥ p0.

Quadratic Sensing I. Fix a matrix M with rankM ≤ 2r and ‖M‖F = 1. Let M =

UDU> be an eigenvalue decomposition of M. Using the rotational invariance of

the Gaussian distribution, we deduce

p>Mp d
= p>Dp =

2r∑
k=1

λk p2
k ,

where d
= denotes equality in distribution. Next, let z be a standard normal vari-

able. We will now invoke Proposition 5.10.8. Let C > 0 be the numerical constant

appearing in the proposition. Notice that the function φ : R+ → R given by

φ(t) = sup
u∈R
P(|z2 − u| ≤ t)

is continuous and strictly increasing, and it satisfies φ(0) = 0 and limt→∞ φ(t) = 1.

Hence we may set µ0 = φ−1(min{1/2C, 1/2}). Proposition 5.10.8 then yields

P(|p>Mp| ≤ µ0) = P


∣∣∣∣∣∣∣

2r∑
k=1

λk p2
k

∣∣∣∣∣∣∣ ≤ µ0

 ≤ sup
u∈R
P


∣∣∣∣∣∣∣

2r∑
k=1

λk p2
k − u

∣∣∣∣∣∣∣ ≤ µ0

 ≤ Cφ(µ0) ≤
1
2
.

By taking the supremum of both sides of the inequality we conclude that As-

sumption 5.5.4 holds with µ0 and p0 = 1/2.

Quadratic sensing II. Let M = UDU> be an eigenvalue decomposition of M.

Using the rotational invariance of the Gaussian distribution, we deduce

p>Mp − p̃>Mp̃ d
= p>Dp − p̃>Dp̃ =

2r∑
k=1

λk

(
p2

k − p̃2
k

) d
= 2

2r∑
k=1

λk pk p̃k,
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where the last relation follows since (pk − p̃k) , (pk + p̃k) are independent stan-

dard normal random variables with mean zero and variance two. We will now

invoke Proposition 5.10.8. Let C > 0 be the numerical constant appearing in the

proposition. Let z and z̃ be independent standard normal variables. Notice that

the function φ : R+ → R given by

φ(t) = sup
u∈R
P(|2zz̃ − u| ≤ t)

is continuous, strictly increasing, satisfies φ(0) = 0 and approaches one at infin-

ity. Defining µ0 = φ−1(min{1/2C, 1/2}) and applying Proposition 5.10.8, we get

P


∣∣∣∣∣∣∣2

2r∑
k=1

σk pk p̃k

∣∣∣∣∣∣∣ ≤ µ0

 ≤ sup
u∈R
P


∣∣∣∣∣∣∣2

2r∑
k=1

σk pk p̃k − u

∣∣∣∣∣∣∣ ≤ µ0

 ≤ Cφ(µ0) ≤
1
2
.

By taking the supremum of both sides of the inequality we conclude that As-

sumption 5.5.5 holds with µ0 and p0 = 1/2.

We omit the details for the bilinear case, which follow by similar arguments.

Proof of Theorem 5.5.8

The proofs in this section rely on the following proposition, which shows that

that pointwise concentration imply uniform concentration. We defer the proof

to Section 5.10.2.

Proposition 5.10.2. Let A : Rd1×d2 → Rm be a random linear mapping with property

that for any fixed matrix M ∈ Rd1×d2 of rank at most 2r with norm ‖M‖F = 1 and any

fixed subset of indices I ⊆ {1, . . . ,m} satisfying |I| < m/2, the following hold:

(1) The measurementsA(M)1, . . . ,A(M)m are i.i.d.
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(2) RIP holds in expected value:

α ≤ E|A(M)i| ≤ β(r) for all i ∈ {1, . . . ,m} (5.69)

where α > 0 is a universal constant and β is a positive-valued function that could

potentially depend on the rank of M.

(3) There exist a universal constant K > 0 and a positive-valued function c(m, r)

such that for any t ∈ [0,K] the deviation bound

1
m

∣∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣∣ ≤ t (5.70)

holds with probability at least 1 − 2 exp(−t2c(m, r)).

Then, there exist universal constants c1, . . . , c6 > 0 depending only on α and K such

that if I ⊆ {1, . . . ,m} is a fixed subset of indices satisfying |I| < m/2 and

c(m, r) ≥
c1

(1 − 2|I|/m)2 r(d1 + d2 + 1) ln
(
c2 +

c2β(r)
1 − 2|I|/m

)
then with probability at least 1 − 4 exp

(
−c3(1 − 2|I|/m)2c(m, r)

)
every matrix M ∈

Rd1×d2 of rank at most 2r satisfies

c4‖M‖F ≤
1
m
‖A(M)‖1 ≤ c5β(r)‖M‖F , (5.71)

and

c6

(
1 −

2|I|
m

)
‖M‖F ≤

1
m

(‖AIc(M)‖1 − ‖AIM‖1) . (5.72)

Due to scale invariance of the above result, we need only verify its assump-

tions in the case that ‖M‖F = 1. We implicitly use this observation below.
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Part 1 of Theorem 5.5.8 (Matrix sensing)

Lemma 5.10.3. The random variable |〈P,M〉| is sub-gaussian with parameter Cη. Con-

sequently,

α ≤ E|〈P,M〉| . η. (5.73)

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0,∞) the

deviation bound

1
m

∣∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣∣ ≤ t (5.74)

holds with probability at least 1 − 2 exp
(
− ct2
η2 m

)
.

Proof. Assumption 5.5.3 immediately implies the lower bound in (5.73). To

prove the upper bound, first note that by assumption we have

‖〈P,M〉‖ψ2 . η.

This bound has two consequences, first 〈P,M〉 is a sub-gaussian random variable

with parameter η and second E|〈P,M〉| . η [235, Proposition 2.5.2]. Thus, we

have proved (5.73).

To prove the deviation bound (5.74) we introduce the random variables

Yi =


|〈Pi,M〉| − E|〈Pi,M〉| if i < I, and

− (|〈Pi,M〉| − E|〈Pi,M〉|) otherwise.

Since |〈Pi,M〉| is sub-gaussian, we have ‖Yi‖ψ2 . η for all i, see [235, Lemma

2.6.8]. Hence, Hoeffding’s inequality for sub-gaussian random variables [235,

Theorem 2.6.2] gives the desired upper bound on P
(

1
m

∣∣∣∑m
i=1 Yi

∣∣∣ ≥ t
)
. �

Applying Proposition 5.10.2 with β(r) � η and c(m, r) � m/η2 now yields the

result. �
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Part 2 of Theorem 5.5.8 (Quadratic sensing I)

Lemma 5.10.4. The random variable |p>Mp| is sub-exponential with parameter
√

2rη2.

Consequently,

α ≤ E|p>Mp| .
√

2rη2. (5.75)

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0,
√

2rη] the

deviation bound

1
m

∣∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣∣ ≤ t (5.76)

holds with probability at least 1 − 2 exp
(
− ct2
η4 m/r

)
.

Proof. Assumption 5.5.4 gives the lower bound in (5.75). To prove the upper

bound, first note that M =
∑2r

k=1 σkuku>k where σk and uk are the kth singular

values and vectors of M, respectively. Hence

‖p>Mp‖ψ1 =

∥∥∥∥∥∥∥p>
 2r∑

k=1

σkuku>k

 p

∥∥∥∥∥∥∥
ψ1

=

∥∥∥∥∥∥∥
2r∑

k=1

σk〈p, uk〉
2

∥∥∥∥∥∥∥
ψ1

≤

2r∑
k=1

σk

∥∥∥〈p, uk〉
2
∥∥∥
ψ1
≤

2r∑
k=1

σk ‖〈p, uk〉‖
2
ψ2

= η2
2r∑

k=1

σk ≤
√

2rη2,

where the first inequality follows since ‖ · ‖ψ1 is a norm, the second one follows

since ‖XY‖ψ1 ≤ ‖X‖ψ2‖Y‖ψ2 [235, Lemma 2.7.7], and the third inequality holds

since ‖σ‖1 ≤
√

2r‖σ‖2. This bound has two consequences, first p>Mp is a sub-

exponential random variable with parameter
√

rη2 and second Ep>Mp ≤
√

2rη2

[235, Exercise 2.7.2]. Thus, we have proved (5.75).

To prove the deviation bound (5.76) we introduce the random variables

Yi =


p>i Mpi − Ep>i Mpi if i < I, and

−
(
p>i Mpi − Ep>i Mpi

)
otherwise.
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Since p>Mp is sub-exponential, we have ‖Yi‖ψ1 .
√

rη2 for all i, see [235, Exercise

2.7.10]. Hence, Bernstein inequality for sub-exponential random variables [235,

Theorem 2.8.2] gives the desired upper bound on P
(

1
m

∣∣∣∑m
i=1 Yi

∣∣∣ ≥ t
)
. �

Applying Proposition 5.10.2 with with β(r) �
√

rη2 and c(m, r) � m/η4r now

yields the result. �

Part 3 of Theorem 5.5.8 (Quadratic sensing II)

Lemma 5.10.5. The random variable |p>Mp − p̃>Mp̃| is sub-exponential with param-

eter Cη2. Consequently,

α ≤ E|p>Mp − p̃>Mp̃| . η2. (5.77)

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0, η2] the

deviation bound

1
m

∣∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣∣ ≤ t (5.78)

holds with probability at least 1 − 2 exp
(
− ct2
η4 m

)
.

Proof. Assumption 5.5.5 implies the lower bound in (5.77). To prove the upper

bound, we will show that ‖|p>Mp − p̃>Mp̃>|‖ψ1 ≤ η
2. By definition of the Orlicz

norm ‖|X|‖ψ1 = ‖X‖ψ1 for any random variable X, hence without loss of generality

we may remove the absolute value. Recall that M =
∑2r

k=1 σkuku>k where σk and

uk are the kth singular values and vectors of M, respectively. Hence, the random

variable of interest can be rewritten as

p>Mp − p̃>Mp̃> d
=

2r∑
k=1

σk

(
〈uk, p〉2 − 〈uk, p̃〉2

)
. (5.79)
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By assumption the random variables 〈uk, p〉 are η-sub-gaussian, this implies that

〈uk, p〉2 are η2-sub-exponential, since ‖〈uk, p〉2‖ψ1 ≤ ‖〈uk, p〉‖2ψ2
.

Recall the following characterization of the Orlicz norm for mean-zero ran-

dom variables

‖X‖ψ1 ≤ Q ⇐⇒ E exp(λX) ≤ exp(Q̃2λ2) for all λ satisfying |λ| ≤ 1/Q̃2 (5.80)

where the Q � Q̃, see [235, Proposition 2.7.1]. To prove that the random vari-

able (5.79) is sub-exponential we will exploit this characterization. Since each

inner product squared 〈uk, p〉2 is sub-exponential, the equivalence implies the

existence of a constant c > 0 for which the uniform bound

E exp(λ〈uk, p〉2) ≤ exp
(
cη4λ2

)
for all k ∈ [2r] and |λ| ≤ 1/cη4 (5.81)

holds. Let λ be an arbitrary scalar with |λ| ≤ 1/cη4, then by expanding the mo-

ment generating function of (5.79) we get

E exp

λ 2r∑
k=1

σk

(
〈uk, p〉2 − 〈uk, p̃〉2

) = E
2r∏

k=1

exp
(
λσk〈uk, p〉2

)
exp

(
−λσk〈uk, p̃〉2

)
=

2r∏
k=1

E exp
(
λσk〈uk, p〉2

)
E exp

(
−λσk〈uk, p̃〉2

)
≤

2r∏
k=1

exp
(
(cη)2λ2σ2

k

)
exp

(
cη4λ2σ2

k

)
= exp

2cη4λ2
2r∑

k=1

σ2
k

 = exp
(
2cη4λ2

)
.

where the inequality follows by (5.81) and the last relation follows since σ is

unit norm. Combining this with (5.80) gives

‖|p>Mp − p̃>Mp̃>|‖ψ1 . η
2.

This bound has two consequences, first |p>Mp − p̃>Mp̃>| is a sub-exponential

random variable with parameter Cη2 and second E|p>Mp − p̃>Mp̃>| ≤ Cη2 [235,

Exercise 2.7.2]. Thus, we have proved (5.77).
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To prove the deviation bound (5.78) we introduce the random variables

Yi =


A(M)i − EA(M)i if i < I, and

− (A(M)i − EA(M)i) otherwise.

The sub-exponentiality of A(M)i implies ‖Yi‖ψ1 . η
2 for all i, see [235, Exercise

2.7.10]. Hence, Bernstein inequality for sub-exponential random variables [235,

Theorem 2.8.2] gives the desired upper bound on P
(

1
m

∣∣∣∑m
i=1 Yi

∣∣∣ ≥ t
)
. �

Applying Proposition 5.10.2 with β(r) � η2 and c(m, r) � m/η4 now yields the

result. �

Part 4 of Theorem 5.5.8 (Bilinear sensing)

Lemma 5.10.6. The random variable |p>Mq| is sub-exponential with parameter Cη2.

Consequently,

α ≤ E|p>Mq| . η2. (5.82)

Moreover, there exists a universal constant c > 0 such that for any t ∈ [0, η2] the

deviation bound

1
m

∣∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E
[
‖AIc(M)‖1 − ‖AI(M)‖1

]∣∣∣ ≤ t (5.83)

holds with probability at least 1 − 2 exp
(
− ct2
η4 m

)
.

Proof. As before the lower bound in (5.82) is implied by Assumption 5.5.6. To

prove the upper bound, we will show that ‖|p>Mq|‖ψ1 ≤ η
2. By definition of the

Orlicz norm ‖|X|‖ψ1 = ‖X‖ψ1 for any random variable X, hence we may remove

the absolute value. Recall that M =
∑2r

k=1 σkukv>k where σk and (uk, vk) are the kth
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singular values and vectors of M, respectively. Hence, the random variable of

interest can be rewritten as

p>Mq d
=

2r∑
k=1

σk〈p, uk〉〈vk, q〉. (5.84)

By assumption the random variables 〈p, uk〉 and 〈vk, q〉 are η-sub-gaussian, this

implies that 〈p, uk〉〈vk, q〉 are η2-sub-exponential.

To prove that the random variable (5.84) is sub-exponential we will again use

(5.80). Since each random variable 〈p, uk〉〈vk, q〉 is sub-exponential, the equiva-

lence implies the existence of a constant c > 0 for which the uniform bound

E exp(λ〈p, uk〉〈vk, q〉) ≤ exp
(
cη4λ2

)
for all k ∈ [2r] and |λ| ≤ 1/cη4 (5.85)

holds. Let λ be an arbitrary scalar with |λ| ≤ 1/cη4, then by expanding the mo-

ment generating function of (5.84) we get

E exp

λ 2r∑
k=1

σk〈p, uk〉〈vk, q〉

 =

2r∏
k=1

E exp (λσk〈p, uk〉〈vk, q〉)

≤ exp

2cη4λ2
r∑

k=1

σ2
k

 = exp
(
2cη4λ2

)
.

where the inequality follows by (5.85) and the last relation follows since σ is

unitary. Combining this with (5.80) gives

‖|p>Mq|‖ψ1 . η
2.

Thus, we have proved (5.82).

Once again, to show the deviation bound (5.83) we introduce the random

variables

Yi =


|p>i Mqi| − E|p>i Mqi| if i < I, and

−
(
|p>i Mqi| − E|p>i Mqi|

)
otherwise.
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and apply Bernstein’s inequality for sub-exponential random variables [235,

Theorem 2.8.2] to get the stated upper bound on P
(

1
m

∣∣∣∑m
i=1 Yi

∣∣∣ ≥ t
)
. �

Applying Proposition 5.10.2 with β(r) � η2 and c(m, r) � m/η4 now yields the

result. �

Proof of Proposition 5.10.2

Choose ε ∈ (0,
√

2) and let N be the (ε/
√

2)-net guaranteed by Lemma 5.10.7.

Pick some t ∈ (0,K] so that (5.70) can hold, we will fix the value of this parameter

later in the proof. Let E denote the event that the following two estimates hold

for all matrices in M ∈ N :

1
m

∣∣∣∣‖AIc(M)‖1 − ‖AI(M)‖1 − E [‖AIc(M)‖1 − ‖AI(M)‖1]
∣∣∣∣ ≤ t, (5.86)

1
m

∣∣∣∣‖A(M)‖1 − E [‖A(M)‖1]
∣∣∣∣ ≤ t. (5.87)

Throughout the proof, we will assume that the event E holds. We will estimate

the probability of E at the end of the proof. Meanwhile, seeking to establish RIP,

define the quantity

c2 := sup
M∈S 2r

1
m
‖A(M)‖1.

We aim first to provide a high probability bound on c2.

Let M ∈ S 2r be arbitrary and let M? be the closest point to M in N . Then we

have

1
m
‖A(M)‖1 ≤

1
m
‖A(M?)‖1 +

1
m
‖A(M − M?)‖1

≤
1
m
E‖A(M?)‖1 + t +

1
m
‖A(M − M?)‖1 (5.88)

≤
1
m
E‖A(M)‖1 + t +

1
m

(E‖A(M − M?)‖1 + ‖A(M − M?)‖1) , (5.89)
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where (5.88) follows from (5.87) and (5.89) follows from the triangle inequality.

To simplify the third term in (5.89), using SVD, we deduce that there exist two

orthogonal matrices M1,M2 of rank at most 2r satisfying M−M? = M1 + M2. With

this decomposition in hand, we compute

1
m
‖A(M − M?)‖1 ≤

1
m
‖A(M1)‖1 +

1
m
‖A(M2)‖1

≤ c2(‖M1‖F + ‖M2‖F) ≤
√

2c2‖M − M?‖F ≤ c2ε, (5.90)

where the second inequality follows from the definition of c2 and the estimate

‖M1‖F + ‖M2‖F ≤
√

2‖(M1,M2)‖F =
√

2‖M1 + M2‖F . Thus, we arrive at the bound

1
m
‖A(M)‖1 ≤

1
m
E‖A(M)‖1 + t + 2c2ε. (5.91)

As M was arbitrary, we may take the supremum of both sides of the inequality,

yielding c2 ≤
1
m supM∈S 2r

E‖A(M)‖1 + t + 2c2ε. Rearranging yields the bound

c2 ≤

1
m supM∈S 2r

E‖A(M)‖1 + t
1 − 2ε

.

Assuming that ε ≤ 1/4, we further deduce that

c2 ≤ σ̄ :=
2
m

sup
M∈S 2r

E‖A(M)‖1 + 2t ≤ 2β(r) + 2t, (5.92)

establishing that the random variable c2 is bounded by σ̄ in the event E.

Now let Î denote either Î = ∅ or Î = I. We now provide a uniform lower
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bound on 1
m‖AÎc(M)‖1 − 1

m‖AÎ(M)‖1. Indeed,

1
m
‖AÎc(M)‖1 −

1
m
‖AÎ(M)‖1

=
1
m
‖AÎc(M?) +AÎc(M − M?)‖1 −

1
m
‖AÎ(M?) +AÎ(M − M?)‖1

≥
1
m
‖AÎc(M?)‖1 −

1
m
‖AÎ(M?)‖1 −

1
m
‖A(M − M?)‖1 (5.93)

≥
1
m
E

[
‖AÎc(M?)‖1 − ‖AÎ(M?)‖1

]
− t −

1
m
‖A(M − M?)‖1 (5.94)

≥
1
m
E

[
‖AÎc(M)‖1 − ‖AÎ(M)‖1

]
− t −

1
m

(E‖A(M − M?)‖1 + ‖A(M − M?)‖1) (5.95)

≥
1
m
E

[
|‖AÎc(M)‖1 − ‖AÎ(M)‖1

]
− t − 2σ̄ε, (5.96)

where (5.93) uses the forward and reverse triangle inequalities, (5.94) follows

from (5.86), the estimate (5.95) follows from the forward and reverse triangle

inequalities, and (5.96) follows from (5.90) and (5.92). Switching the roles of I

and Ic in the above sequence of inequalities, and choosing ε = t/4σ̄, we deduce

1
m

sup
M∈S 2r

∣∣∣∣‖AÎc(M)‖1 − ‖AÎ(M)‖1 − E
[
‖AÎc(M)‖1 − ‖AÎ(M)‖1

] ∣∣∣∣ ≤ 3t
2
.

In particular, setting Î = ∅, we deduce

1
m

sup
M∈S 2r

∣∣∣∣‖A(M)‖1 − E [‖A(M)‖1]
∣∣∣∣ ≤ 3t

2
(5.97)

and therefore using (5.69), we conclude the RIP property

α −
3t
2
≤

1
m
‖A(M)‖1 . β(r) +

3t
2
, ∀X ∈ S 2r. (5.98)

Next, let Î = I and note that

1
m
E

[
‖AÎc(M)‖1 − ‖AÎ(M)‖1

]
=
|Ic| − |I|

m
· E|A(M)i| ≥

(
1 −

2|I|
m

)
α,

where the equality follows by assumption (1). Therefore every M ∈ S 2r satisfies

1
m

[
‖AÎc(M)‖1 − ‖AÎ(M)‖1

]
≥

(
1 −

2|I|
m

)
α −

3t
2
. (5.99)
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Setting t = 2
3 min{α, α(1−2|I|/m)/2} = 1

3α(1−2|I|/m) in (5.98) and (5.99), we deduce

the claimed estimates (5.71) and (5.72). Finally, let us estimate the probability of

E. Using the union bound and Lemma 5.10.7 yields

P(Ec) ≤
∑
M∈N

P
{
(5.86) or (5.87) fails at M

}
≤ 4|N| exp

(
−t2c(m, r)

)
≤ 4

(
9
ε

)2(d1+d2+1)r

exp
(
−t2c(m, r)

)
= 4 exp

(
2(d1 + d2 + 1)r ln(9/ε) − t2c(m, r)

)
where c(m, r) is the function guaranteed by assumption (3).

By (5.69) we get 1/ε = 4σ̄/t . 2 + β(r)/(1 − 2|I|/m). Then we deduce

P(Ec) ≤ 4 exp
(
c1(d2 + d2 + 1)r ln

(
c2 +

c2β(r)
1 − 2|I|/m

)
−
α2

9
(1 −

2|I|
m

)2c(m, r)
)
.

Hence as long as c(m, r) ≥
9c1(d1+d2+1)r2 ln

(
c2+

c2β(r)
1−2|I|/m

)
α2

(
1− 2|I|

m

)2 , we can be sure

P(Ec) ≤ 4 exp
−α2

18

(
1 −

2|I|
m

)2

c(m, r)
 .

Proving the desired result. �

5.10.3 Proof in Section 5.6

Proof of Lemma 5.6.4

Define P(x, y) = a‖y − x‖22 + b‖y − x‖2. Fix an iteration k and choose x∗ ∈ projX∗(xk).

Then the estimate holds:

f (xk+1) ≤ fxk(xk+1) + P(xk+1, xk) ≤ fxk(x∗) + P(x∗, xk) ≤ f (x∗) + 2P(x∗, xk).
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Rearranging and using the sharpness and approximation accuracy assump-

tions, we deduce

µ · dist(xk+1,X
∗) ≤ 2(a · dist2(x,X∗) + b · dist(x,X∗)) = 2(b + adist(x,X∗))dist(x,X∗).

The result follows.

Proof of Theorem 5.6.6

First notice that for any y, we have ∂ f (y) = ∂ fy(y). Therefore, since fy is a convex

function, we have that for all x, y ∈ X and v ∈ ∂ f (y), the bound

f (y) + 〈v, x − y〉 = fy(y) + 〈v, x − y〉 ≤ fy(x) ≤ f (x) + a‖x − y‖2F + b‖x − y‖F . (5.100)

Consequently, given that dist(xi,X
∗) ≤ γ · µ−2b

2a , we have

‖xi+1 − x∗‖2 =
∥∥∥∥projX

(
xi −

f (xi)−minX f
‖ζi‖2

ζi

)
− projX(x∗)

∥∥∥∥2

≤

∥∥∥∥(xi − x∗) − f (xi)−minX f
‖ζi‖2

ζi

∥∥∥∥2
(5.101)

= ‖xi − x∗‖2 +
2( f (xi) −minX f )

‖ζi‖
2 · 〈ζi, x∗ − xi〉 +

( f (xi) − f (x∗))2

‖ζi‖
2

≤ ‖xi − x∗‖2 +
2( f (xi) −min f )

‖ζi‖
2

(
f (x∗) − f (xi) + a‖xi − x∗‖2 + b‖xi − x∗‖

)
+

( f (xi) − f (x∗))2

‖ζi‖
2 (5.102)

= ‖xi − x∗‖2 +
f (xi) −min f
‖ζi‖

2

(
2a‖xi − x∗‖2 + 2b‖xi − x∗‖ − ( f (xi) − f (x∗))

)
≤ ‖xi − x∗‖2 +

f (xi) −min f
‖ζi‖

2

(
a‖xi − x∗‖2 − (µ − 2b)‖xi − x∗‖

)
(5.103)

= ‖xi − x∗‖2 +
2a( f (xi) −min f )

‖ζi‖
2

(
‖xi − x∗‖ −

µ − 2b
2a

)
‖xi − x∗‖

≤ ‖xi − x∗‖2 −
(1 − γ)(µ − 2b)( f (xi) −min f )

‖ζi‖
2 · ‖xi − x∗‖ (5.104)

≤

(
1 −

(1 − γ)µ(µ − 2b)
‖ζi‖

2

)
‖xi − x∗‖2. (5.105)
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Here, the estimate (5.101) follows from the fact that the projection projX(·) is

nonexpansive, (5.102) uses the bound in (5.100), (5.104) follow from the estimate

dist(xi,X
∗) ≤ γ · µ−2b

2a , while (5.103) and (5.105) use local sharpness. The result then

follows by the upper bound ‖ζi‖ ≤ L.

5.10.4 Proofs in Section 5.7

Proof of Lemma 5.7.1

The inequality can be established using an argument similar to that for bound-

ing the T3 term in [53, Section 6.6]. We provide the proof below for complete-

ness. Define the shorthand ∆S := S − S ] and ∆X = X − X], and let e j ∈ R
d denote

the j-th standard basis vector of Rd. Simple algebra gives

|〈S − S ], XX> − X]X>] 〉| = |2〈∆S ,∆XX>] 〉 + 〈∆S ,∆X∆>X〉|

≤
(
2‖X>] ∆S ‖F + ‖∆>X∆S ‖F

)
· ‖∆X‖F .

We claim that ‖∆S e j‖1 ≤ 2
√

k‖∆S e j‖2 for each j ∈ [d]. To see this, fix any j ∈ [d]

and let v := S e j, v∗ := S ]e j, and T := support(v∗). We have

‖v∗T ‖1 = ‖v∗‖1 ≥ ‖v‖1 S ∈ S

= ‖vT ‖1 + ‖vT c‖1 decomposability of `1 norm

= ‖v∗T + (v − v∗)T ‖1 + ‖(v − v∗)T c‖1

≥ ‖v∗T ‖1 − ‖(v − v∗)T ‖1 + ‖(v − v∗)T c‖1. reverse triangle inequality

Rearranging terms gives ‖(v − v∗)T c‖1 ≤ ‖(v − v∗)T ‖1, whence

‖v − v∗‖1 = ‖(v − v∗)T ‖1 + ‖(v − v∗)T c‖1 ≤ 2‖(v − v∗)T ‖1

≤ 2
√

k‖(v − v∗)T ‖2 ≤ 2
√

k‖v − v∗‖2,
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where step the second inequality holds because |T | ≤ k by assumption. The

claim follows from noting that v − v∗ = ∆S e j.

Using the claim, we get that

‖X>] ∆S ‖F =

√∑
j∈[d]

‖X>
]

∆S e j‖
2
2 ≤

√∑
j∈[d]

‖X]‖
2
2,∞‖∆S e j‖

2
1

≤ ‖X]‖2,∞

√∑
j∈[d]

4k‖∆S e j‖
2
2 ≤ 2

√
νrk
d
‖∆S ‖F .

Using a similar argument and the fact that ‖∆X‖2,∞ ≤ ‖X‖2,∞ + ‖X]‖2,∞ ≤ 3
√

νr
d , we

obtain

‖∆>X∆S ‖F ≤ 6

√
νrk
d
‖∆S ‖F .

Putting everything together, we have

|〈S − S ∗, XX> − X]X>] 〉| ≤

2 · 2 √
νrk
d
‖∆S ‖F + 6

√
νrk
d
‖∆S ‖F

 · ‖∆X‖F .

The claim follows.
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Proof of Theorem 5.7.5

Without loss of generality, suppose that x is closer to x̄ than to −x̄. Consider the

following expression:

‖x̄(x − x̄)> + (x − x̄)x̄>‖1 = sup
‖V‖∞=1,V>=V

Tr((x̄(x − x̄)> + (x − x̄)x̄>)V)

= sup
‖V‖∞=1,V>=V

Tr(x̄x>V + xx̄>V − 2x̄x̄>V)

= sup
‖V‖∞=1,V>=V

Tr(x>V x̄ + x̄>V x − 2x̄>V x̄)

= 2 sup
‖V‖∞=1,V>=V

Tr(x>V x̄ − x̄>V x̄)

= 2 sup
‖V‖∞=1,V>=V

Tr((x − x̄)>V x̄)

= 2 sup
‖V‖∞=1,V>=V

Tr(x̄(x − x̄)>V).

We now produce a few different lower bounds by testing against different V .

In what follows, we set a =
√

2 − 1, i.e., the positive solution of the equation

1 − a2 = 2a.

Case 1: Suppose that |(x − x̄)>sign(x̄)| ≥ a‖x − x̄‖1. Then set V̄ = sign((x −

x̄)>sign(x̄)) · sign(x̄)sign(x̄)>, to get

‖x̄(x − x̄)> + (x − x̄)x̄>‖1 ≥ 2Tr(x̄(x − x̄)>V̄)

= 2sign((x − x̄)>sign(x̄)) · Tr((x − x̄)>sign(x̄)sign(x̄)> x̄)

= 2‖x̄‖1sign((x − x̄)>sign(x̄)) · (x − x̄)>sign(x̄)

≥ 2a‖x̄‖1‖x − x̄‖1
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Case 2: Suppose that |sign(x − x̄)> x̄| ≥ a‖x̄‖1. Then set V̄ = sign(sign(x − x̄)> x̄) ·

sign(x − x̄)sign(x − x̄)>, to get

‖x̄(x − x̄)> + (x − x̄)x̄>‖1 ≥ 2Tr(x̄(x − x̄)>V̄)

= 2sign(sign(x − x̄)> x̄) · Tr((x − x̄)>sign(x − x̄)sign(x − x̄)> x̄)

= 2‖x − x̄‖1sign(sign(x − x̄)> x̄) · sign(x − x̄)> x̄

≥ 2a‖x̄‖1‖x − x̄‖1

Case 3: Suppose that

|(x − x̄)>sign(x̄)| ≤ a‖x − x̄‖1 and |sign(x − x̄)> x̄| ≤ a‖x̄‖1.

Define V̄ = 1
2 (sign(x̄(x − x̄)>) + sign((x − x̄)x̄>)). Observe that

Tr(x̄(x − x̄)>sign(x̄(x − x̄)>)) = (x − x̄)>sign(x̄)sign(x − x̄)> x̄ ≥ −a2‖x̄‖1‖x − x̄‖1

and

Tr(x̄(x − x̄)>sign((x − x̄)x̄>)) = Tr(x̄(x − x̄)>sign(x − x̄)sign(x̄>)) = ‖x̄‖1‖x − x̄‖1.

Putting these two bounds together, we find that

‖x̄(x − x̄)> + (x − x̄)x̄>‖1 ≥ 2Tr(x̄(x − x̄)>V̄) = (1 − a2)‖x̄‖1‖x − x̄‖1.

Altogether, we find that

F(x) = ‖xx> − x̄x̄>‖1

= ‖x̄(x − x̄)> + (x − x̄)x̄> + (x − x̄)(x − x̄)>‖1

≥ ‖x̄(x − x̄)> + (x − x̄)x̄>‖1 − ‖(x − x̄)(x − x̄)>‖1

≥ 2a‖x̄‖1‖x − x̄‖1 − ‖(x − x̄)‖21

= 2a‖x̄‖1

(
1 −
‖x − x̄‖1
2a‖x̄‖1

)
‖x − x̄‖1,

as desired.
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Proof of Lemma 5.7.7

We start by stating a claim we will use to prove the lemma. Let us introduce

some notation. Consider the set

S =

{
(∆+,∆−) ∈ Rd×r × Rd×r | ‖∆+‖2,∞ ≤ (1 + C)

√
νr
d
‖X]‖op, ‖∆−‖2,1 , 0

}
.

Define the random variable

Z = sup
(∆+,∆−)∈S

∣∣∣∣∣ 1
‖∆−‖2,1

d∑
i, j=1

δi j|〈∆−,i,∆+, j〉 + 〈∆+,i,∆−, j〉|

− E
1

‖∆−‖2,1

d∑
i, j=1

δi j|〈∆−,i,∆+, j〉 + 〈∆+,i,∆−, j〉|

∣∣∣∣∣.
Claim 2. There exist constants c2, c3 > 0 such that with probability at least 1 −

exp(−c2 log d)

Z ≤ c3C
√
τνr log d

∥∥∥X]

∥∥∥
op
.

Before proving this claim, let us show how it implies the theorem. Let

R ∈ arg min
R̂>R̂=I

‖X − X]R̂‖2,1.

Set ∆− = X − X]R and ∆+ = X + X]R. Notice that

‖∆+‖2,∞ ≤ ‖X‖2,∞ + ‖X]‖2,∞ ≤ (1 + C)‖X]‖2,∞ ≤

√
νr
d

(1 + C)‖X]‖op.

Therefore, because (∆+,∆−) ∈ S and

1
‖∆−‖2,1

d∑
i, j=1

δi j|〈Xi, X j〉 − 〈(X])i, (X]) j〉| =
1

‖∆−‖2,1

d∑
i, j=1

δi j|〈∆−,i,∆+, j〉 + 〈∆+,i,∆−, j〉|,

we have that
d∑

i, j=1

δi j|〈Xi, X j〉 − 〈(X])i, (X]) j〉| ≤ τ‖XX> − X]X>] ‖1 + c3C
√
τνr log d‖X]‖op‖X − X]R‖2,1

≤

τ +
c3C

√
τνr log d
c

‖X]‖op

 ‖XX> − X]X>] ‖1,

where the last line follows by Conjecture 5.7.6. This proves the desired result.

211



Proof of the Claim. Our goal is to show that the random variable Z is highly con-

centrated around its mean. We may apply the standard symmetrization inequal-

ity [25, Lemma 11.4] to bound the expectation EZ as follows:

EZ ≤ 2E sup
(∆+,∆−)∈S

∣∣∣∣∣∣∣ 1
‖∆−‖2,1

d∑
i, j=1

εi jδi j|〈∆−,i,∆+, j〉 + 〈∆+,i,∆−, j〉|

∣∣∣∣∣∣∣
≤ 2E sup

(∆+,∆−)∈S

∣∣∣∣∣∣∣ 1
‖∆−‖2,1

d∑
i, j=1

εi jδi j|〈∆−,i,∆+, j〉|

∣∣∣∣∣∣∣︸                                                ︷︷                                                ︸
T1

+ 2E sup
(∆+,∆−)∈S

∣∣∣∣∣∣∣ 1
‖∆−‖2,1

d∑
i, j=1

εi jδi j|〈∆+,i,∆−, j〉|

∣∣∣∣∣∣∣︸                                                ︷︷                                                ︸
T2

.

Observing that T1 and T2 can both be bounded by

max{T1,T2} ≤ 2 sup
(∆+,∆−)∈S

1
‖∆−‖2,1

‖∆+∆>−‖2,∞Emax
j

∣∣∣∣∣∣∣
d∑

i=1

εi jδi j

∣∣∣∣∣∣∣
≤ 2 sup

(∆+,∆−)∈S
‖∆+‖2,∞Emax

j

∣∣∣∣∣∣∣
d∑

i=1

εi jδi j

∣∣∣∣∣∣∣
≤ 2(1 + C)

√
νr
d
‖X]‖opEmax

j

∣∣∣∣∣∣∣
d∑

i=1

εi jδi j

∣∣∣∣∣∣∣
. C

√
νr
d
‖X]‖op(

√
τd log d + log d),

where the final inequality follows from Bernstein’s inequality and a union

bound, we find that

EZ . C
√
νr
d
‖X]‖op(

√
τd log d + log d).

To prove that Z is well concentrated around EZ, we apply Theorem 5.10.9.

To apply this theorem, we set S = S and define the collection (Zi j,s)i j,s∈S, where

s = (∆+,∆−) by

Zi j,s =
1

‖∆−‖2,1
δi j|〈∆−,i,∆+, j〉 + 〈∆+,i,∆−, j〉| − E

1
‖∆−‖2,1

δi j|〈∆−,i,∆+, j〉 + 〈∆+,i,∆−, j〉|

=
(δi j − τ)
‖∆−‖2,1

|〈∆−,i,∆+, j〉 + 〈∆+,i,∆−, j〉|.
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We also bound

b = sup
i j,s∈S
|Zi j,s| ≤ sup

i j,(∆+,∆−)∈S

∣∣∣∣∣∣ (δi j − τ)
‖∆−‖2,1

(‖∆−,i‖F‖∆+, j‖F + ‖∆+,i‖F‖∆−, j‖F)

∣∣∣∣∣∣
≤ (1 + C)

√
νr
d
‖X]‖op sup

i j,(∆+,∆−)∈S

∣∣∣∣∣∣ 1
‖∆−‖2,1

(‖∆−,i‖F + ‖∆−, j‖F)

∣∣∣∣∣∣ ≤ 2C
√
νr
d
‖X]‖op

and

σ2 = sup
(∆+,∆−)∈S

E
1

‖∆−‖
2
2,1

d∑
i j=1

(δi j − τ)2|〈∆−,i,∆+, j〉 + 〈∆+,i,∆−, j〉|
2

≤ τ sup
(∆+,∆−)∈S

1
‖∆−‖

2
2,1

d∑
i j=1

(‖∆−,i‖F‖∆+, j‖F + ‖∆+,i‖F‖∆−, j‖F)2

≤ τ sup
(∆+,∆−)∈S

4
‖∆−‖

2
2,1

d∑
i j=1

‖∆−,i‖
2
F‖∆+, j‖

2
F

≤ τ
4(1 + C)2νr

d
‖X]‖

2
op sup

(∆+,∆−)∈S

2
‖∆−‖

2
2,1

d∑
i j=1

‖∆−,i‖
2
F

≤ τ
4(1 + C)2νr

d
‖X]‖

2
op sup

(∆+,∆−)∈S

2d‖∆−‖2F
‖∆−‖

2
2,1

≤ 16τC2νr‖X]‖
2
op.

Therefore, due to Theorem 5.10.9 there exists a constant c1, c2, c3 > 0 so that with
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t = c2 log d, we have that with probability 1 − e−c2 log d, the bound

Z ≤ EZ +

√
8
(
2bEZ + σ2) t + 8bt

≤ c1C
√
νr
d
‖X]‖op(

√
τd log d + log d)

+

√
8c2

(
c2

1C
2νr

d
‖X]‖

2
op(

√
τd log d + log d) + 16τC2νr‖X]‖

2
op

)
log d

+ 16c2C
√
νr
d
‖X]‖op log(d)

≤ C
√
νr log d‖X]‖op

c1
√
τ + c1

√
log d

d
+

√
8c2

√
c2

1

√
τ log d

d
+ c2

1
log d

d
+ 16τ

+16c2

√
log d

d


≤ c3C

√
τνr log d‖X]‖op.

where the last line follows since by assumption log d/d . τ. �

5.10.5 Proofs in Section 5.8

Proof of Lemma 5.8.1

The proof follows the same strategy as [70, Theorem 6.1]. Fix x ∈ T̃1 and let

ζ ∈ ∂ f̃ (x). Then for all y, we have, from Lemma 5.8.3, that

f (y) ≥ f̃ (x) + 〈ζ, y − x〉 −
ρ

2
‖x − y‖22 − 3ε.

Therefore, the function g(y) := f (y) − 〈ζ, y − x〉 + ρ

2‖x − y‖22 + 3ε satisfies

g(x) − inf g ≤ f (x) − f̃ (x) + 3ε ≤ 4ε.

Now, for γ > 0 to be determined momentarily, define

x̂ = arg min
{

g(x) +
ε

γ2 ‖x − y‖22

}
.
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First order optimality conditions and the sum rule immediately imply that

2ε
γ2 (x − x̂) ∈ ∂g(x̂) = ∂ f (x̂) − ζ + ρ(x̂ − x).

Thus, dist(ζ, ∂ f (x̂)) ≤
(

2ε
γ2 + ρ

)
‖x− x̂‖2. Now we estimate ‖x− x̂‖2. Indeed, from the

definition of x̂ we have

ε

γ2 ‖x̂ − x‖2 ≤ g(x) − g(x̂) ≤ g(x) − inf g ≤ 4ε.

Consequently, we have ‖x − x̂‖ ≤ 2γ. Thus, setting γ =
√

2ε/ρ and recalling that

ε ≤ µ2/56ρ we find that

dist(x̂,X∗) ≤ ‖x − x̂‖ + dist(x,X∗) ≤ 2

√
2ε
ρ

+
µ

4ρ
≤
µ

ρ
.

Likewise, we have

dist(x̂,X) ≤ ‖x − x̂‖ ≤ 2

√
2ε
ρ
.

Therefore, setting L = sup
{
‖ζ‖2 : ζ ∈ ∂ f (x), dist(x,X∗) ≤ µ

ρ
, dist(x,X) ≤ 2

√
ε
ρ

}
, we

find that

‖ζ‖ ≤ L + dist(ζ, ∂ f (x̂)) ≤ L +
4ε
γ

+ 2ργ = L + 2
√

8ρε,

as desired.
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Proof of Theorem 5.8.4

Let i ≥ 0, suppose xi ∈ T̃1, and let x∗ ∈ projX∗(xi). Notice that Lemma 5.8.2 implies

f̃ (xi) −minX f > 0. We successively compute

‖xi+1 − x∗‖2 =
∥∥∥∥projX

(
xi −

f̃ (xi)−minX f
‖ζi‖2

ζi

)
− projX(x∗)

∥∥∥∥2

≤

∥∥∥∥(xi − x∗) − f̃ (xi)−minX f
‖ζi‖2

ζi

∥∥∥∥2
(5.106)

= ‖xi − x∗‖2 +
2( f̃ (xi) −minX f )

‖ζi‖
2 · 〈ζi, x∗ − xi〉 +

( f̃ (xi) −minX f )2

‖ζi‖
2

≤ ‖xi − x∗‖2 +
2( f̃ (xi) −minX f )

‖ζi‖
2

(
min
X

f − f̃ (xi) +
ρ

2
‖xi − x∗‖2 + 3ε

)
+

( f̃ (xi) −minX f )2

‖ζi‖
2 (5.107)

= ‖xi − x∗‖2 +
f̃ (xi) −minX f
‖ζi‖

2

(
ρ‖xi − x∗‖2 − ( f̃ (xi) −min

X
f ) + 6ε

)
≤ ‖xi − x∗‖2 +

f̃ (xi) −minX f
‖ζi‖

2

(
ρ‖xi − x∗‖2 − µ‖xi − x∗‖ + 7ε

)
(5.108)

≤ ‖xi − x∗‖2 +
ρ( f̃ (xi) −minX f )

‖ζi‖
2

(
‖xi − x∗‖ −

µ

2ρ

)
‖xi − x∗‖ (5.109)

≤ ‖xi − x∗‖2 −
µ( f̃ (xi) −minX f )

4‖ζi‖
2 · ‖xi − x∗‖ (5.110)

≤ ‖xi − x∗‖2 −
µ(µ‖xi − x∗‖ − ε)

4‖ζi‖
2 · ‖xi − x∗‖ (5.111)

≤

(
1 −

13µ2

56‖ζi‖
2

)
‖xi − x∗‖2.

Here, the estimate (5.106) follows from the fact that the projection projQ(·) is

nonexpansive, (5.107) uses Lemma 5.8.3, the estimate (5.109) follows from the

assumption ε < µ

14‖xk − x∗‖, the estimate (5.110) follows from the estimate ‖xi −

x∗‖ ≤ µ

4ρ , while (5.108) and (5.111) use Lemma 5.8.2. We therefore deduce

dist2(xi+1;X∗) ≤ ‖xi+1 − x∗‖2 ≤
(
1 −

13µ2

56L2

)
dist2(xi,X

∗).

Consequently either we have dist(xi+1,X
∗) < 14ε

µ
or xi+1 ∈ T̃1. Therefore, by in-

duction, the proof is complete.
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Proof of Theorem 5.8.6

Let i ≥ 0, suppose xi ∈ Tγ, and let x∗ ∈ projX∗(xi). Then

µdist(xi+1,X
∗) ≤ f (xi+1) − inf

X
f ≤ fx(xi+1) − inf

X
f +

ρ

2
‖xi+1 − xi‖

2

≤ f̃x(xi+1) − inf
X

f +
ρ

2
‖xi+1 − xi‖

2 + ε

≤ f̃x(x∗) − inf
X

f +
β

2
‖xi − x∗‖2 + ε

≤ fx(x∗) − inf
X

f +
β

2
‖xi − x∗‖2 + 2ε

≤ f (x∗) − inf
X

f + β‖xi − x∗‖2 + 2ε

= βdist2(xi,X
∗) + 2ε.

Rearranging yields the result.

5.10.6 Auxiliary lemmas

The following are auxiliary lemmas that we used throughout this section. We

record them here for convenience.

Lemma 5.10.7 (Lemma 3.1 in [40]). Let S r :=
{
X ∈ Rd1×d2 | rank(X) ≤ r, ‖X‖F = 1

}
.

There exists an ε-net N (with respect to ‖ · ‖F) of S r obeying

|N| ≤

(
9
ε

)(d1+d2+1)r

.

Proposition 5.10.8 (Corollary 1.4 in [218]). Consider X1, . . . , Xd real-valued random

variables and let σ ∈ Sd−1 be a unit vector. Let t, p > 0 such that

sup
u∈R
P (|Xi − u| ≤ t) ≤ p for all i = 1, . . . , d.

Then the following holds

sup
u∈R
P


∣∣∣∣∣∣∣∑k

σkXk − u

∣∣∣∣∣∣∣ ≤ t

 ≤ Cp,
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where C > 0 is a universal constant.

Theorem 5.10.9 (Talagrand’s Functional Bernstein for non-identically dis-

tributed variables [132, Theorem 1.1(c)]). Let S be a countable index set. Let

Z1, . . . ,Zn be independent vector-valued random variables of the form Zi = (Zi,s)s∈S.

Let Z := sups∈S
∑n

i=1 Zi,s. Assume that for all i ∈ [n] and s ∈ S, EZi,s = 0 and
∣∣∣Zi,s

∣∣∣ ≤ b.

Let

σ2 = sup
s∈S

n∑
i=1

EZ2
i,s.

Then for each t > 0, we have the tail bound

P
(
Z − EZ ≥

√
8
(
2bEZ + σ2) t + 8bt

)
≤ e−t.
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6

BLIND DECONVOLUTION: A CASE STUDY

“Las escaleras se suben de frente, pues hacia atrás o

de costado resultan particularmente incómodas.”

— Julio Cortázar, Instrucciones para subir una escalera

6.1 Introduction

In this chapter, we revisit the nonsmooth penalty technique, introduced in

Chapter 5, for the blind deconvolution problem. We complement the local con-

vergence guarantees, derived in the previous chapter, in two ways: first, we

develop a robust spectral initialization method, which leads to a globally con-

verging method; and second, we show that the spurious critical points of the

nonsmooth problem lie close to a codimension two subspace, thus suggesting

there might be a large region with friendly geometry. Unlike the convergence

rates, the developments in this chapter are highly tailored for the blind decon-

volution problem.

Formally, we consider the task of robustly recovering a pair (w̄, x̄) ∈ Rd1 ×Rd2

from m bilinear measurements:

yi = 〈`i, w̄〉〈ri, x̄〉 + ξi, (6.1)

where ξ is an arbitrary noise corruption with a fraction of nonzeros pfail :=

|supp ξ|/m that is at most one half, and `i ∈ Rd1 and ri ∈ Rd2 are known mea-
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surement vectors.1 Such bilinear systems and their complex analogues arise

often in biological systems, control theory, coding theory, and image deblur-

ring, among others. Most notably such problems appear when recovering a

pair (u, v) ∈ Cm × Cm from the convolution measurements y = (Lu) ∗ (Rv) ∈ Cm.

When passing to the Fourier domain this problem is equivalent to that of solv-

ing a complex bilinear system of equations; see the pioneering work [8] on blind

deconvolution. All the arguments we present can be extended to the complex

case. We focus on the real case for simplicity.

Here we analyze the following nonsmooth formulation of the problem:

min
‖w‖2, ‖x‖2≤ν

√
Φ

f (w, x) :=
1
m

m∑
i=1

|〈`i,w〉〈ri, x〉 − yi|, (6.2)

where ν ≥ 1 is a user-specified constant and Φ = ‖w̄x̄>‖F . In contrast to the previ-

ous chapter, where we tackled asymmetric problems by developing guarantees

under local regularity (Section 5.4.1), here we take the complementary approach

of considering a bounded constraint set.

Our contributions are three-fold:

1. (Local refinement) Suppose that the vectors `i and ri are both i.i.d. Sub-

Gaussian and satisfy a mild growth condition (automatic for Gaussian ran-

dom vectors). We show, levaraging results from the previous chapter, that

as long as the number of measurements satisfies m & d1+d2
(1−2pfail)2 ln(C + 1

1−2pfail
),

where C is a small dimension-independent constant, the formulation (6.2)

admits dimension independent constants ρ, L f , and µ with high probabil-

ity. Consequently, subgradient and prox-linear methods rapidly converge

1To avoid name clashes and be consistent with the literature, we relabel some objects from
the previous section: pi → `i, qi → ri, L→ L f , and b→ y.
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to the optimal solution at a dimension-independent rate when initialized

at a point x0 with constant relative error ‖w0 x>0 −w̄x̄>‖F
‖w̄x̄T ‖F . 1.

2. (Initialization) Suppose now that `i and ri are both i.i.d. Gaussian and are

independent from the noise η. We develop an initialization procedure that

in the regime m & d1 + d2 and pfail ∈ [0, 1/10], will find a point x0 satisfying
‖w0 x>0 −w̄x̄>‖F
‖w̄x̄T ‖F . 1, with high probability. The proposed procedure is moti-

vated by the analogous initialization algorithm for robust phase retrieval

[89, 239]. To the best of our knowledge, this is the only available initial-

ization procedure for rank-1 bilinear sensing with provable guarantees in

presence of gross outliers. We also develop complementary guarantees

under the weaker assumption that the vectors (`i, ri) corresponding to ex-

act measurements are independent from the noise ηi in the outlying mea-

surements. This noise model allows one to plant outlying measurements

from a completely different pair of signals, and is therefore computation-

ally more challenging.

3. (Landscape) Suppose now that `i and ri are both i.i.d. Gaussian and there

is no noise η = 0. We show that when m & d1 + d2 the set of spurious

critical points of f lies close to the subspace V = (w̄, 0)⊥ × (0, x̄)⊥. In par-

ticular, for any spurious critical point (w, x) we prove that dist((w, x),V) ≤

Õ

((
d1+d2

m

) 1
8
‖(w, x)‖

)
.

The literature studying bilinear systems is rich. It is well-known [156, 56,

126] that the optimal sample complexity in the noiseless regime is m & d1 + d2

if no further assumptions (e.g. sparsity) are imposed on the signals. Therefore,

from a sample complexity viewpoint, our guarantees are optimal. Incidentally,

to our best knowledge, all alternative approaches are either suboptimal by a
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polylogarithmic factor in d1, d2 or require knowing the sign pattern of one of the

underlying signals [9, 8].

Recent algorithmic advances for blind deconvolution can be classified into

two main approaches: works based on convex relaxations and those employing

gradient descent on a smooth nonconvex function. The influential convex tech-

niques of [9, 8] “lift” the objective to a higher dimension, thereby necessitating

the resolution of a high-dimensional semidefinite program. The more recent

work of [5, 6] instead relaxes the feasible region in the natural parameter space,

under the assumption that the coordinate signs of either w̄ or x̄ are known a pri-

ori. Finally, with the exception of [8], the aforementioned works do not provide

guarantees in the noisy regime.

Nonconvex approaches for blind deconvolution typically apply gradient de-

scent to a smooth formulation of the problem [153, 167, 120]. Since the con-

dition number of the problem scales with dimension, as we mentioned previ-

ously, these works introduce a nuanced analysis that is specific to the gradient

method. The authors of [153] propose applying gradient descent on a regular-

ized objective function, and identify a “basin of attraction” around the solu-

tion. The paper [167] instead analyzes gradient descent on the unregularized

objective. They use the leave-one-out technique and prove that the iterates re-

main within a region where the objective function satisfies restricted strong con-

vexity and smoothness conditions. The sample complexities of the methods in

[153, 167, 120, 167] are optimal up to polylog factors.

The popular formulation for the blind deconvolution problem [8] necessi-

tates one of the sets of measurement vectors ri or `i to be deterministic. Indeed,

they are built from the columns of a discrete Fourier transform matrix. Conse-
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quently, our assumptions that both ri and `i are random is an oversimplification.

Similar assumptions are made in [5, 6, 7] for example. Nonetheless, extensive

experiments in Section 6.5.4 show that even in this semi-stochastic setting the

proposed algorithms work remarkably well. In particular, for difficult instances

with a large incoherence parameter, we observe that the proposed algorithms

perform on par and often better than gradient descent on the smooth formula-

tions of the problem.

The nonconvex strategies mentioned above all use spectral methods for ini-

tialization. These methods are not robust to outliers, since they rely on the

leading singular vectors/values of a potentially noisy measurement operator.

Adapting the spectral initialization of [89] to bilinear inverse problems enables

us to deal with gross outliers of arbitrary magnitude. Indeed, high variance

noise makes it easier for our initialization to “reject” outlying measurements.

A related line of work [247, 134, 139] considers the original blind deconvo-

lution problem of recovering a pair (u, v) from their convolution u ∗ v when u

is low-dimensional and v is a sparse vector. These works are based on a very

different approach to modeling the problem than the one we consider here. It

would be interesting to see if similar ideas can be extended to this setting.

Outline of the chapter. Section 5.3 establishes estimates of weak convexity,

sharpness, and Lipschitz moduli for the rank-1 bilinear sensing problem under

statistical assumptions on the data. Section 6.3 introduces the initialization pro-

cedure and proves its correctness even if a constant fraction of measurements is

corrupted by gross outliers. Section 6.4 studies the nonsmooth landscape of the

blind deconvolution problem. The final Section 6.5 presents numerical experi-

ments illustrating the theoretical results in this chapter.
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6.2 Data generating model and local convergence guarantees

In this section, we formally specify the problem setting and state the corre-

sponding local convergence guarantees proved in Chapter 5. The guarantees

that we present here differ from the one established in Corollary 5.4.12 in that

they only apply to the rank-1 case and they have slightly tighter estimate of the

sharpness constant. The gains here are not significant, however we present the

results since: they were derived, and uploaded to arXiv, before the guarantees

in the previous chapter; and the sharpness estimate might be of independent

interest.

The setting in this chapter is anologous to the previous one. Let us quickly

remind the reader about it. We fix two disjoint sets Iin ⊆ [m] and Iout ⊆ [m],

called the inlier and outlier sets. Intuitively, the index set Iin encodes exact mea-

surements while Iout encodes measurements that have been replaced by gross

outliers. Define the corruption frequency pfail := |Iout |

m ; henceforth, we will sup-

pose pfail ∈ [0, 1/2). Then for an arbitrary, potentially random sequence {ξi}
m
i=1,

we consider the measurement model:

bi :=


〈`i, w̄〉〈ri, x̄〉 if i ∈ Iin,

ξi if i ∈ Iout.

(6.3)

We define the linear map A : Rd1×d2 → Rm by A(X) = (`>i Xri)m
i=1. To simplify

notation, we let P ∈ Rm×d1 denote the matrix whose rows, in column form, are `i

and we let Q ∈ Rm×d2 denote the matrix whose rows are ri. Note that we make

no assumptions about the nature of ξi. In particular, ξi can even encode exact

measurements for a different signal.

In acordance to Section 5.5.2, we focus on the following fully stochastic ma-
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trix model. We should note that in more realistic circumstancees, such as the

problem of blind decovonvolution, it is more appropriate for one of the matri-

ces P or Q to be deterministic. Though the theoretical guarantees we present

only hold in the fully stochastic setting, numerical experiments in Section 6.5.4

indicate that the proposed methods are effective even when one of the matrices

is deterministic.

Random matrix model.

M The vectors `i and ri are i.i.d. realizations of η-sub-gaussian random vec-

tors ` ∈ Rd1 and r ∈ Rd2 , respectively. Suppose moreover that ` and r are

independent and satisfy the nondegeneracy condition,

inf
X: rank X≤2
‖X‖F=1

E|`>Xr| ≥ α, (6.4)

for some real α > 0.

Thus the model M asserts that `i and ri are generated by independent sub-

gaussian random vectors. The nondegeneracy condition (6.4) essentially asserts

that with positive probability, the products `>Xr are non-negligible, uniformly

over all unit norm rank two matrices X. In particular, Gaussian matrices with

i.i.d. entries are admissible under Model M, see Lemma 5.5.7.

6.2.1 Guarantees

Just as before, we will establish guarantees for the subgradient and the prox-

linear method introduced in Section 5.2. To this end, consider two vectors w̄ ∈
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Rd
1 and x̄ ∈ Rd2 , and set Φ := ‖x̄w̄>‖F = ‖x̄‖2 · ‖w̄>‖2. Without loss of generality,

henceforth, we suppose ‖w̄‖2 = ‖x̄‖2. Define the two sets:

Sν := ν
√

Φ · (Bd1 × Bd2), S∗ν := {(αw̄, (1/α)x̄) : 1/ν ≤ |α| ≤ ν}.

The set Sν simply encodes a bounded region, while S∗ν encodes all rank-1 factor-

izations of the matrix w̄x̄> with bounded factors.

The objective function can be decomposed as f = h ◦ F with h = ‖ · ‖1 and

F = A. Thus, all the machinery for rapid convergence, developed in the previ-

ous chapter, applies provided we show that f satisfies the Approximation accu-

racy, Sharpness and Subgradient bound conditions on Sν; we refer the reader to

Assumption 5.2 for definitions.

Theorem 5.5.8 establishes that there exists constants κ1, κ2, and κ3 such that

with high probability, the operatorA satisfies RIP and the I-outlier bound, i.e.,

κ1‖M‖F ≤
1
m
‖A(M)‖1 ≤ κ2‖M‖F for all rank-2 M ∈ Rd1×d2

and

κ3‖M‖F ≤
1
m

(
‖AIin(M)‖1 − ‖AIout(M)‖1

)
for all rank-2 M ∈ Rd1×d2 ,

respectively. In turn, RIP ensures that f satisfies both the approximation accu-

racy and subgradient bound conditions, see Proposition 5.3.3. We also proved

that the last inequality implies sharpness, albeit only on a small neighborhood

around the solution, see Proposition 5.3.8. We now show that, at least for the

rank-one case, sharpness hold uniformly over Sv.

To establish sharpness of f , we first show that the function (x,w) 7→ ‖wx> −

w̄x̄>‖F is sharp on the set Sν. This is a specialization of Theorem 5.3.5 with a

slightly better constant. The proof is quite tedious, and therefore we have placed

it in Section 6.6.1.
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Theorem 6.2.1 (Sharpness rank-one (asymmetric)). For any ν ≥ 1, we have the

following bound

‖wx> − w̄x̄>‖F ≥

√
Φ

2
√

2(ν + 1)
dist

(
(w, x),S∗ν

)
for all (w, x) ∈ Sν.

Armed with this Theorem we now establish the sharpness guarantee for f .

Proposition 6.2.2 (Sharpness in the noisy regime). Suppose that Assumption 5.3.6

holds. Then

f (w, x) − f (w̄, x̄) ≥
c3
√

Φ

2
√

2(ν + 1)
dist

(
(w, x),S∗ν

)
for all (w, x) ∈ Sν.

Proof. Defining ξ = A(w̄x̄T ) − b, we have the following bound:

f (w, x) − f (w̄, x̄)

=
1
m

(
‖A

(
wx> − w̄x̄>

)
+ ξ‖1 − ‖ξ‖1

)
=

1
m

‖A(wx> − w̄x̄>)‖1 +
∑
i∈I

(∣∣∣(A(wx> − w̄x̄>)
)

i + ξi

∣∣∣ − ∣∣∣(A(wx> − w̄x̄>)
)

i

∣∣∣ − |ξi|
)

≥
1
m

‖A(wx> − w̄x̄>)‖1 − 2
∑
i∈I

∣∣∣(A(wx> − w̄x̄>)
)

i

∣∣∣
=

1
m

∑
i∈Ic

∣∣∣(A(wx> − w̄x̄>)
)

i

∣∣∣ − 1
m

∑
i∈I

∣∣∣(A(wx> − w̄x̄>)
)

i

∣∣∣
≥ c3‖wx> − w̄x̄>‖F ≥

c3
√

Φ

2
√

2(ν + 1)
dist

(
(w, x),S∗ν

)
,

where the first inequality follows by the reverse triangle inequality, the second

inequality follows by Assumption (C2), and the final inequality follows from

Theorem 6.2.1. The proof is complete. �

Combining this result with Theorem 5.5.8 and the convergence rates in Sec-

tion 5.4 we obtain the following guarantee.
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Corollary 6.2.3 (Convergence guarantees). Consider the measurement model (6.3)

and suppose that model M is valid. Consider the optimization problem

min
(x,w)∈Sν

f (w, x) =
1
m

m∑
i=1

|〈`i,w〉〈ri, x〉 − bi|.

Then there exist constants c1, c2, c3, c4, c5, c6 > 0 depending only on α, η such that as

long as m ≥ c1(d1+d2+1)
(1−2pfail)2 ln

(
c2 + c2

1−2pfail

)
and you choose any pair (w0, x0) with relative

error
dist((w0, x0),S∗ν)
√
‖w̄x̄>‖F

≤
c6 (1 − 2pfail)

4
√

2c5(ν + 1)
, (6.5)

then with probability at least 1 − 4 exp
(
−c3(1 − 2pfail)2m

)
the following are true.

1. (Polyak subgradient) Algorithm 2 initialized (w0, x0) produces iterates that

converge linearly to S∗ν, that is

dist2((wk, xk),S∗ν)
‖w̄x̄>‖F

≤

1 − c2
6 (1 − 2pfail)2

32c2
5(ν + 1)4

k

·
c2

6 (1 − 2pfail)2

32c2
5(ν + 1)2

∀k ≥ 0.

2. (geometric subgradient) Set λ := c2
6(1−2pfail)2 √‖w̄x̄>‖F

16
√

2c2
5ν(ν+1)2 and q :=

√
1 −

c2
6(1−2pfail)2

32c2
5(ν+1)4 .

Then the iterates xk generated by Algorithm 3, initialized at (w0, x0) converge

linearly:

dist2((wk, xk),S∗ν)
‖w̄x̄>‖F

≤

1 − c2
6 (1 − 2pfail)2

32c2
5(ν + 1)4

k

·
c2

6 (1 − 2pfail)2

32c2
5(ν + 1)2

∀k ≥ 0.

3. (prox-linear) Algorithm 4 with β = ρ and initialized at (w0, x0) converges

quadratically:

dist((wk, xk),X∗)
√
‖w̄x̄>‖F

≤ 2−2k
·

c6 (1 − 2pfail)

2
√

2c5(ν + 1)
∀k ≥ 0.

Thus with high probability, if one initializes the subgradient and prox-linear

methods at a pair (w0, x0) satisfying dist((w0,x0),S∗ν)√
‖w̄x̄>‖F

≤
c6(1−2pfail)
4
√

2c5(ν+1)
, then the methods will

converge to the optimal solution set at a dimension independent rate.
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6.3 Initialization

Previous sections have focused on local convergence guarantees under various

statistical assumptions. In particular, under Assumptions 5.3.1 and 5.3.6, one

must initialize the local search procedures at a point (w, x), whose relative dis-

tance to the solution set dist((x,w),S∗ν)√
‖x̄w̄>‖F

is upper bounded by a constant. In this sec-

tion, we present a new spectral initialization routine (Algorithm 6) that is able

to efficiently find such point (w, x). The algorithm is inspired by [89, Section 4]

and [239].

Before describing the intuition behind the procedure, let us formally intro-

duce our assumptions. Throughout this section, we make the following as-

sumption on the data generating mechanism, which is stronger than Model M:

M The entries of matrices L and R are i.i.d. Gaussian.

Our arguments rely heavily on properties of the Gaussian distribution. We note,

however, that our experimental results suggest that Algorithm 6 provides high-

quality initializations under weaker distributional assumptions.

Recall that in the previous sections, the noise ξ was arbitrary. In this section,

however, we must assume more about the nature of the noise. We will consider

two different settings.

N1 The measurement vectors {(`i, ri)}mi=1 and the noise sequence {ξi}
m
i=1 are inde-

pendent.

N2 The inlying measurement vectors {(`i, ri)}i∈Iin and the corrupted observa-

tions {ξi}i∈Iout are independent.
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The noise models N1 and N2 differ in how an adversary may choose to cor-

rupt the measurements. Model N1 allows an adversary to corrupt the signal,

but does not allow observation of the measurement vectors {(`i, ri)}mi=1. On the

other hand, Model N2 allows an adversary to observe the outlying measure-

ment vectors {(`i, ri)}i∈Iout and arbitrarily corrupt those measurements. For ex-

ample, the adversary may replace the outlying measurements with those taken

from a completely different signal: yi =
(
A(w̃x̃>)

)
i for i ∈ Iout.

Algorithm 6: Initialization.
Data: y ∈ Rm, L ∈ Rm×d1 ,R ∈ Rm×d2

Isel ← {i | |bi| ≤ med(|y|)}
Form directional estimates:

Linit ← 1
m

∑
i∈Isel `i`

>
i , Rinit ← 1

m

∑
i∈Isel rir>i

ŵ← arg minp∈Sd1−1 p>Linit p, and x̂← arg minq∈Sd2−1 q>Rinitq.

Estimate the norm of the signal:

Φ̂← arg min
β∈R

G(β) :=
1
m

m∑
i=1

∣∣∣bi − β〈`i, ŵ〉〈ri, x̂〉
∣∣∣ ,

w0 ← sign(Φ̂)
∣∣∣∣Φ̂∣∣∣∣1/2 ŵ, and x0 ←

∣∣∣∣Φ̂∣∣∣∣1/2 x̂.

return (w0, x0)

We can now describe the intuition underlying Algorithm 6. Throughout we

denote unit vectors parallel to w̄ and x̄ by w̄? and x̄?, respectively. Algorithm 6

exploits the expected near orthogonality of the random vectors `i and ri to the

directions w̄? and x̄?, respectively, in order to select a “good” set of measure-

ment vectors. Namely, since E [〈`i, w̄?〉] = E [〈ri, x̄?〉] = 0, we expect minimal

eigenvectors of Linit and Rinit to be near w̄? and x̄?, respectively. Since our mea-

surements are bilinear, we cannot necessarily select vectors for which |〈`i, w̄?〉|

and |〈ri, x̄?〉| are both small, rather, we may only select vectors for which the
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product |〈`i, w̄?〉〈ri, x̄?〉| is small, leading to subtle ambiguities not present in [89,

Section 4] and [239]; see Figure 6.1. Corruptions add further ambiguities since

the noise model N2 allows a constant fraction of measurements to be adversar-

ially modified.

x

y

`1

r1

w?

x?

`2 r2

Figure 6.1: Intuition behind spectral initialization. The pair `1, r1 will be in-
cluded since both vectors are almost orthogonal to the true directions. `2, r2 is
unlikely to be included since r2 is almost aligned with x?.

Formally, Algorithm 6 estimates an initial signal (w0, x0) in two stages: first it

constructs a pair of directions (ŵ, x̂) which estimate the true directions

w̄? :=
1
‖w̄‖2

w̄ and x̄? :=
1
‖x̄‖2

x̄

(up to sign); then it constructs an estimate Φ̂ of the signed signal norm ±Φ,

which corrects for sign errors in the first stage. We now discuss both stages in

more detail, starting with the direction estimate. Most proofs will be deferred to

Section 6.6.2. The general proof strategy we follow is analogous to [89, Section

4] for phase retrieval, with some subtle modifications due to asymmetry.

Step 1: Direction Estimate. In the first stage of the algorithm, we estimate the

directions w̄? and x̄?, up to sign. Key to our argument is the following decom-
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position for model N1 (which will be proved in Section 6.6.2):

Linit = |Isel |

m · Id1 − γ1w̄?w̄>? + ∆L, Rinit = |Isel |

m · Id2 − γ2 x̄? x̄>? + ∆R,

where γ1, γ2 & 1 and the matrices ∆L,∆R have small operator norm (decreas-

ing with (d1 + d2)/m), with high probability. Using the Davis-Kahan sin θ theo-

rem [65], we can then show that the minimal eigenvectors of Linit and Rinit are

sufficiently close to {±w̄?} and {±x̄?}, respectively.

Proposition 6.3.1 (Directional estimates). There exist numerical constants

c1, c2,C > 0, so that for any pfail ∈ [0, 1/10] and t ∈ [0, 1], with probability at least

1 − c1 exp (−c2mt), the following hold:

min
s∈{±1}

∥∥∥ŵx̂> − sw?x?>
∥∥∥

F
≤


C ·

(√
max{d1,d2}

m + t
)

under Model N1, and

C ·
(
pfail +

√
max{d1,d2}

m + t
)

under Model N2.

Step 2: Norm estimate. In the second stage of the algorithm, we estimate Φ

as well as correct the sign of the direction estimates from the previous stage. In

particular, for any (ŵ, x̂) ∈ Sd1−1 × Sd2−1 define the quantity

δ :=
(
1 +

c5

c6(1 − 2pfail)

)
min
s∈{±1}

∥∥∥ŵx̂> − sw̄? x̄>?
∥∥∥

F
, (6.6)

where c5 and c6 are as in Theorem 5.5.8. Then we prove the following estimate

(see Section 6.6.2).

Proposition 6.3.2 (Norm Estimate). Under either noise model, N1 and N2, there

exist numerical constants c1, . . . , c6 > 0 so that if m ≥ c1(d1+d2+1)
(1−2pfail)2 ln

(
c2 + c2

1−2pfail

)
, then

with probability at least 1 − 4 exp
(
−c3(1 − 2pfail)2m

)
, we have that any minimizer Φ̂ of

the function

G(β) :=
1
m

m∑
i=1

|yi − β〈`i, ŵ〉〈x̂, ri〉|
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satisfies ||Φ̂| − Φ| ≤ δΦ. Moreover, if in this event δ < 1, then we have sign(Φ̂) =

arg mins∈{±1}

∥∥∥ŵx̂> − sw̄? x̄>?
∥∥∥

F
.

Thus, the preceding proposition shows that tighter estimates on the norm Φ

result from better directional estimates in the first stage of Algorithm 6. In light

of Proposition 6.3.2, we next estimate the probability of the event δ ≤ 1/2, which

in particular implies with high probability sign(Φ̂) = arg mins∈{±1}

∥∥∥ŵx̂> − sw̄? x̄>?
∥∥∥

F
.

Proposition 6.3.3 (Sign estimate). Under either Model N1 and N2, there exist nu-

merical constants c0, c1, c2, c3 > 0 such that if pfail < c0 and m ≥ c3(d1 + d2), then the

estimate holds:2

P (δ > 1/2) ≤ c1 exp (−c2m) .

Proof. Using Theorem 5.5.8 and Propositions 6.3.1, we deduce that for any t ∈

[0, 1], with probability 1 − c1 exp (−c2mt) we have

δ ≤


C ·

(√
max{d1,d2}

m + t
)

under Model N1, and

C ·
(
pfail +

√
max{d1,d2}

m + t
)

under Model N2.

Thus under model N1 it suffices to set t = (2C)−2 −
max{d1,d2}

m . Then the probability

of the event δ ≤ 1/2 is at least 1 − c1 exp
(
−c2((2C)−2m −max{d1, d2})

)
. On the

other hand, under model N2, it suffices to assume 2Cpfail < 1 and then we can

set t = (((2C)−1 − pfail)2 −
max{d1,d2}

m ). The probability of the event δ ≤ 1/2 is then

at least 1 − c1(exp
(
−c2(m((2C)−1 − pfail)2 −max{d1, d2}))

)
. Finally using the bound

max{d1, d2} ≤ d1 + d2 ≤
m
c3

yields the result. �

Step 3: Final estimate. Putting the directional and norm estimates together,

we arrive at the following theorem.
2In the case of model N1, one can set c0 = 1/10.
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Theorem 6.3.4. There exist numerical constants c0, c1, c2, c3,C > 0 such that if pfail ≤

c0 and m ≥ c4(d1 +d2), then for all t ∈ [0, 1], with probability at least 1−c1 exp (−c3mt) ,

we have

∥∥∥w0x>0 − w̄x̄>
∥∥∥

F

‖w̄x̄>‖F
≤


C ·

(√
max{d1,d2}

m + t
)

under Model N1, and

C ·
(
pfail +

√
max{d1,d2}

m + t
)

under Model N2.

Proof. Suppose that we are in the events guaranteed by Propositions 6.3.1,6.3.2,

and 6.3.3. Then noting that

w0 = sign(Φ̂)|Φ̂|1/2ŵ, x0 = |Φ̂|1/2 x̂,

we find that

∥∥∥w0x>0 − w̄x̄>
∥∥∥

F
=

∥∥∥∥sign(Φ̂)|Φ̂|ŵx̂> − Φw̄? x̄>?
∥∥∥∥

F

= Φ

∥∥∥∥∥∥ŵx̂> − sign(Φ̂)w̄? x̄>? +
|Φ̂| − Φ

Φ
ŵx̂>

∥∥∥∥∥∥
F

≤ Φ
∥∥∥∥ŵx̂> − sign(Φ̂)w?x?>

∥∥∥∥
F

+ Φδ

= Φ ·

(
2 +

c5

c6(1 − 2pfail)

)
min
s∈{±1}

∥∥∥ŵx̂> − sw̄? x̄>?
∥∥∥

F
,

where c5 and c6 are defined in Theorem 5.5.8. Appealing to Proposition 6.3.1,

the result follows. �

Combining Corollary 6.2.3 and Theorem 6.3.4, we arrive at the following

guarantee for the stage procedure.

Corollary 6.3.5 (Efficiency estimates). Suppose either of the models N1 and N2. Let

(w0, x0) be the output of the initialization Algorithm 6. Set Φ̂ = ‖w0x>0 ‖F and consider

the optimization problem

min
‖x‖2,‖w‖2≤

√
2Φ̂

g(w, x) =
1
m
‖A(wx>) − y‖1. (6.7)
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Set ν :=
√

2Φ̂
Φ

and notice that the feasible region of (6.7) coincides with Sν. Then there

exist constants c0, c1, c2, c3, c5 > 0 and c4 ∈ (0, 1) such that as long as m ≥ c3(d1 + d2)

and pfail ≤ c0, the following properties hold with probability 1 − c1 exp(−c2m).3

1. (subgradient) Both Algorithms 2 and 3 (with appropriate λ, q) initialized

(w0, x0) produce iterates that converge linearly to S∗ν, that is

dist2((wk, xk),S∗ν)
‖w̄x̄>‖F

≤ c4 (1 − c4)k
∀k ≥ 0.

2. (prox-linear) Algorithm 4 initialized at (w0, x0) (with appropriate β > 0) con-

verges quadratically:

dist((wk, xk),S∗ν))
√
‖w̄x̄>‖F

≤ c5 · 2−2k
∀k ≥ 0.

Proof. We provide the proof under model N1. The proof under model N2

is completely analogous. Combining Proposition 6.3.2, Proposition 6.3.3, and

Theorem 6.3.4, we deduce that there exist constants c0, c1, c2, c3,C such that as

long as m ≥ c3(d1 + d2) and pfail < c0, then for any t ∈ [0, 1], with probability

1 − c1 exp (−c2mt), we have ∣∣∣∣∣∣Φ̂Φ − 1

∣∣∣∣∣∣ ≤ δ ≤ 1
2
, (6.8)

and ∥∥∥w0x>0 − w̄x̄>
∥∥∥

F

Φ
≤ C

√
max{d1, d2}

m
+ t.

In particular, notice from (6.8) that 1 ≤ ν ≤
√

3 and therefore the feasible re-

gion Sν contains an optimal solution of the original problem (6.2). Using Theo-

rem 6.2.1, we have

‖w0x>0 − w̄x̄>‖F ≥

√
Φ

2
√

2(ν + 1)
dist

(
(w0, x0),S∗ν

)
.

3In the case of model N1, one can set c0 = 1/10.
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Combining the estimates, we conclude

dist((w0, x0),S∗ν)
√

Φ
≤ 2
√

2(ν + 1)
‖w0x>0 − w̄x̄>‖F

Φ
≤ 2
√

2(ν + 1)C

√
max{d1, d2}

m
+ t.

Thus to ensure the relative error assumption (6.5), it suffices to ensure the in-

equality

2
√

2(ν + 1)C

√
max{d1, d2}

m
+ t ≤

c6 (1 − 2pfail)

4
√

2c5(ν + 1)
,

where c5, c6 are the constants from Corollary 6.2.3. Using the bound ν ≤
√

3, it

suffices to set

t =

(
c6(1 − 2p)

16
√

3c5C

)2

−
max{d1, d2}

m
.

Thus the probability of the desired event becomes 1−c2(exp (−c3(c4m −max{d1, d2}))

for some constant c4. Finally, using the bound max{d1, d2} ≤ d1 + d2 ≤
m
c3

and ap-

plying Corollary 6.2.3 completes the proof. �

6.4 Nonsmooth landscape

As we alluded in the previous section, initialization procedures are nontrivial

to develop and are often computationally more expensive than the refinement

stage. Thus, it is natural to wonder if the initialization is necessary. For the

blind deconvolution problem, numerical experiments suggest that a randomly

initilized subgradient method applied to the unconstraint version of the nons-

mooth formulation 6.2,

arg min
w,x

fS (w, x) =
1
m

m∑
i=1

|〈`i,w〉〈x, ri〉 − yi|, (6.9)

recovers the signal exactly, see Figure 6.2. However the guarantees developed

thus far do not explain this behavior.
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There are several examples of smooth nonconvex problems where simple

iterative methods with random initilization provably converge to minimizers

[106, 103, 26, 57, 142]. Analysis of these methods are of two types: those based

on studying the iterate sequence [135, 78, 248], and those based on characteriz-

ing the landscape of smooth loss functions [103, 227, 161].

In this section, we push theory towards understanding the global success of

numerical methods applied to (6.9). To this end, we study the nonsmooth non-

convex landscape of this problem. Unlike the aforementioned works, the loss

function we study is nonsmooth loss, which presents fundamentally different

technical challenges.

We study the landscape of fS under Model M, i.e., L and R are standard

Gaussian random matrices. Following the line of ideas in [70], we think of fS as

the empirical average approximation of the population objective

fP(w, x) := E fS (w, x) = E
(
|`>(wx − w̄x̄)r>|

)
,

where ` ∈ Rd1 and r ∈ Rd2 are standard Gaussian vectors. From now on, we

will refer to fS as the sample objective. The rationale is simple: we will describe

the stationary points of fP, then we will prove that the graph of the subdifferen-

tial ∂ fS concentrates around the graph of ∂ fP and combine these to describe the

landscape of fS . This strategy allows us to show that the set of spurious station-

ary points converges to a codimension two subspace at a controlled rate. We

remark that these results are geometrical and not computational.

Denote the set of solutions of (6.9) by

S := {(αw̄, x̄/α) | α ∈ R \ {0}} .

We now highlight the main contributions of this section.
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Population objective. Interestingly, the population objective only depends on

(w, x) through the singular values of the rank two matrix X := wx> − w̄x̄>. We

show this function can be written as

fP(w, x) = σmax(X)
∞∑

n=0

(
(2n)!

22n(n!)2

)2
(
1 − κ−2(X)

)n

1 − 2n

where κ(X) = σmax(X)/σmin(X) is the condition number of X. We characterize

the stationary points of a broad family of spectral functions, containing fP. By

specializing this characterization we find that the stationary points of the popu-

lation objectives are exactly

S ∪ {(w, x) | 〈w, w̄〉 = 0, 〈x, x̄〉 = 0, and wx> = 0},

revealing that the set of extraneous critical points of fP is the subspace (w̄, 0)⊥ ∩

(0, x̄)⊥.

Sample objective. Equipped with a quantitative version of Attouch-Wets’

convergence theorem proved in [70], we show that with high probability any

stationary point of fS in a bounded set satisfies at least one of the following

‖(w, x)‖ ≤ ∆‖(w̄, x̄)‖, ‖wx> − w̄x̄>‖ ≤ ∆‖w̄x̄>‖, or


|〈w, w̄〉| ≤ ∆‖(w, x)‖‖w̄‖,

|〈x, x̄〉| ≤ ∆‖(w, x)‖‖x̄‖.

provided that m & d1 + d2, where ∆ = Õ
(

d1+d2
m

) 1
8 .4 Intuitively this means, that as

the ratio (d1 + d2)/m goes to zero, the stationary points lie closer and closer to

three sets: the singleton zero, the set of solutions S, and the subspace (w̄, 0)⊥ ∩

(0, x̄)⊥.

4Where Õ hides a logarithmic terms.
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Figure 6.2: Empirical probability of recovery with random initailization on a
cube [−ν, ν]d1+d2 . White denotes probability one and black denotes probabil-
ity zero. Left and right images correspond to (d1, d2) = (100, 50) and (d1, d2) =

(200, 100), respectively.

6.4.1 Interlude: Singular value functions

Singular value functions play a crucial role in our studies, we now take a

moment to introduce them. For a pair of dimensions d1, d2 we will denote

d = min{d1, d2}. A function f : Rd → R ∪ {∞} is symmetric if f (πx) = f (x) for

any permutation matrix π ∈ {0, 1}d×d. Additionally, a function f is sign invariant

if f (sx) = f (x) for any diagonal matrix s ∈ {−1, 0, 1}d×d with diagonal entries in

{±1}. We say that fσ : Rd1×d2 → R ∪ {∞} is a singular value function if it can be de-

composed as fσ = ( f ◦ σ) for a symmetric sign invariant function f . A simple

and illuminating example is the Frobenius norm, since ‖A‖F = ‖σ(A)‖2. This type

of functions has been deeply studied in variational analysis [147, 150, 149].

A pair of matrices X and Y in Rd1×d2 have a simultaneous ordered singular

value decomposition if there exist matrices U ∈ O(d1) and V ∈ O(d2) such that

X = Udiag(σ(X))V> and Y = Udiag(σ(Y))V>. We will make use of the following

remarkable theorem.

Theorem 6.4.1 (Proposition 6.1 and Theorem 7.1 in [149]). Let fσ : Rd1×d2 → R ∪
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Figure 6.3: Population objective d1 = d2 = 1.

{∞} be a singular value function with fσ = f ◦σ. Then, fσ is convex, if and only if, f is

convex. Furthermore, the limiting subdifferential of fσ at a matrix M ∈ Rd1×d2 is given

by

∂ fσ(M) = {Udiag(ζ)V> | ζ ∈ ∂ f (σ(M)) and Udiag (σ(M)) V> = M}. (6.10)

Hence M and any of its subgradients have simultaneous ordered singular value decom-

position.

6.4.2 Population objective

In this subsection, we study the population objective fP. A first important ob-

servation is that this function is a singular value function. Indeed, if we set

X = wx> − w̄x̄> then due to the orthogonal invariance of the Gaussian distribu-

tion we get

fP(w, x) = E|`>Udiag(σ(X))V>r| = E|σ1(X)`1r1 + σ2(X)`2r2|, (6.11)

where of course Udiag(σ(X))V> is the singular value decomposition of X. This

simple observation leads to our first result, a closed form characterization of
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this function in terms σ(X). We defer the proof to Section 6.6.3.

Proposition 6.4.2 (Population objective). The population objective can be written as

fP(w, x) = σmax(X)
∞∑

n=0

(
(2n)!

22n(n!)2

)2
(
1 − κ−2(X)

)n

1 − 2n
(6.12)

where κ(X) = σmax(X)/σmin(X) is the condition number of X.

When the signal (w̄, x̄) lives in R2 the landscape of the population objective is

rather simple, the only critical points are the solutions and zero, see Figure 6.3.

This is not the case in higher dimensions where an entire subspace of critical

points appear. In the reminder of this section, we develop tools to describe the

critical points of a broad class of functions and we then specialize these results

to the blind deconvolution population objective (6.11).

Landscape analysis for a class of singular value functions

To characterize the critical points of fP we will study a broader class of functions.

We consider an arbitrary function g : Rd1 ×Rd2 → R for which there exists a rank

one matrix w̄x̄> and a singular value function fσ satisfying

g(w, x) = fσ(wx> − w̄x̄>) = f ◦ σ
(
wx> − w̄x̄>

)
.

This gives us two useful characterizations of g that we will use throughout. In

the following section we will see a way of recasting fP in this form.

A simple application of the chain rule yields

∂g(w, x) =


 Y x

Y>w

 ∣∣∣∣ Y ∈ ∂ fσ(X)

 . (6.13)
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Notice that we already have a description of ∂ fσ(X) given by Theorem 6.4.1,

that is Y ∈ ∂ fσ(X) if and only if there exists matrices U ∈ O(d1) and V ∈ O(d2)

satisfying

σ(Y) ∈ ∂ f (σ(X)), Y = Udiag(σ(Y))V>, and X = Udiag(σ(X))V>.

(6.14)

Equipped with these tools we derive the following result regarding the critical

points of g. We defer a proof to Section 6.6.3.

Theorem 6.4.3. Let g : Rd1 × Rd2 be a function that can be decomposed as

g(w, x) = fσ(wx> − w̄x̄>) = f ◦ σ
(
wx> − w̄x̄>

)
,

where f : Rd → R is a symmetric sign invariant convex function.5 Suppose that (w, x)

is a stationary point of g, meaning that Y x = 0,Y>w = 0 for some Y ∈ ∂ fµ(X). Then at

least one of the following conditions hold:

1. Small objective. g(w, x) ≤ g(w̄, x̄),

2. Zero. (w, x) = 0,

3. One zero component. 〈w, w̄〉 = 〈x, x̄〉 = 0, wx> = 0, and (assuming that x is not

zero) Y x = 0 (similarly for w).

4. Small product norm. 〈w, w̄〉 = 〈x, x̄〉 = 0, rank(Y) = 1, and 0 < ‖wx>‖ < ‖w̄x̄>‖.

Moreover, if (w̄, x̄) minimizes g, then (w, x) is a critical point if, and only if, it satisfies

1, 2, 3, or 4 for some Y ∈ ∂ fσ(X).
5Recall d = min{d1, d2}.
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Landscape of the population objective

Our goal now is to apply Theorem 6.4.3 to describe the landscape of fP. In order

to do it we need to write fP(w, x) = f ◦ σ(X) with f : Rd → R a symmetric sign-

invariant convex function. An easy way to do this is to define

f (s1, . . . , sd) = E


∣∣∣∣∣∣∣

d∑
i=1

`irisi

∣∣∣∣∣∣∣
 .

where `, r ∼ N(0, Id) The next lemma shows that the function is actually differ-

entiable at every point but zero. We defer the proof of this result to Section 6.6.3.

Lemma 6.4.4. For any nonzero vector s ∈ Rd
+ \ {0}, the partial derivatives of f satisfy

∂ f
∂s j

(s) =

√
2
π

s j E

`2
j

 d∑
i

(`isi)2

−
1
2
 . (6.15)

This lemma gives us the final tool to derive the main theorem regarding the

landscape of fP.

Theorem 6.4.5. The set of critical points of the population objective gP is exactly

{0} ∪ {(w, x) | wx> = w̄x̄>} ∪ {(w, x) | 〈w, w̄〉 = 0, 〈x, x̄〉 = 0, and wx> = 0}.

Proof. Notice that (w̄, x̄) minimizes the population objective fP, therefore Theo-

rem 6.4.3 gives a complete description of the critical points. Let us examine each

one of the conditions in this theorem.

The points in {(w, x) | wx> = w̄x̄>} and {0} are contained in the set of stationary

points because they satisfy the first and second condition, respectively.

Now, let (w, x) ∈ {w̄}⊥ × {x̄}⊥ such that wx> = 0. Thus, the matrix X is rank

1, and consequently (6.15) reveals that that any Y ∈ ∂ fσ(X) satisfies σ(Y) =
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∇ f (σ(X)) = (2/π, 0, . . . , 0). Therefore, due to (6.14), we get Y = 2
π
w̄x̄>/‖w̄‖‖x̄‖.

Without loss of generality, assume x is not zero. Then, ‖Y x‖ = 2
π‖w̄‖‖x̄‖ |〈x, x̄〉| = 0

and, consequently, (w, x) is stationary.

On the other hand, let (w, x) ∈ {w̄}⊥ × {x̄}⊥ such that 0 < ‖wx>‖ < ‖w̄x̄>‖.

Therefore, the matrix X is rank 2 and so (6.15) gives that σ2(Y) > 0 for all Y ∈

∂ fσ(X). Hence, (w, x) is not a stationary point, giving the result. �

6.4.3 Sample objective

In this section, we describe the approximate locations of the critical points of the

sample objective. Unlike in the smooth case, nonsmooth losses do not exhibit

point-wise concentration of the subgradients, or in other words, ∂ fS (w, x) does

not converges to ∂ fP(w, x) as m → ∞. To overcome this obstacle, we show that

the graph of ∂ fS approaches that of ∂ fP at a quantifiable rate. Intuitively, if (w, x)

is a critical point of fS , then nearby there exists a point (ŵ, x̂) with dist(0, ∂ fP(ŵ, x̂))

small.

The following result can be regarded as an analogous version of Theo-

rem 6.4.5 for the sample objective. The proof of this result is more involved

and will require us to study the location of epsilon critical points of the popu-

lation. We defer the development of these arguments and the proof of the next

result to Sections 6.6.3 and 6.6.3, respectively.

Theorem 6.4.6. Consider the sample objective (6.9) generated with two Gaussian ma-

trices L and R. For any fixed ν > 1 there exist numerical constants c1, c2, c3 > 0 such

that if m ≥ c1(d1 + d2 + 1), then with probability at least 1 − c2 exp(−c3(d1 + d2 + 1)),

every stationary point (w, x) of fS for which ‖(w, x)‖ ≤ ν‖(w̄, x̄)‖ satisfies at least one of
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the following conditions

1. (Near zero)

‖(w, x)‖ ≤ ‖(w̄, x̄)‖∆,

2. (Near a solution)

‖wx> − w̄x̄>‖ . (ν2 + 1)‖w̄x̄>‖∆,

3. (Near orthogonal) 
|〈w, w̄〉| . (ν2 + 1)‖(w, x)‖‖w̄‖∆,

|〈x, x̄〉| . (ν2 + 1)‖(w, x)‖‖x̄‖∆.

where ∆ =
(

d1+d2+1
m log

(
m

d1+d2+1

)) 1
2
.

6.5 Numerical Experiments

In this section we demonstrate the performance and stability of the prox-linear

and subgradient methods, and the initialization procedure, when applied to

real and artificial instances of Problem (6.2). All experiments were performed

using the programming language Julia [22]. A reference implementation and

code for the experiments is available in https://github.com/COR-OPT/

RobustBlindDeconv.

Subgradient method implementation. Implementation of the subgradient

method for Problem (6.2) is simple, and has low per-iteration cost. Indeed, one
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may simply choose the subgradient

1
m

m∑
i=1

sign(〈`i,w〉〈x, ri〉 − y)

〈x, ri〉

`i

0

 + 〈`i,w〉

0

ri


 ∈ ∂ f (w, x),

where sign(t) denotes the sign of t, with the convention sign(0) = 0. The cost

of computing this subgradient is on the order of four matrix multiplications.

When applying Algorithm 3, choosing the correct parameters is important, since

its convergence is especially sensitive to the value of the step-size decay q; the

experiment described in Section 6.5.1 demonstrates this sensitivity. Setting λ =

1.0 sufficed for all the experiments depicted hereafter.

Prox-linear method implementation. Recall that the convex models used by

the prox-linear method take the form:

f(wk ,xk)(w, x) =
1
m
‖A(wkx>k + wk(x − xk)> + (w − wk)x>k ) − y‖1 (6.16)

Equivalently, one may rewrite this expression as a Least Absolute Deviation

(LAD) objective:

f(wk ,xk)(w, x) =
1
m

m∑
i=1

∣∣∣∣ ( 〈xk, ri〉`
>
i 〈`i,wk〉r>i

)
︸                         ︷︷                         ︸

Ai

w − wk

x − xk

︸    ︷︷    ︸
z

− (bi − 〈`i,wk〉〈xk, ri〉)︸                   ︷︷                   ︸
b̃i

∣∣∣∣

=
1
m
‖Az − ỹ‖1 .

Thus, each iteration of Algorithm 4 requires solving a strongly convex optimiza-

tion problem:

zk+1 = arg min
z∈Sν

{
1
m
‖Az − ỹ‖1 +

1
2α
‖z‖22

}
.
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Motivated by the work of [89] on robust phase retrieval, we solve this subprob-

lem with the graph splitting variant of the Alternating Direction Method of Mul-

tipliers, as described in [200]. This iterative method applies to problems of the

form

min
z∈X

1
m
‖t − ỹ‖1 +

1
2α
‖z‖22

s.t. t = Az.

The ADMM method takes the form:

z′ ← arg min
z∈Sν

{
1

2α
‖z‖22 +

ρ

2
‖z − (zk − λk)‖22

}
t′ ← arg min

t

{
1
m
‖t − ỹ‖1 +

ρ

2
‖t − (tk − νk)‖22

}
z+

t+

←
Id1+d2 A>

A −Im


−1 Id1+d2 A>

0 0


z
′ + λ

t′ + ν


λ+ ← λ + (z′ − z+), ν+ ← ν + (t′ − t+),

where λ ∈ Rd1+d2 and ν ∈ Rm are dual multipliers and ρ > 0 is a control parameter.

Each above step may be computed analytically. We found in our experiments

that choosing α = 1 and ρ ∼ 1
m yielded fast convergence. Our stopping cri-

teria for this subproblem is considered met when the primal residual satisfies

‖(z+, t+) − (z, t)‖ ≤ εk ·
(√

d1 + d2 + max {‖z‖2 , ‖t‖2}
)

and the dual residual satisfies

‖(λ+, ν+) − (λ, ν)‖ ≤ εk ·
(√

d1 + d2 + max {‖λ‖2 , ‖ν‖2}
)

with εk = 2−k.

6.5.1 Artificial Data

We first illustrate the performance of the prox-linear and subgradient methods

under noise model N1 with i.i.d. standard Gaussian noise ξi. Both methods are
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initialized with Algorithm 6. We experimented with Gaussian noise of vary-

ing variances, and observed that higher levels did not adversely affect the per-

formance of our algorithm. This is not surprising, since the theory suggests

that both the objective and the initialization procedure are robust to gross out-

liers. We analyze the performance with problem dimensions d1 ∈ {400, 1000}

and d2 = 500 and with number of measurements m = c · (d1 + d2) with c varying

from 1 to 8. In Figures 6.4 and 6.5, we have depicted how the quantity∥∥∥wkx>k − w̄x̄>
∥∥∥

F

‖w̄x̄>‖F

changes per iteration for the prox-linear and subgradient methods. We con-

ducted tests in both the moderate corruption (pfail = .25) and high corruption

(pfail = .45) regimes. For both methods, under moderate corruption (pfail = .25)

we see that exact recovery is possible as long as c ≥ 5. Likewise, even in high

corruption regime (pfail = .45) exact recovery is still possible as long as c ≥ 8. We

also illustrate the performance of Algorithm 2 when there is no corruption at all

in Figure 6.4, which converges an order of magnitude faster than Algorithm 3.

In terms of algorithm performance, we see that the prox-linear method takes

few outer iterations, approximately 15, to achieve very high accuracy, while the

subgradient method requires a few hundred iterations. This behavior is ex-

pected as the prox-linear method converges quadratically and the subgradient

method converges linearly. Although the number of iterations of the prox-linear

method is small, we demonstrate in the sequel that its total run-time, including

the cost of solving subproblems, can be higher than the subgradient method.

Interestingly, Figure 6.5 shows how the performance of the prox-linear method

stagnates for the first few iterations before dropping at a quadratic rate. This

might indicate that for these choices of c the initialization procedure outputs

a point slightly outside of the region of quadratic convergence. Another pos-
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sibility is that the levels of accuracy set for solving the proximal subproblems,

εt := 2−t, t = 1, . . . ,T , are not “fine” enough for the first few iterations.

Number of matrix-vector multiplications

Each iteration of the prox-linear method requires the numerical resolution of a

convex optimization problem. We solve this subproblem using the graph split-

ting ADMM algorithm, as described in [200], the cost of which is dominated by

the number of matrix vector products required to reach the target accuracy. The

number of “inner iterations” of the prox-linear method and thus the number of

matrix vector products is not determined a priori. The cost of each iteration of

the subgradient method, on the other hand, is on the order of 4 matrix vector

products. In the subsequent plots, we solve a sequence of synthetic problems

for d1 = d2 = 100 and keep track of the total number of matrix-vector multi-

plications performed. We run both methods until we obtain ‖
wx>−w̄x̄>‖F
‖w̄x̄>‖F

≤ 10−5.

Additionally, we keep track of the same statistics for the subgradient method.

We present the results in Fig. 6.6. We observe that the number of matrix-vector

multiplications required by the prox-linear method can be much greater than

those required by the subgradient method. Additionally, they seem to be much

more sensitive to the ratio m
d1+d2

.

Choice of step size decay

Due to the sensitivity of Algorithm 3 to the step size decay q, we experiment

with different choices of q in order to find an empirical range of values which

yield acceptable performance. To that end, we generate synthetic problems of
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Convergence of subgradient method
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Figure 6.4: Error
∥∥∥wkx>k − w̄x̄>

∥∥∥
F
/
∥∥∥w̄x̄>
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F

vs iteration count. Top row is using
Algorithm 3 with pfail = 0.25. Second row is using Algorithm 3 with pfail = 0.45.
Third row is using Algorithm 2 with pfail = 0.
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Convergence of prox-linear method
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Figure 6.5: Error
∥∥∥wkx>k − w̄x̄>

∥∥∥
F
/
∥∥∥w̄x̄>

∥∥∥
F

vs iteration count for an application of
Algorithm 4 in the two settings: pfail = 0.25 (top row) and pfail = 0.45 (bottom
row).

dimension 100 × 100 and choose q ∈ {0.90, 0.905, . . . , 0.995}, and record the aver-

age error of the final iterate after 1000 iterations of the subgradient method for

different choices of m = c · (d1 + d2). The average is taken over 50 test runs with

λ = 1.0. We test both noisy and noiseless instances to see if corruption of entries

significantly changes the effective range of q. Results are shown in Fig. 6.7.
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Number of matrix-vector multiplications
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Figure 6.6: Matrix-vector multiplications to reach rel. accuracy of 10−5.
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Figure 6.7: Final normalized error
∥∥∥wkx>k − w̄x̄>

∥∥∥
F
/
∥∥∥w̄x̄>
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for Algorithm 3 with
different choices of q, in the settings pfail = 0 (left) and pfail = 0.25 (right).

Robustness to noise

We now empirically validate the robustness of the prox-linear and subgradi-

ents algorithms to noise. In a setup familiar from other recent works [89, 8], we

generate phase transition plots, where the x-axis varies with the level of corrup-

tion pfail, the y-axis varies as the ratio m
d1+d2

changes, and the shade of each pixel

represents the percentage of problem instances solved successfully. For every
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configuration (pfail,m/(d1 + d2)), we run 100 experiments.

Noise model N1 - independent noise Initially, we experiment with Gaussian

random matrices and (d1, d2) ∈ {(100, 100), (200, 200)}, the results for which can

be found in the top row of Fig. 6.8.

The phase transition plots are similar for both dimensionality choices, re-

vealing that in the moderate independent noise regime (pfail ≤ 25%), setting

m ≥ 4(d1 + d2) suffices. On the other hand, for exact recovery in high noise

regimes (pfail ' 45%), one may need to choose m as large as 8 · (d1 + d2).

Noise model N2 - arbitrary noise We now repeat the previous experiments,

but switch to noise model N2. In particular, we now adversarially hide a differ-

ent signal in a subset of measurements, i.e., we set

bi =


〈`i, w̄〉〈x̄, ri〉, i < Iin,

〈`i, w̄imp〉〈x̄imp, ri〉 i ∈ Iout,

where in the above (w̄imp, x̄imp) ∈ Rd1 × Rd2 is an arbitrary pair of signals. Intu-

itively, this is a more challenging noise model than N1, since it allows an adver-

sary try to trick the algorithm into recovering an entirely different signal. Our

experiments confirm that this regime is indeed more difficult for the proposed

algorithms, which is why we only depict the range pfail ∈ [0, 0.38] in the bottom

row of Fig. 6.8 below.
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Robustness to noise
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Figure 6.8: Empirical recovery probabilities for matrix model M and noise mod-
els N1 (top) and N2 (bottom) across 100 independent runs using Algorithm 3.
Lighter cells imply higher recovery probability.

6.5.2 Performance of initialization on real data

We now demonstrate the proposed initialization strategy on real world images.

Specifically, we set w̄ and x̄ to be two random digits from the training sub-

set of the MNIST dataset [140]. In this experiment, the measurement matrices

L,R ∈ R(16·784)×784 have i.i.d. Gaussian entries, and the noise follows Model N1

with pfail = 0.45. We apply the initialization method and plot the resulting im-

ages (initial estimates) in Fig. 6.9. Evidently, the initial estimates of the images

are visually similar to the true digits, up to sign; in other examples, the fore-

ground appears to be switched with the background, which corresponds to the

natural sign ambiguity. Finally, we plot the normalized error for the two recov-
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ery methods (subgradient and prox-linear) in Fig. 6.10.

Spectral initialization for grayscale image recovery

Figure 6.9: Digits 5, 6 (top) and 9, 6 (bottom). Original images are shown on
the left, estimates from spectral initialization on the right. Parameters: pfail =

0.45,m = 16 · 784.
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Figure 6.10: Relative error vs iteration count on mnist digits for subgradient
method (left) and prox-linear method (right).
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6.5.3 Experiments on Big Data

We apply the subgradient method for recovering large-scale real color images

W, X ∈ Rn×n×3. In this setting, pfail = 0.0 so using Algorithm 2 is applicable with

minX f = 0. We “flatten” the matrices W, X into 3n2 dimensional vectors w, x. In

contrast to the previous experiments, our sensing matrices are of the following

form:

L =


HS 1

...

HS k

 , R =


HS ′1
...

HS ′k

 ,
where H ∈ {−1, 1}d×d /

√
d is the d × d symmetric normalized Hadamard ma-

trix and S i = diag(s1, . . . , sd), where s ∼i.i.d {−1, 1}, is a diagonal random sign

matrix. The same holds for S ′i . Notice that we can perform the operations

w 7→ Lw, x 7→ Rx in O(kd log d) time: we first form the elementwise product

between the signal and the random signs, and then take its Hadamard trans-

form, which can be performed in O(d log d) flops. We can efficiently compute

p 7→ L>p, q 7→ R>q, required for the subgradient method, in a similar fashion.

We recover each channel separately, which means we essentially have to solve

three similar minimization problems. Notice that this results in dimensionality

d1 = d2 = n2, m = kn2 for each channel.

We observed that our initialization procedure (Algorithm 6) is extremely ac-

curate in this setting. Therefore to better illustrate the performance of the local

search algorithms, we perform the following heuristic initialization. For each

channel, we first sample ŵ, x̂ ∼ Sd−1, rescale by the true magnitude of the signal,

and run Algorithm 2 for one step to obtain our initial estimates w0, x0.

An example where we recover a pair of 512 × 512 color images using the
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Polyak subgradient method (Algorithm 2) is shown below; Fig. 6.11 shows the

progression of the estimates wk, up until the 90-th iteration, while Fig.6.12 de-

picts the normalized error at each iteration for the different channels of the im-

ages.

Iterates of subgradient method in color image recovery

Figure 6.11: Iterates w10i, i = 1, . . . , 9. (m, k, d, n) = (222, 16, 218, 512).
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Figure 6.12: Normalized error for different channels in image recovery.

6.5.4 Experiments on complex blind deconvolution

In this section, we experiment on a realistic instance of the blind deconvolution

problem, following [8, 153]. Throughout, the measurement vectors `i and ri are

complex and the vectors `i are moreover deterministic. Note that this setting is

outside the scope of our guarantees, which require all the vectors `i and ri to be

stochastic; nonetheless, we will see that the proposed methods work well even

in this setting.

Recall that the complex vector space Cn is endowed with the Hermitian in-

ner product 〈x, y〉 := xHy =
∑n

i=1 x̄ibi, which satisfies 〈x, y〉 = 〈y, x〉. In the space

of matrices Cm×n, the inner product is defined in an analogous fashion, with

〈A, B〉 := Tr(AH B), with AH denoting the Hermitian transpose of A. Additionally,

we write <(z),=(z) for the real and imaginary parts of z, understood to hold

elementwise if z is a vector.

In the blind deconvolution problem, we observe the circular convolution of
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two signals u and v, so that the measurements are

y j =

m∑
i=1

uiv( j−i+1) mod m. (6.17)

In (6.17), we assume that there is no observation noise for the sake of simplicity.

A standard assumption is that u, v lie in known low-dimensional subspaces of

Rm of dimensions d1, d2 respectively, so that

u = Bw], v = Cx]

To recast this problem as a bilinear sensing problem, we may pass to the Fourier

domain. Denote by Fm the m × m DFT matrix, with elements

(Fm)i j := exp
(
−ι2π

(i − 1)( j − 1)
m

)
,

where we set ι =
√
−1, and also define

L = FmB ∈ Cm×d1 , R = FmC ∈ Cm×d2 .

Then, following standard arguments (see e.g. [8]) the equivalent model to (6.17)

in the Fourier domain is

ŷi = 〈`i,w]〉 · 〈x], ri〉.

A common choice for B is the matrix

Id1

0

 [8, 153, 167], which leads to the partial

DFT matrix L ∈ Rm×d1 formed by taking the first d1 columns of Fm and used in

the experiments below. On the other hand, C is often assumed to have i.i.d.

Gaussian entries, so that the entries of R are also i.i.d. and follow the complex

Gaussian distribution. For simplicity, we relabel ŷ to y in the sequel.

We therefore consider the nonsmooth formulation of the problem

min
‖w‖,‖x‖≤ν

√
Φ

1
m

m∑
i=1

|〈`i,w〉〈x, ri〉 − yi| , (6.18)

259



where |x| denotes the magnitude of the complex number x. With the help of

Wirtinger calculus [133], we describe the extension of the subgradient method

in the complex domain. The Wirtinger derivatives of a complex function f (z)

with z = x + iy, (x, y) ∈ Rn × Rn are given by

∂ f
∂z

=
1
2

(
∂ f
∂x
− i

∂ f
∂y

)
∂ f
∂z̄

=
1
2

(
∂ f
∂x

+ i
∂ f
∂y

)
where, x 7→ x̄ denotes complex conjugation. The chain rule of Wirtinger cal-

culus, summarized below, is useful in formally defining a subgradient of the

nonsmooth objective:

∂( f ◦ g)
∂z

=

(
∂ f
∂z
◦ g

)
∂g
∂z

+

(
∂ f
∂z̄
◦ g

)
∂ḡ
∂z

(6.19)

∂( f ◦ g)
∂z̄

=

(
∂ f
∂z
◦ g

)
∂g
∂z̄

+

(
∂ f
∂z̄
◦ g

)
∂ḡ
∂z̄

(6.20)

We now compute the Wirtinger derivative of the real-valued function

fS (w, x) =
1
m

m∑
i=1

|〈`i,w〉〈x, ri〉 − yi| =
1
m

m∑
i=1

∣∣∣A(wxH)i − yi

∣∣∣ ,
with A(X) =

{
`H

i Xri

}m

i=1
the corresponding operator for the complex case. By the

definition of the Wirtinger derivatives, it’s easy to see that

∂ |z|
∂z̄

∣∣∣∣∣
z=zk

=


0, zk = 0 + 0 j

zk
2|zk |
, otherwise

. (6.21)

In this way, the linearization around zk based on the Wirtinger gradient (see [133,

pp. 20-21]) satisfies |z| ≥ |zk| + 2< (〈g(zk), z − zk〉) , g(z) := ∂|z|
∂z̄ , after elementary

calculations, much like its Rn-counterpart.

With this in hand, the application of the chain rule from Eq. (6.20) gives us
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that

∂ fS (w, x) 3 ζk :=


∂ f
∂w̄

∂ f
∂x̄

 =
1
m

m∑
i=1

1
|〈`i,wk〉〈xk, ri〉 − yi|

 (〈`i,w〉〈xk, ri〉 − yi)〈ri, xk〉`i

(〈wk, `i〉〈ri, xk〉 − ȳi)〈`i,wk〉ri


In the above, we make the convention that when z = 0, we set z

|z| = 0, as in (6.21).

Experiments. To avoid confusion due to the conjugate notation, in this section

we will denote the ground truth signals by w] and x], respectively. We repeat the

synthetic experiment under noise model N1 for the case of complex measure-

ments. Specifically, we form the left measurement matrix L ∈ Cm×d by taking the

first d columns of the (unnormalized) m × m discrete Fourier transform (DFT)

matrix, with LHL = mId. For the right measurement matrix R ∈ Cm×d, we set all

entries equal to i.i.d. complex Gaussian random variables:

(R)i,k =

√
1
2

(
Xi,k + jYi,k

)
, Xi,k,Yi,k ∼ N(0, 1) (6.22)

These are precisely the measurement matrices used in [153], the authors of

which also provide a spectral initialization to find an ε-close initial estimate.

However, this initialization requires m � d log d, so we opt for an artificial ini-

tialization as shown in (6.23), with δ := 0.25:

w0 := w] + δgw, x0 := x] + δgx, gx, gw ∼ Unif(Sd−1). (6.23)

We apply the subgradient methods from Algorithms 2 and 3, with the subgradi-

ent now calculated using Wirtinger calculus, as illustrated above. In Figure 6.13,

we generate synthetic instances with
∥∥∥w]

∥∥∥ =
∥∥∥x]

∥∥∥ = 1 and pfail ∈ {0, 0.25, 0.45} and

evaluate the performance of our methods over a variety of measurement ratios

c := m
d . We verify the linear rate of convergence of the projected subgradient
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method, as well as the effect of pfail on the number of measurements required to

converge to a minimizer. We observe that the partial DFT setting requires us to

set m as big as 10 · d for the highest corruption levels.

Robustness to signal incoherence. For completeness, we evaluate the sensi-

tivity of the nonsmooth formulation (6.2) to the incoherence between w] and the

rows of L, given by

µ2
h :=

∥∥∥Lw]

∥∥∥2

∞∥∥∥w]

∥∥∥2

2

(6.24)

Intuitively, µ2
h captures the maximal correlation between rows of L and w̄;

in [153] the authors argue that signals with high µ2
h are the hardest to recover

for smooth formulations. We generate noiseless instances where L is the partial

m × d DFT matrix and R is a complex Gaussian matrix following (6.22), for a

range of values of µ2
h; for each such value, we set x] ∼ Unif(Sd−1) and w] equal

to a vector with µ2
h nonzero elements equal to 1 and all else equal to 0 (followed

by normalization so that w] ∈ S
d−1), which attains incoherence exactly µ2

h for this

choice of L, following [153]. For simplicity, we set w0, x0 ∼ Unif(Sd−1), d = 100

and m = 8 · 2d and compare:

(i) the performance of Algorithm 2 applied to the objective (6.2),

(ii) the performance of gradient descent ( using the Wirtinger gradient) with

Polyak stepsize on the smooth counterpart of (6.2), where we replace the

`1-norm with the squared `2 loss as:

fsmooth(w, x) :=
1
m

m∑
i=1

(
〈`i,w〉〈ri, x〉 − bi

)2 (6.25)

(iii) the performance of gradient descent applied to (6.25) with a fixed step-

size η chosen among 2−i, i ∈ 1, . . . , 15 so that the final iterate distance is
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Convergence of subgradient method for complex blind deconvolution
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Figure 6.13: Convergence plot for synthetic instances in the complex domain,
using m = c · d. Left: d = 250. Right: d = 500. Top 2 rows: Algorithm 3 with
pfail ∈ {0.25, 0.45}. Bottom row: Algorithm 2 with pfail = 0.
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Convergence of subgradient vs. gradient method as a function of
incoherence
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Figure 6.14: Convergence behavior of Algorithm 2 for minimizing (6.2) vs. gra-
dient descent for minimizing its smooth counterpart for d = 100 and incoher-
ences µ2

h ∈ {12, 23, 89, 100} (clockwise, starting from top left).

minimized.

Figure 6.14 illustrates that the nonsmooth objective is much more robust

to variations on the incoherence of µ2
h. As additional empirical evidence, Fig-

ure 6.15 shows the average ± one standard deviation of the number of iterations

required to reach normalized distance 10−5 for the two formulations, minimized

using the Polyak stepsize. Perhaps surprisingly, the nonsmooth version remains

practically constant over all choices of µ2
h.

Finally, we generate a few transition plots for d ∈ {100, 200} that illustrate

the effects of incoherence on the nonsmooth and smooth flavors of the recovery

objective. Following the setting of [153], we choose 10 equispaced values for

264



Iteration complexity vs. signal incoherence
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Figure 6.15: Average number of iterations to reach normalized distance 10−5 for
Algorithm 2 applied to (6.2) vs. gradient descent with Polyak stepsize applied
to objective (6.25). Dashed lines are average over 25 independent realizations
with error bars indicating one standard deviation.

µ2
h ∈ [1, d] and plot the empirical probability of recovery over 50 independent

runs for various ratios m
2d . We consider the result of a run successful if it satis-

fies
∥∥∥∥wt x>t −w]x>]

∥∥∥∥
F∥∥∥∥w]x>]

∥∥∥∥
F

≤ 10−5 after at most 1000 iterations. Figure 6.16 shows that the

nonsmooth objective is far more robust to signal incoherence, but it also reveals

that it is not entirely unaffected by it; in particular, we can see that we need a

higher threshold m
2d to recover signals with higher incoherence after fixing the

dimension d.
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Robustness to signal incoherence
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Figure 6.16: Empirical recovery probabilities for various values of
(

m
2d , µ

2
h

)
over

50 independent trials. Lighter cells imply higher recovery probability. Left:
Algorithm 2. Right: gradient descent with Polyak stepsize minimizing (6.25).
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6.6 Analysis

6.6.1 Proofs in Section 6.2

Proof of Proposition 6.2.1

Without loss of generality, we assume that Φ = 1 (by rescaling) and that w̄ = e1 ∈

Rd1 and x̄ = e1 ∈ Rd2 (by rotation invariance). Recall that the distance to S∗ν may

be written succinctly as

dist((w, x),S∗ν) =

√
inf

(1/ν)≤|α|≤ν

{
‖w − αw̄‖22 + ‖x − (1/α)x̄ ‖22

}
.

Before we establish the general result, we first consider the simpler case,

d1 = d2 = 1.

Claim 3. The following bound holds:

|wx − 1| ≥
1
√

2
·
√

inf
(1/ν)≤|α|≤ν

{
|w − α|2 + |x − (1/α)|2

}
,

for all w, x ∈ [−ν, ν].

Proof of Claim. Consider a pair (w, x) ∈ R2 with |w|, |x| ≤ ν. It is easy to see that

without loss of generality, we may assume w ≥ |x|. We then separate the proof

into two cases, which are graphically depicted in Figure 6.17.

Case 1: w − x ≤ ν2−1
ν

. In this case, we will traverse from (w, x) to the S∗ν in the

direction (1, 1). See Figure 6.17. First, consider the equation

wx −
√

2(w + x)t + t2/2 = 1,
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Figure 6.17: The regions K1, K2 correspond to cases 1 and 2 of the proof of
Claim 3, respectively.

in the variable t and note the equality

wx −
√

2(w + x)t + t2/2 = (w − t/
√

2)(x − t/
√

2).

Using the quadratic formula to solve for t, we get

t =
√

2(w + x) −
√

2(w + x)2 − 2(wx − 1).

Note that the discriminant is nonnegative since

(w + x)2 − (wx − 1) = w2 + x2 + xw + 1 ≥ 1.

Set α = (w − t/
√

2) and note the identity 1/α = (x − t/
√

2). Therefore,

|wx − 1| = |(1/α)(w − α) + α(x − 1/α) + (w − α)(x − 1/α)|

= |(x − t/
√

2)(t/
√

2) + (w − t/
√

2)(t/
√

2) + t2/2|

=
|t|
√

2
|(w + x) − t/

√
2| =

|t|
2

√
2(w + x)2 − 2(wx − 1) ≥

|t|
√

2
.

Observe now the equality

|t|
√

2
=

1
√

2
· (|w − α|2 + |x − 1/α|2)1/2.

Hence it remains to bound α. First we note that α ≥ 0, 1/α ≥ 0, since

α + 1/α = (w − t/
√

2) + (x − t/
√

2)

= −(w + x) + 2
√

(w + x)2 − (wx − 1) ≥ 0.
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In addition, since w ≥ x, we have α = w− t/
√

2 ≥ x− t/
√

2 = 1/α. Since α and 1/α

are positive, we must therefore have α ≥ 1 ≥ 1/ν. Thus, it remains to verify the

bound α ≤ ν. To that end, notice that

1/α = x − t/
√

2 ≥ w − t/
√

2 −
ν2 − 1
ν

= α −
ν2 − 1
ν

.

Therefore, ν2−1
ν
≥ α2−1

α
. Since the function t 7→ t2−1

t is increasing, we deduce α ≤ ν.

Case 2: w − x ≥ ν2−1
ν

. In this case, we will simply set α = ν. Define

t =
(
(w − ν)2 + (x − 1/ν)2

)1/2
, a =

w − ν
t

, and b =
x − 1/ν

t
.

Notice that proving the desired bound amounts to showing |wx − 1| ≥ t
√

2
. Ob-

serve the following estimates

a, b ≤ 0, b ≤ a, a2 + b2 = 1, and t ≤ −
1

(a + b)

(
ν2 + ν

ν

)
,

where the the first inequality follows from the bounds w ≤ ν and ν ≥ w ≥ x +

ν− 1/ν, second inequality follows from the bound w− x ≥ (ν2 − 1)/ν, the equality

follows from algebraic manipulations, and the third inequality follows from the

estimate w + x ≥ 0. Observe

|wx − 1| = |(ν + ta)(1/ν + tb) − 1| = |t2ab + tνb + ta/ν|.

Thus, by dividing through by t, we need only show that

|tab + νb + a/ν| ≥
1
√

2
. (6.26)

To prove this bound, note that since 2b2 ≥ a2 + b2 = 1, we have the −νb − a/ν ≥

−νb ≥ 1/
√

2. Therefore, in the particular case when ab = 0 the estimate 6.26

follows immediately. Define the linear function p(s) := −(ab)s− νb− a/ν. Hence,
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assume ab , 0. Notice p(0) ≥ 1/
√

2. Thus it suffices to show that the solution s∗

of the equation p(s) = 1/
√

2 satisfies s∗ ≥ t. To see this, we compute:

s∗ = −
1

ab

(
νb + a/ν +

1
√

2

)
= −

1
(a + b)

(a + b)
(
ν

a
+

1
bν

+
1
√

2ab

)
= −

1
(a + b)

(
ν

(
1 +

b
a

)
+

1
ν

(
1 +

a
b

)
+

1
√

2

(
1
a

+
1
b

))
≥ −

1
(a + b)

(
ν +

1
ν

(
1 +

a
b

+
b
a

+
1
√

2b
+

1
√

2a

))

= −
1

(a + b)

ν +
1
ν

1 +

√
2
(
a2 + b2

)
− (|a| + |b|)

√
2ab




= −
1

(a + b)

ν +
1
ν

1 +

√
2 − (|a| + |b|)
√

2ab


≥ −

1
(a + b)

(
ν +

1
ν

)
≥ t,

where the first inequality follows since ν ≥ 1 and the second inequality follows

since a2 + b2 = 1 and
√

2‖(a, b)‖2 ≥ ‖(a, b)‖1, as desired. �

Now we prove the general case. First suppose that ‖wx>− w̄x̄>‖F ≥ 1/2. Since

‖w − w̄‖2 ≤ (ν + 1) and ‖x − x̄‖2 ≤ (ν + 1), we have

dist((w, x),S∗ν) ≤
√

2(ν + 1) ≤ 2
√

2(ν + 1)‖wx> − w̄x̄>‖F ,

which proves the desired bound.

On the other hand, suppose that ‖wx> − w̄x̄>‖F < 1/2. Define the two vectors:

w̃ = (w1, 0, . . . , 0)> ∈ Rd1 and x̃ = (x1, 0, . . . , 0)> ∈ Rd2 .

With this notation, we find that by Claim 3, there exists an α satisfying (1/ν) ≤
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|α| ≤ ν, such that the following holds:

‖wx> − w̄x̄>‖2F = ‖wx> − w̃x̃> + w̃x̃> − w̄x̄>‖2F

= ‖wx> − w̃x̃>‖2F + ‖w̃x̃> − w̄x̄>‖2F

≥ ‖wx> − w̃x̃>‖2F +
1
2

(
‖w̃ − αw̄‖2F + ‖x̃ − (1/α)x̄‖2F

)
.

We now turn our attention to lower bounding the first term. Observe since

|w1x1 − w̄1 x̄1| ≤ ‖wxT − w̄x̄T ‖F < 1/2, we have

|w1x1| ≥ |w̄1 x̄1| − |w1x1 − w̄1 x̄1| ≥ (1/2)|w̄1 x̄1| = 1/2,

Moreover, note the estimates, ν|w1| ≥ |x1||w1| ≥ 1/2 and ν|x1| ≥ |x1||w1| ≥ 1/2,

which imply that |w1| ≥ 1/2ν and |x1| ≥ 1/2ν. Thus, we obtain the lower bound

‖wx> − w̃x̃>‖2F = ‖(w − w̃)x̃> + w̃(x − x̃)> + (w − w̃)(x − x̃)>‖2F

= |x1|
2‖w − w̃‖2 + |w1|

2‖x − x̃‖22 + ‖(w − w̃)(x − x̃)>‖2F

≥ |x1|
2‖w − w̃‖22 + |w1|

2‖x − x̃‖22

≥

(
1
2ν

)2 (
‖w − w̃‖22 + ‖x − x̃‖22

)
.

Finally, we obtain the bound

‖wx> − w̄x̄>‖2F ≥ ‖wx> − w̃x̃>‖2F +
1
2

(
‖w̃ − αw̄‖2F + ‖x̃ − (1/α)x̄‖2F

)
≥

(
1
2ν

)2 (
‖w − w̃‖22 + ‖x − x̃‖22

)
+

1
2

(
‖w̃ − αw̄‖22 + ‖x̃ − (1/α)x̄‖22

)
≥ min

1
2
,

(
1
2ν

)2
 (
‖w − w̃‖22 + ‖x − x̃‖22 + ‖w̃ − αw̄‖22 + ‖x̃ − (1/α)x̄‖22

)
=

(
1
2ν

)2

· dist2((w, x),S∗ν).

By recalling that 1/2ν ≥ 1/2
√

2(ν + 1), the proof is complete.
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6.6.2 Proofs in Section 6.3

Proof of Proposition 6.3.1

As stated in Section 6.3, we first verify that Linit and Rinit are nearby matrices with

minimal eigenvectors equal to w̄? and x̄?. Then we apply the Davis-Kahan sin θ

theorem [65] to prove that the minimal eigenvectors of Linit and Rinit must also

be close to the optimal directions.

Throughout the rest of the proof, we define the sets of “selected” inliers and

outliers:

Isel
in = Iin ∩ I

sel and Isel
out = Iout ∩ I

sel.

We record the relative size of these parameters as well, since they appear in the

bounds that follow:

S in :=
1
m

∣∣∣Isel
in

∣∣∣ and S out =
1
m

∣∣∣Isel
out

∣∣∣ .
Theorem 6.6.1. There exist numerical constants c1, c2, c3, c4, c5 > 0, so that for any

pfail ∈ [0, 1/10] and t ∈ [0, 1], with probability at least 1 − c1(exp (−c2mt) the following

hold:

1. Under noise model N1

Linit = (S in + S out)Id1 − γ1w̄?w̄>? + ∆1, Rinit = (S in + S out)Id2 − γ2 x̄? x̄>? + ∆2,

where γ1 ≥ c3 and γ2 ≥ c4 and

max{‖∆1‖op, ‖∆2‖op} ≤ c5


√

max{d1, d2}

m
+ t

 .
2. Under noise model N2

Linit = S inId1 − γ1w̄?w̄>? + ∆1, Rinit = S inId2 − γ2 x̄? x̄>? + ∆2,
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where γ1 ≥ c3 and γ2 ≥ c4 and

max{‖∆1‖op, ‖∆2‖op} ≤ pfail + c5


√

max{d1, d2}

m
+ t

 .
Proof. Without loss of generality, we only prove the result for Linit; the result for

Rinit follows by a symmetric argument.

Define the projection operators Pw̄?
:= w̄?w̄>? and let P⊥w̄?

:= I − w̄?w̄>?. Then

decompose Linit into the sums of four matrices Y0,Y1,Y2,Y3, as follows:

Linit =
1
m

( ∑
i∈Isel

in

Pw̄?
`i`
>
i Pw̄?︸              ︷︷              ︸

m·Y0

+
∑
i∈Isel

in

(
Pw̄?

`i`
>
i P⊥w̄?

+ P⊥w̄?
`i`
>
i Pw̄?

)
︸                                    ︷︷                                    ︸

m·Y1

+
∑
i∈Isel

in

P⊥w̄?
`i`
>
i P⊥w̄?︸              ︷︷              ︸

m·Y2

+
∑

i∈Isel
out

`i`
>
i︸   ︷︷   ︸

m·Y3

)
.

(6.27)

We will now study the properties of these four matrices under both noise mod-

els.

First, note that in either case we may write Y0 = y0w̄?w̄>?, where

y0 :=
1
m

∑
i∈Isel

in

(`>i w̄?)2.

In addition, we will present a series of Lemmas showing the following high

probability deviation bounds:

γ1 := S in − y0 & 1, ‖Y1‖op .

√
d1

m
, and ‖Y2 − S in(Id1 − w̄?w̄>?)‖op .

√
d1

m
.

Finally, our bounds on the term Y3 as well as the definition of ∆1 depend on the

noise model under consideration. Thus, we separate this bound into two cases:

Noise model N1. Under this noise model, we have

‖Y3 − S outId1‖op .

√
d1

m
.

Thus, we set ∆1 = Y1 +
(
Y2 − S in(Id1 − w̄?w̄>?)

)
+

(
Y3 − S outId1

)
.
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Noise model N2. Under this noise model, we have

‖Y3‖op . pfail +

√
d1

m
.

Thus, we set ∆1 = Y1 + (Y2 − S in(Id1 − w̄?w̄>?)) + Y3.

Therefore, under either noise model, the result will follow immediately from

the following four Lemmas. We defer the proofs for the moment.

Lemma 6.6.2. There exist constants c, c1, c2 > 0 such that for any pfail ∈ [0, 1/10] the

following holds:

P (S in − y0 ≥ c) ≥ 1 − c1 exp (−c2m) .

Lemma 6.6.3. For t ≥ 0, we have

P

‖Y1‖op ≥ 2

√
d1 − 1

m
+ t

 ≤ exp
(
−

mt2

8

)
+ exp

(
−

m
2

)
.

Lemma 6.6.4. There exist numerical constants C, c > 0 such that for any t > 0 we have

P

∥∥∥Y2 − S in(Id1 − w̄?w̄>?)
∥∥∥

op
≥ C

√
d1

m
+ t

 ≤ 2 exp(−cmt).

Lemma 6.6.5. There exist constants C1,C2, c1, c2 > 0 such that for any t > 0 the

following hold. Under the noise Model N1, we have the estimate

P

∥∥∥Y3 − S outId1

∥∥∥
op
≥ c3

√
d1

m
+ t

 ≤ 2 exp(−c4mt),

while under the noise model N2 we have

P

‖Y3‖op ≥ pfail + c1

√
d1

m
+ t

 ≤ 2 exp(−c2mt).

The proof of the the theorem is complete. �

We now apply the Davis-Kahan sin θ theorem [65] as stated in Lemma 6.6.15.

Throughout we assume that we are in the event described in 6.6.1.
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Proof of Proposition 6.3.1. We will use the notation from Theorem 6.6.1. We only

prove the result under N1, since the proof under N2 is completely analogous.

Define matrices V1 = γ1w̄?w̄>?−(S in+S out)Id1 and V2 = γ2 x̄? x̄>?−(S in+S out)Id2 . Matrix

V1 has spectral gap γ1 and top eigenvector w̄?, while matrix V2 has spectral gap

γ2 and top eigenvector x̄?. Therefore, since −Linit = V1 − ∆1 and −Rinit = V2 − ∆2,

Lemma 6.6.15 implies that

min
s∈{±1}

‖ŵ − sw̄?‖2 ≤

√
2 ‖∆1‖op

γ1
and min

s∈{±1}
‖x̂ − sx̄?‖2 ≤

√
2 ‖∆2‖op

γ2
.

We will use these two inequalities to bound mins∈{±1} ‖ŵx̂> − sw̄? x̄>?‖F . To do so,

we need to analyze s1 = arg mins∈{±1} ‖ŵ − sw̄?‖ and s2 = arg mins∈{±1} ‖x̂ − sx̄?‖. We

split the argument into two cases.

Suppose first s1 = s2. Then

‖ŵx̂> − w̄? x̄>?‖F = ‖ŵ(x̂ − s2 x̄?)> − (w̄? − s1ŵ)x̄>?‖F ≤ ‖x̂ − s2 x̄?‖2 + ‖w̄? − s1ŵ‖2

≤
2
√

2 max{‖∆1‖op, ‖∆2‖op}

min{γ1, γ2}
,

as desired.

Suppose instead s1 = −s2. Then

‖ŵx̂> + w̄? x̄>?‖F = ‖ŵ(x̂ − s2 x̄?)> + (w̄? + s2ŵ)x̄>?‖F ≤ ‖x̂ − s2 x̄?‖2 + ‖w̄? − s1ŵ‖2

≤
2
√

2 max{‖∆1‖op, ‖∆2‖op}

min{γ1, γ2}
,

as desired. Bounding max{‖∆1‖op, ‖∆2‖op} using Theorem 6.6.1 completes the

proof.

�

The next sections present the proof of Lemmas 6.6.2-6.6.5. We next set up the
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notation. For any sequence of vectors {wi}
m
i=1 in Rd, we will use the symbol wi,2:d

to denote the vector in Rd−1 consisting of the last d − 1 coordinates of wi.

We will use the following two observations throughout. First, by rotation

invariance we will assume, without loss of generality, that w̄? = e1 and x̄? = e1.

Second, and crucially, this assumption implies that Isel
in depends on {`i}

m
i=1 only

through the first component. In particular, we have that {`i,2:d1}
m
i=1 and Isel

in are

independent. Similarly, {ri,2:d2}
m
i=1 and Isel

in are independent as well.

Proof of Lemma 6.6.2

Our goal is to lower bound the quantity

S in − y0 =
1
m

∑
i∈Isel

in

(1 − `2
i,1).

To prove a lower bound, we need to control the random variables `2
i,1 on the set

Isel
in . Before proving the key claim, we first introduce some notation. First, define

qfail :=
5 − 2pfail

8(1 − pfail)
,

which is strictly less than one since pfail < 1/2. Let a, b ∼ N(0, 1) and define Qfail

to be the qfail-quantile of the random variable |ab|. In particular, the following

relationship holds

qfail = P (|ab| ≤ Qfail) .

Additionally, define the conditional expected value

ωfail = E
[
a2 | |ab| ≤ Qfail

]
.

Rather than analyzing Isel
in directly, we introduce the following set IQ

in, which is

simpler to analyze:

I
Q
in :=

{
i ∈ Iin |

∣∣∣`>i w̄? x̄>?ri

∣∣∣ ≤ Qfail

}
.
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Then we prove the following claim.

Claim 4. There exist numerical constants c,K > 0 such that for all t ≥ 0 the following

inequalities hold true:

1. |I
sel
in |

m ≥
1−2pfail

2 .

2. P
(
I

Q
in ⊇ I

sel
in

)
≥ 1 − exp

(
−

3(1−2pfail)
160 m

)
,

3. P
(
|I

Q
in| ≥

6251m
10000

)
≤ exp

(
− m

2·108

)
,

4. P
(

1
|I

Q
in |

∑
i∈IQ

in
`2

i,1 ≥ ωfail + t
)
≤ exp

(
−c min

{
t2
K2 ,

t
K

}
m(1−2pfail)

2

)
+ exp

(
−

3(1−2pfail)
160 m

)
.

Before we prove the claim, we show it leads to the conclusion of the lemma.

Assuming we are in the event

E =

IQ
in ⊇ I

sel
in , |I

Q
in| <

6251m
10000

,
1

|I
Q
in|

∑
i∈IQ

in

`2
i,1 ≤

101
100

ωfail

 ,
it follows that

S − y0 =
1
m

∑
i∈Isel

in

(1 − `2
i,1) ≥

|Isel
in |

m
−

1
m

∑
i∈IQ

in

`2
i,1 ≥

1 − 2pfail

2
−
|I

Q
in|

m
∣∣∣IQ

in

∣∣∣ ∑
i∈IQ

in

`2
i,1

≥
1 − 2pfail

2
−

631351
1000000

ωfail ≥ 0.04644344.

where the first three inequalities follow by the definition of the event E. The

fourth inequality follows by the definition of E and Lemma 6.6.23, which implies

ωfail ≤ .56 when pfail = .1 and that the difference is minimized over pfail ∈ [0, .1]

at the endpoint pfail = .1. To get the claimed probabilities, we note that by

Lemma 6.6.23, we have ωfail ≥ .5 for any setting of pfail.

Now we prove the claim.
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Proof of the Claim. We separate the proof into four parts.

Part 1. By definition, we have

|Isel
in |

m
=
|Iin ∩ I

sel|

m
=
|Isel| − |Iout ∩ I

sel|

m
≥

m
2 − |Iout ∩ I

sel|

m
≥

m
2 − mpfail

m
=

1 − 2pfail

2
.

Part 2. By the definitions of Isel
in and IQ

in, the result will follow once we show

that

P
(
med({|yi|}

m
i ) ≥ QfailΦ

)
≤ exp

(
−

3(1 − 2pfail)
160

m
)
.

To that end, first note that

med({|yi|}
m
i ) = min

|b j| : j ∈ [m],
m∑

i=1

1{|yi| ≤ |y j|} ≥
m
2


= min

|y j| : j ∈ [m],
m∑

i=1

1{|bi| ≤ |y j|} ≥
|Iin|

2(1 − pfail)


≤ min

|y j| : j ∈ Iin,

m∑
i=1

1{|yi| ≤ |y j|} ≥
|Iin|

2(1 − pfail)


≤ min

|y j| : j ∈ Iin,
∑
i∈Iin

1{|yi| ≤ |y j|} ≥
|Iin|

2(1 − pfail)


= quant 1

2(1−pfail)

(
{|yi|}i∈Iin

)
,

where the first equality follows since |Iin |

2(1−pfail)
=

(1−pfail)m
2(1−pfail)

= m/2, the first inequality

follows since the minimum is taken over a smaller set, and the second inequality

follows since the sum is taken over a smaller set of indices. Therefore, we find

that

P
(
med({|yi|}

m
i ) ≥ QfailΦ

)
≤ P

(
quant 1

2(1−pfail)

(
{|yi|}i∈Iin

)
≥ QfailΦ

)
= P

(
quant 1

2(1−pfail)

(
{|yi|/Φ}i∈Iin

)
≥ Qfail

)
,

and our remaining task is to bound this probability.
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To bound this probability, we apply Lemma 6.6.19 to the i.i.d. sample

{|yi|/Φ : i ∈ Iin}, which is sampled from the distribution of D of |ab| where

a, b ∼ N(0, 1) and a, b are independent. Therefore, using the identities (for i ∈ Iin)

q = P (|yi|/Φ ≤ Qfail) = qfail =
5 − 2pfail

8(1 − pfail)

and choosing p := (2(1 − pfail))−1 < q, we find that

P

(
quant 1

2(1−pfail)

(
{|yi|/Φ}i∈Iin

)
≥ Qfail

)
≤ exp

(
m(q − p)2

2(q − p)/3 + 2q(1 − q)

)
= exp

(
m(q − p)
2/3 + 6q

)
= exp

(
−

3(1 − 2pfail)m
8(1 − pfail)(2 + 18q)

)
≤ exp

(
−

3(1 − 2pfail)
160

m
)
,

where we have used the identity q − p =
1−2pfail

8(1−pfail)
= (1 − q)/3 in the first equality.

This completes the bound and implies that IQ
in ⊇ I

sel
in with high probability, as

desired.

Part 3. Since {|yi|/Φ : i ∈ Iin} is an i.i.d. sample from the distribution of |ab|

where a, b ∼ N(0, 1) are independent, we have for each i ∈ Iin, that

P
(
i ∈ IQ

in

)
= P (|yi|/Φ ≤ Qfail) = P (|ab| ≤ Qfail) = qfail.

Therefore, E
[
|I

Q
in|
]

= qfail|Iin| ≤
5−2pfail

8(1−pfail)
(1 − pfail)m ≤ 5

8m. Finally, we apply

Hoeffding’s inequality (Lemma 2.3.1) to the i.i.d. Bernoulli random variables

1{i ∈ Iq
in} − E

[
1{i ∈ Iq

in}
]

(i ∈ Iin) to deduce that

P

(
6251m
10000

≤ |I
Q
in|

)
= P

(
m

10000
≤ |I

Q
in| −

5m
8

)
≤ P

( m
10000

≤ |I
Q
in| − E|I

Q
in|

)
≤ exp

(
−

(1/10000)2m
2(1 − pfail)

)
≤ exp

(
−

m
2 · 108

)
,

as desired.
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Part 4. First write

P

 1

|I
Q
in|

∑
i∈IQ

in

`2
i,1 ≥ ωfail + t


= P

 1

|I
Q
in|

∑
i∈IQ

in

`2
i,1 ≥ ωfail + t and |IQ

in| ⊇ I
sel
in

 + P

 1

|I
Q
in|

∑
i∈IQ

in

`2
i,1 ≥ ωfail + t and IQ

in + I
sel
in


≤ P

 1

|I
Q
in|

∑
i∈IQ

in

`2
i,1 ≥ ωfail + t and |IQ

in| ≥
m(1 − 2pfail)

2

 + exp
(
−

3(1−2pfail)
160 m

)
,

where first inequality follows from Part 2 and the bound |Isel
in |

m ≥
1−2pfail

2 . Thus, we

focus on bounding the first term.

To that end, notice that

P

 1

|I
Q
in|

∑
i∈IQ

in

`2
i,1 ≥ ωfail + t and |IQ

in| ≥
m(1 − 2pfail)

2


= P

 1

|I
Q
in|

∑
i∈IQ

in

`2
i,1 ≥ ωfail + t

∣∣∣∣|IQ
in| ≥

m(1 − 2pfail)
2

P
(
|I

Q
in| ≥

m(1 − 2pfail)
2

)
.

Observe that for any index i ∈ Iin and t ≥ 0, we have P
(
`2

i,1 ≥ t | i ∈ IQ
in

)
=

P
(
a2 ≥ t | |ab| ≤ Qfail

)
, where a, b ∼ N(0, 1) are independent. In addition, we have

qfail = P(|ab| ≤ Qfail) =
5−2pfail

8(1−pfail)
≥ 5/8 > 1/2, where we have used the fact that qfail

is an increasing function of pfail. Therefore, applying Lemma 6.6.20, we have the

following bound:

P
(
`2

i,1 ≥ t | i ∈ IQ
in

)
≤ 2 exp(−t/2K1) for all t ≥ 0 and i ∈ Iin,

where K1 is a numerical constant. In particular, by Theorem 6.6.17 and the iden-

tity ωfail = E
[
a2 ≥ t | |ab| ≤ Qfail

]
, we have the following bound

P

 1

|I
Q
in|

∑
i∈IQ

in

`2
i,1 ≥ ωfail + t

∣∣∣∣|IQ
in| >

m(1 − 2pfail)
2

 ≤ exp
(
−c min

{
t2

K2 ,
t
K

}
m(1 − 2pfail)

2

)
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for numerical constants c and K, as desired.

�

The proof is complete. �

Proof of Lemma 6.6.3

Our goal is to bound the operator norm of the following matrix:

Y1 =
∑
i∈Isel

in

(
Pw̄?

`i`
>
i P⊥w̄?

+ P⊥w̄?
`i`
>
i Pw̄?

)
=

1
m

∑
i∈Isel

in

`i,1

(
e1`
>
i,2:d + `i,2:de>1

)
.

Simplifying, we find that

Y1 =

 0 λ>2:d1

λ2:d1 0

 for λ :=

 0

1
m

∑
i∈Isel

in
`i,1`i,2:d1

 ∈ Rd1 .

Evidently, ‖Y1‖op ≤
∥∥∥λ2:d1

∥∥∥
2
, so our focus will be to bound this quantity. We will

bound this quantity through the following claim, which is based on Gaussian

concentration for Lipschitz functions.

Claim 5. Consider the (random) function F : Rm×(d1−1) → R, given by

F(a1, . . . , am) =

∥∥∥∥∥∥∥∥∥
1
m

∑
i∈Isel

in

`i,1ai

∥∥∥∥∥∥∥∥∥
2

.

Then F is η̂ = 1
m

√∑
i∈Isel

in
`2

i,1 Lipschitz continuous and

P

F(`1,2:d, . . . , `m,2:d) ≥ 2

√
d1 − 1

m
+ t

∣∣∣∣∣∣ η̂ < 2
√

m
, {`1,i}

m
i=1,I

sel
in

 ≤ exp
(
−

mt2

8

)
.

Moreover, the following bound holds:

P

(̂
η ≥

2
√

m

)
≤ exp

(
−

m
2

)
.
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Proof of Claim. For any A =

[
a1 . . . am

]
∈ Rm×(d1−1) and B =

[
b1 . . . bm

]
∈

Rm×(d1−1), we have

|F(A)−F(B)| ≤
1
m
‖(A−B)(`i,11{i ∈ Isel

in })
m
i=1‖2 ≤

1
m
‖(A−B)‖op‖(`i,11{i ∈ Isel

in })
m
i=1‖2 ≤ η̂‖A−B‖F ,

which proves that F is η̂-Lipschitz. Therefore, since for all i the variables `i,1 and

`i,2:d1 are independent, standard results on Gaussian concentration for Lipschitz

functions (applied conditionally), Theorem 6.6.18, imply that

P

(
F(`1,2:d, . . . , `m,2:d) − E

[
F(`1,2:d, . . . , `m,2:d)

∣∣∣∣∣∣ η̂ < 2
√

m
, {`1,i}

m
i=1,I

sel
in

]
≥ t

∣∣∣∣∣∣ η̂ < 2
√

m
, {`1,i}

m
i=1,I

sel
in ,

)
≤ exp

(
−

mt2

8

)
.

Thus, the first part of the claim is a consequence of the following bound:

E

[
F(`1,2:d, . . . , `m,2:d)

∣∣∣∣∣∣ η̂ < 2
√

m
, {`1,i}

m
i=1,I

sel
in

]
≤

√
E

[
F(`1,2:d, . . . , `m,2:d)2

∣∣∣∣∣∣ η̂ < 2
√

m
, {`1,i}

m
i=1,I

sel
in

]

=

√√√√√
1

m2E

∑
i∈Isel

in

`2
i,1(d1 − 1)

∣∣∣∣ η̂ < 2
√

m

 ≤ 2

√
d1 − 1

m
.

We now turn our attention to the high probability bound on η̂.

To that end, notice that the (random) function E : Rm → R given by

E(a) =
1
m

√∑
i∈Isel

in

a2
i =

1
m
‖(ai1{i ∈ Isel

in })
m
i=1‖2.

is m−1-Lipschitz continuous. Moreover, we have that E
[
E(`1,i, . . . , `1,d)

]
≤

1
mE

[
‖(`1,i)m

i=1‖2

]
≤ m−1/2. Therefore, by Gaussian concentration we have

P

(̂
η ≥

2
√

m

)
≥ P

(
E(`1,i, . . . , `1,d) − E

[
E(`1,i, . . . , `1,d)

]
≥

1
√

m

)
≤ exp

(
−

m
2

)
,

as desired. �
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To complete the proof, observe that

P

∥∥∥λ2:d1

∥∥∥
2
≥ 2

√
d1 − 1

m
+ t


= P


∥∥∥∥∥∥∥∥∥

1
m

∑
i∈Isel

in

`i,1`i,2:d1

∥∥∥∥∥∥∥∥∥
2

≥ 2

√
d1 − 1

m
+ t


≤ P


∥∥∥∥∥∥∥∥∥

1
m

∑
i∈Isel

in

`i,1`i,2:d1

∥∥∥∥∥∥∥∥∥
2

≥ 2

√
d1 − 1

m
+ t

∣∣∣∣∣∣ η̂ < 2
√

m

P
(̂
η <

2
√

m

)
+ P

(̂
η ≥

2
√

m

)

≤ P

F(`1,2:d, . . . , `m,2:d) ≥ 2

√
d1 − 1

m
+ t

∣∣∣∣∣∣ η̂ < 2
√

m

 + exp
(
−

m
2

)
,

where the second inequality is due to Claim 5. Finally, by Claim 5, the condi-

tional probability is bounded as follows

P

F(`1,2:d, . . . , `m,2:d) ≥ 2

√
d1 − 1

m
+ t

∣∣∣∣∣∣ η̂ < 2
√

m


= EIsel

in ,{`i,1}
m
i=1

P F(`1,2:d, . . . , `m,2:d) ≥ 2

√
d1 − 1

m
+ t

∣∣∣∣∣∣ η̂ < 2
√

m
, {`1,i}

m
i=1,I

sel
in


≤ exp

(
−

mt2

8

)
,

which completes the proof.

Proof of Lemma 6.6.4

Observe the equality

Y2 =
1
m

∑
i∈Isel

in

 0

`i,2:d1


[
0 `>i,2:d1

]
.

Therefore, we seek to bound the following operator norm:

∥∥∥Y2 − S in
(
Id1 − e1e>1

)∥∥∥
op

=

∥∥∥∥∥∥∥∥∥
1
m

∑
i∈Isel

in

(`i,2:d1`
>
i,2:d1
− Id1−1)

∥∥∥∥∥∥∥∥∥
op

.
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Using the tower rule for expectations and appealing to Corollary 6.6.22, we

therefore deduce

P

∥∥∥Y2 − S in
(
Id1 − e1e>1

)∥∥∥
op
≥ C

√
d1

m
+ t


≤ EIsel

in

P ∥∥∥Y2 − S in
(
Id1 − e1e>1

)∥∥∥
op
≥ C

√
d1

m
+ t

∣∣∣∣∣∣ Isel
in = I

 ≤ 2 exp(−cmt),

as desired.

�

Proof of Lemma 6.6.5

Noise model N1 Under this noise model, we write

∥∥∥Y3 − S outId1

∥∥∥
op

=

∥∥∥∥∥∥∥∥ 1
m

∑
i∈Isel

out

`i`
>
i − S outId1

∥∥∥∥∥∥∥∥
op

.

The proof follows by repeating the conditioning argument as in the proof

of 6.6.4.

Noise model N2 Observe that∥∥∥∥∥∥∥∥ 1
m

∑
i∈Isel

out

`i`
>
i

∥∥∥∥∥∥∥∥
op

≤

∥∥∥∥∥∥∥ 1
m

∑
i∈Iout

`i`
>
i

∥∥∥∥∥∥∥
op

≤

∥∥∥∥∥∥∥ 1
m

∑
i∈Iout

(`i`
>
i − Id1)

∥∥∥∥∥∥∥
op

+

∥∥∥∥∥∥∥ 1
m

∑
i∈Iout

Id1

∥∥∥∥∥∥∥
op

=

∥∥∥∥∥∥∥ 1
m

∑
i∈Iout

(`i`
>
i − Id1)

∥∥∥∥∥∥∥
op

+ pfail.

Appealing to Corollary 6.6.22, the result follows immediately. �
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Proof of Proposition 6.3.2

We will assume that ‖ŵx̂>−w̄? x̄>?‖F ≤ ‖ŵx̂>+w̄? x̄>?‖F . We will show that with high

probability, |Φ̂−Φ| ≤ δΦ, and moreover in this event if δ < 1, we have Φ̂ > 0. The

other setting ‖ŵx̂T − w̄? x̄>?‖F ≥ ‖ŵx̂T + w̄? x̄>?‖F can treated similarly.

We will use the guarantees of Theorem 5.5.8. In particular, there exist nu-

merical constants c1, . . . , c6 > 0 so that as long as m ≥ c1(d1+d2+1)
(1− 2|I|

m )2 ln
(
c2 + 1

1−2|I|/m

)
,

then with probability at least 1 − 4 exp
(
−c3(1 − 2|I|

m )2m
)

we have

c4‖X‖F ≤
1
m
‖A(X)‖1 ≤ c5‖X‖F for all rank ≤ 2 matrices X ∈ Rd1×d2 ,

and

c6 (1 − 2pfail) ‖X‖F ≤
1
m

∑
i∈Iin

|`>i Xri|−
1
m

∑
i∈Iout

|`>i Xri| for all rank ≤ 2 matrices X ∈ Rd1×d2 .

Throughout the remainder of the proof, suppose we are in this event. Define

the two univariate functions

ĝ(a) :=
1
m

m∑
i=1

∣∣∣∣bi − (1 + a)Φ`>i ŵx̂>ri

∣∣∣∣,
g(a) :=

1
m

m∑
i=1

∣∣∣∣bi − (1 + a)Φ`>i w̄x̄>ri

∣∣∣∣
By construction, if a? minimizes ĝ(·) then (1 + a?)Φ minimizes G. Thus, to prove

the claim we need only show that any minimizer a? of ĝ satisfies −δ ≤ a? ≤ δ.

To that end, first note that g(0) and ĝ(0) are close:

|̂g(0) − g(0)| ≤
Φ

m

m∑
i=1

|`>i ŵx̂>ri − `
>
i w̄? x̄>?ri| ≤ c5Φ

∥∥∥ŵx̂> − w̄? x̄>?
∥∥∥

F
, (6.28)
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Therefore, setting µ3 = c6 (1 − 2pfail), we obtain

ĝ(a) =
1
m

m∑
i=1

∣∣∣∣bi − (1 + a)Φ`>i ŵx̂>ri

∣∣∣∣
=

1
m

∑
i∈Iin

∣∣∣∣`>i w̄x̄>ri − (1 + a)Φ`>i ŵx̂>ri

∣∣∣∣ +
1
m

∑
i∈Iout

∣∣∣∣bi − (1 + a)Φ`>i ŵx̂>ri

∣∣∣∣
≥

1
m

∑
i∈Iin

∣∣∣∣`>i w̄x̄>ri − (1 + a)Φ`>i ŵx̂>ri

∣∣∣∣ − 1
m

∑
i∈Iout

∣∣∣∣`>i w̄x̄>ri − (1 + a)M`>i ŵx̂>ri

∣∣∣∣
+

1
m

∑
i∈Iout

∣∣∣∣bi − `
>
i w̄x̄>ri

∣∣∣∣
≥ g(0) + µ3‖(1 + a)Φŵx̂> − w̄x̄>‖F

≥ ĝ(0) + µ3‖(1 + a)Φŵx̂> − w̄x̄>‖F − c5Φ
∥∥∥ŵx̂> − w̄? x̄>?

∥∥∥
F

≥ ĝ(0) + µ3|a|Φ − (µ3Φ + c5Φ)
∥∥∥ŵx̂> − w̄? x̄>?

∥∥∥
F
,

where the second inequality follows from Theorem 5.5.8, the third inequality

follows from Equation (6.28), and the fourth follows from the reverse triangle

inequality. Thus, any minimizer a? of ĝ must satisfy

|a?| ≤
(
1 +

c5

µ3

) ∥∥∥ŵx̂> − w̄? x̄>?
∥∥∥

F
= δ,

as desired. Finally suppose δ < 1. Then we deduce Φ̂ = (1 + |a?|)Φ ≥ (1− δ)Φ > 0.

The proof is complete.

6.6.3 Proofs in Section 6.4

Proof of Proposition 6.4.2

Recall that we defined the functions f : Rd
+ → R and fσ : Rd×n → R to be such

that fP(w, x) = fσ(X) = f (σ(X)). It is known that for constants c1, c2 ∈ R+ we have
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that c1r1 + c2r2
(d)
=

√
c2

1 + c2
2r1, where

(d)
= denotes equality in distribution. Then

f (s1, s2, 0, . . . , 0) = E(|s1`1r1 + s2`2r2|)

= E (E(|s1`1r1 + s2`2r2| | `1, `2))

= E
(
E(

√
(s1`1)2 + (s2`2)2|r1| | `1, `2)

)
=

√
2
π
E

√
(s1`1)2 + (s2`2)2

=

√
π

√
2π2

∫ ∞

−∞

∫ ∞

−∞

√
(`1s1)2 + (`2s2)2 exp

(
−
`2

1 + `2
2

2

)
d`1d`2

= 4
√
π

√
2π2

∫ ∞

0

∫ ∞

0

√
(`1s1)2 + (`2s2)2 exp

(
−
`2

1 + `2
2

2

)
d`1d`2

= 2

√
2π
π2

∫ ∞

0

∫ π/2

0
t2

√
s2

1 cos2 θ + s2
2 sin2 θ exp

(
−

t2

2

)
dθdt

=
2
π

∫ π/2

0

√
s2

1 cos2 θ + s2
2 sin2 θdθ

=
2s1

π

∫ π/2

0

√
cos2 θ +

s2
2

s2
1

sin2 θdθ

=
2s1

π

∫ π/2

0

√
1 −

(
1 −

s2
2

s2
1

)
sin2 θdθ

=
2s1

π
E

(1 − s2
2

s2
1

) 1
2


where E(·) is the complete elliptic integral of the second kind. Thus altogether

we obtain

fσ(X) = σmax(X)
∞∑

n=0

(
(2n)!

22n(n!)2

)2
(
1 − κ−2(X)

)n

1 − 2n

where κ(X) = σmax(X)/σmin(X) is the condition number of X.

Proof of Theorem 6.4.3

The proof of this result builds upon the next three lemmas. We will prove these

lemmas before we dive into the proof. Recall that U ∈ O(d1) and V ∈ O(d2) are
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any pair of matrices for which X = Uσ(X)V =
∑

i σi(X)UiV>i .

Lemma 6.6.6. The following are true.

1. (Anticorrelation) The next equalities hold

〈U1,w〉〈x,V2〉 = 〈U1, w̄〉〈x̄,V2〉 and 〈U2,w〉〈x,V1〉 = 〈U2, w̄〉〈x̄,V1〉.

2. (Singular values) The singular values of X satisfy

σ1(X) = 〈U1,w〉〈x,V1〉 − 〈U1, w̄〉〈x̄,V1〉 ≥ 0,

σ2(X) = 〈U2,w〉〈x,V2〉 − 〈U2, w̄〉〈x̄,V2〉 ≥ 0.

3. (Correlation) Assume that σ2(wx> − w̄x̄>) > 0, then span{x, x̄} = span{V1,V2},

span{w, w̄} = span{U1,U2}, and consequently,

〈w, w̄〉 = 〈U1,w〉〈U1, w̄〉 + 〈U2,w〉〈U2, w̄〉,

〈x, x̄〉 = 〈V1, x〉〈V1, x̄〉 + 〈V2, x〉〈V2, x̄〉.

Proof. The first equality in item one follows by observing that U>1 XV2 = 0, ex-

panding the expression on the left-hand-side gives the result. The same argu-

ment starting from U>2 XV1 = 0 gives the other equality. The second item follows

by definition.

To prove the last item note that

〈Ui,w〉x − 〈Ui, w̄〉x̄ = X>Ui = σi(X)Vi ∀i ∈ {1, 2}.

Dividing through by σi(X) shows that span{x, x̄} = span{V1,V2}. Therefore, we

can write x = 〈x,V1〉V1 + 〈x,V2〉V2 and x̄ = 〈x̄,V1〉V1 + 〈x̄,V2〉V2. Hence,

〈x, x̄〉 = 〈〈x,V1〉V1 + 〈x,V2〉V2, 〈x̄,V1〉V1 + 〈x̄,V2〉V2〉 = 〈V1, x〉〈V1, x̄〉 + 〈V2, x〉〈V2, x̄〉

An analogous argument shows the statement for w and w̄. �
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Lemma 6.6.7. The following inequalities hold true.

1. (Maximum correlation)

max{|σ1(Y)〈v1, x〉|, |σ2(Y)〈v2, x〉|} ≤ ‖Y x‖,

max{|σ1(Y)〈u1,w〉|, |σ2(Y)〈u2,w〉|} ≤ ‖Y>w‖.

(6.29)

2. (Objective gap)

g(w, x) − g(w̄, x̄) ≤ σ1(Y)σ1(X) + σ2(Y)σ2(X). (6.30)

Proof. Note that ‖Y x‖ ≥ 〈z,Y x〉 for all z ∈ Sd−1, then the very first claim follows by

testing with z ∈ {±U1,±U2}. An analogous argument gives the statement for w.

Recall that f is convex, consequently fσ is convex and the subgradient inequality

gives

g(w, x) − g(w̄, x̄) = fσ(X) − fσ(0) ≤ 〈Y, X〉 = σ1(Y)σ1(X) + σ2(Y)σ2(X).

�

Lemma 6.6.8. Assume w̄ ∈ Rd1 and x̄ ∈ Rd2 are nonzero vectors. Set X = wx> + w̄x̄>,

then X is a rank 1 matrix if, and only if, w = λw̄ or x = λx̄ for some λ ∈ R.

Proof. It is trivial to see that if the later holds then X is rank 1. Let us prove

the other direction. Notice that if any of the vectors is zero we are done, so

assume that none of them is. Recall that all the columns of X are spanned from

one vector. Consider the case where x and x̄ have different support (i.e. set of

nonzero entries), then it is immediate that w and w̄ have to be multiples of each

other.
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Now assume that this is not the case, without loss of generality assume that

w < span{w̄} and x and x̄ are nonzero and their first component is equal to one.

Then the first column of X is equal to w + w̄, furthermore the second column is

equal to x2w + x̄2w̄ has to be a multiple of the first one. By assumption w, w̄ are

linearly independent therefore x2 = x̄2. Using the same procedure for the rest of

the entries we obtain x = x̄. �

We are now in good shape to describe the landscape of the function g.

Proof of Theorem 6.4.3. To prove that at least one of the conditions hold we will

show that if the first two don’t hold then at least one of the other two have

two hold. Assume that that the first two conditions are not satisfied, therefore

g(w, x) > g(w̄, x̄) and (w, x) , (0, 0). Let us furnished some facts before we prove

this is the case. Notice that from (6.30) we can derive

0 < σ1(Y)σ1(X) + σ2(Y)σ1(X) ≤ 2σ1(Y)σ1(X),

thus σ1(Y), σ1(X) > 0. On the other hand, since (w, x) is critical inequalities (6.29)

immediately give

σ1(Y)〈V1, x〉 = σ2(Y)〈V2, x〉 = 0, and σ1(Y)〈U1,w〉 = σ2(Y)〈U2,w〉 = 0.

(6.31)

So 〈V1, x〉 = 0 and 〈U1,w〉 = 0, then the first claim in Lemma 6.6.6 gives. Addi-

tionally, this and the second claim in Lemma 6.6.6 imply that

〈U1, w̄〉〈x̄,V2〉 = 〈U2, w̄〉〈x̄,V1〉 = 0, and − 〈U1, w̄〉〈x̄,V1〉 = σ1(X) > 0.

Combining these two gives 〈U2, w̄〉 = 〈x̄,V2〉 = 0. Then by applying the second

claim in Lemma 6.6.6 we get σ2(X) = 〈U2,w〉〈x,V2〉. Using Equations (6.31) we

conclude that σ2(Y)σ2(X) = 0.

290



Now we will show that at least one of the conditions holds, depending on

the value of σ2(X), let us consider two cases:

Case 1. Assume σ2(X) = 0. This means that X = wx> − w̄x̄> is a rank 1 matrix.

By Lemma 6.6.8 we have that w = λw̄ or x = λx̄ for some λ ∈ R. Note that if

w = λw̄ then U1 = ±w̄/‖w̄‖, then using Equation 6.31 we get that λ‖w̄‖ = 0. Which

implies that λ = 0, and consequently wx> = 0. An analogous argument applies

when x = λx̄. By assumption we have that Y x = 0 and Y>w = 0. Additionally,

since X = −w̄x̄> we get that that U1 = ±w̄/‖w̄‖ and V1 = ±x̄/‖x̄‖. Recall that

Y = Udiag(σ(Y))V>, then using the fact that (w, x) is critical we conclude 〈w, w̄〉 =

〈x, x̄〉 = 0. Implying that property three holds.

Case 2. Assume σ2(X) , 0. This immediately implies that σ2(Y) = 0. By the

third part of Lemma 6.6.6 we get that

〈x, x̄〉 = 〈V1, x〉〈V1, x̄〉 + 〈V2, x〉〈V2, x̄〉 = 0

and analogously 〈w, w̄〉 = 0. Moreover, since w ⊥ w̄ and x ⊥ w̄ (and none of them

are zero by assumption) we get that (w/‖w‖, x/‖x‖) and (w̄/‖w̄‖, x̄/‖x̄‖) are pairs

of left and right singular vectors, with associated singular values w>Xx = ‖wx>‖

and w̄>Xx̄ = ‖w̄x̄>‖, respectively. Assume that ‖wx>‖ ≥ ‖w̄x̄>‖, thus 0 = w>Y x =

‖wx>‖σ1(Y) > 0, yielding a contradiction. Hence the condition four holds true.

Finally, we will prove that if (w̄, x̄) minimizes g, then (w, x) is a critical point

if it satisfies at least one of the four conditions in the statement of the theorem

for some Y ∈ ∂ fσ(X).. Assume that (w̄, x̄) minimizes g. The set of points that

satisfies the first conditions is the collection of minimizers so they are critical.

Clearly (w, x) = 0 is always a stationary point, since ‖Y>w‖ = ‖Y x‖ = 0. Now let’s

construct a certificate Y ∈ ∂ fσ(X) that ensures criticality for the remaining cases.
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Suppose that the third condition is satisfied. That is, assume that (w, x) sat-

isfies w = 0 and there exists Y ∈ ∂ fσ(w, x) such that Y x = 0 and 〈x, x̄〉 = 0. Using

(6.13), it is immediate that (w, x) is a stationary point. A similar argument fol-

lows when x = 0.

Suppose that the fourth condition is satisfied. Thus, assume that (w, x) is

such that 0 < ‖wx>‖ < ‖w̄x̄>‖, 〈w, w̄〉 = 〈x, x̄〉 = 0 and there exists Y ∈ ∂ fσ(X) with

σ2(Y) = 0. Since w ⊥ w̄, x ⊥ x, ‖wx>‖ < ‖w̄x̄>‖, using the same argument as in

Case 2, we get that any pair of admissible matrices U,V satisfy U1 = ±w̄/‖w̄‖ and

V1 = ±x̄/‖x̄‖. Therefore

Y x = (σ1(Y)U1V>1 )x = ±
σ1(Y)
‖x̄‖
〈x̄, x〉U1 = 0,

analogously Y>w = 0. �

Proof of Lemma 6.4.4

It is well-known that if (`1, `2, . . . , `d) is a fixed vector, then

d∑
i=1

`irisi
(d)
=

 d∑
i=1

(`isi)2


1
2

r

and b is a standard normal random variable independent of the rest of the data.

Therefore

f (s1, . . . , sd) = E


∣∣∣∣∣∣∣

d∑
i=1

`irisi

∣∣∣∣∣∣∣
 = E

E 
∣∣∣∣∣∣∣

d∑
i=1

`irisi

∣∣∣∣∣∣∣
∣∣∣∣`1, . . . , `d


= E


 d∑

i=1

(`isi)2


1
2

E (|r| | `1, . . . , `d)

 =

√
2
π
· E

 d∑
i=1

(`isi)2


1
2

.

Now, we need a technical tool in order to procede.
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Theorem 6.6.9 (Leibniz Integral Rule, Theorem 5.4.12 in [208]). Let U be an open

subset of Rd and Ω be a measure space. Suppose that the function h : U × Ω → R

satisfies the following:

1. For all x ∈ U, the function h(x, ·) is Lebesgue integrable.

2. For almost all w ∈ Ω, if we define hω(·) = f (·, ω) the partial derivatives ∂hω
∂xi

(x)

exists for all x ∈ U.

3. There is an integrable function Φ : Ω→ R such that |∂hω
∂xi

(x)| ≤ Φ(ω) for all x ∈ U

and almost every ω ∈ Ω.

Then, we have that for all x ∈ U

∂

∂xi

∫
Ω

h(x, ω)dω =

∫
Ω

∂hω

∂xi
(x)dω.

This theorem tell us that we can swap partial derivatives and integrals pro-

vided that the function satisfies all the conditions above. Consider Ω to be the

set Rd endowed with the Borel σ-algebra and the multivariate Gaussian mea-

sure. Define h : Rd ×Ω→ R to be given by

(s, `) 7→

 d∑
i=1

(`isi)2


1
2

.

Take s ∈ Rd\{0} to be an arbitary element, set S = {u ∈ Rd | supp(s) ⊆ supp(u)}, and

define U = Bε(s) with ε small enough such that U ⊆ S and infu∈U mini∈supp(s) |ui| >

0. Then it is easy to see that the first two conditions hold, in particular the

second condition hold for all a , 0. Further, for any x ∈ U∣∣∣∣∣∣∂h`

∂s j
(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
`2

j x j(∑d
i (`ixi)2

) 1
2

∣∣∣∣∣∣∣∣∣ ≤
supu∈U ‖u‖∞

infu∈U mini∈supp(s) |ui|

∑
i∈supp(s) `

2
j(∑

i∈supp(s) `
2
i

) 1
2

≤
supu∈U ‖u‖∞

infu∈U mini |ui|

 ∑
i∈supp(s)

`2
i


1
2

,
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where the last function is integrable with respect to the Gaussian measure. Thus,

Theorem 6.6.9 ensures that the function f is differentiable at every nonzero

point. Consequently, for all s ∈ Rd \ {0}

∂ f
∂s j

(s) =

√
2
π

s j E
`2

j(∑d
i (`isi)2

) 1
2

.

Approximate critical points of a spectral function family

In Section 6.4.2, we characterized the points for which 0 ∈ ∂ fP(w, x). In order to

derive similar results for fS we will need to understand ε-critical points of fP, i.e.

points (w, x) for which dist(0, ∂ f (w, x)) ≤ ε. Just as before we adopt a more general

viewpoint and consider spectral functions of the form g(w, x) = f ◦σ(wx>− w̄x̄>).

The main result in this section is Theorem 6.6.12. Given the fact that we don’t

have second order information in the form of a Hessian, we need to appeal to a

different kind of growth condition. Turns out that the natural condition for this

problem is

g(w, x) − g(w̄, x̄) ≥ κ
∥∥∥wx> − w̄x̄>

∥∥∥
F

∀(w, x) ∈ Rd1 × Rd2 , (6.32)

for some κ > 0. Intuitively this means that the function grows sharply away

from minimizers.

Before we dive into the main theorem, let us provide some technical lemmas.

Lemma 6.6.10. Suppose there exists a constant κ > 0 such that (6.32) holds. Then, for

any point (w, x) such that wx> , w̄x̄> we have σ1(Y) + σ2(Y) ≥ κ.
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Proof. By definition σ2(X) ≤ σ1(X) ≤
∥∥∥wx> − w̄x̄>

∥∥∥
F
. Then, applying (6.30) gives

κ
∥∥∥wx> − w̄x̄>

∥∥∥
F
≤ g(w, x) − g(w̄, x̄) ≤ σ1(Y)σ1(X) + σ2(Y)σ2(X)

≤ (σ1(Y) + σ2(Y))
∥∥∥wx> − w̄x̄>

∥∥∥
F
.

�

Lemma 6.6.11. Suppose there exists a constant κ > 0 such that (6.32) holds. Then any

pair (w, x) ∈ Rd1+d2 \ {0} satisfies

1
min{‖w‖ , ‖x‖}

(
κ
∥∥∥wx> − w̄x̄>

∥∥∥ − (σ1(Y) + σ2(Y))
∥∥∥w̄x̄>

∥∥∥) ≤ dist(0; ∂g(w, x)).

Proof. The result holds trivially if wx> = w̄x̄>. Assume this is not the case. Recall

that ∂g(w, x) = ∂ fσ(X)x × (∂ fσ(X))>w. Pick Y ∈ ∂g(w, x) such that dist(0, ∂g(w, x)) =√
‖Y x‖2 + ‖Y>w‖2. Using the convexity of fσ we get

κ‖wx> − w̄x̄‖F ≤ g(w, x) − g(w̄, x̄) = fσ(X) − fσ(0)

≤ 〈Y,wx> − w̄x̄>〉

≤ ‖x‖‖Y>w‖ + |w>Y x| ≤ ‖x‖dist(0, ∂g(w, x)) + |w>Y x|,

where the last inequality follows by Cauchy-Schwartz. Applying the same ar-

gument using w>Y x ≤ ‖w‖‖Y x‖ gives

g(w, x) − g(w̄, x̄) ≤ min{‖w‖, ‖x‖}dist(0, ∂g(w, x)) + |w>Y x|.

Now, let’s bound the second term on the right-hand-side. Note that

|w̄>Y x̄| = |〈Y,wx>〉| ≤ ‖Y‖‖wx>‖ ≤ (σ1(Y) + σ2(Y))
∥∥∥w̄x̄>

∥∥∥ .
The result follows immediately. �

We now prove the main result of this section, a detailed location description

of ε-critical points. This is a quantitative version of Corollary 6.4.3. Its proof is

however more involved due to the inexactness of the assumptions.
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Theorem 6.6.12. Assume that ‖w̄‖ = ‖x̄‖ and that there exists a constant κ > 0 such

that (6.32) holds. Let Y ∈ ∂ fσ(wx> − w̄x̄>) and suppose σ1(Y) is bounded by some

numerical constant.6 Let ζ = (Y x,Y>w) ∈ ∂g(w, x), and set ε = ‖ζ‖. Then if wx> = 0

we have that

max{‖Y x‖, ‖Y>w‖} ≤ ε, and


|〈w, w̄〉| . ε‖w̄‖

|〈x, x̄〉| . ε‖x̄‖
.

On the other hand, if wx> , 0 and ‖(w, x)‖ ≤ ν‖(w̄, x̄)‖ for some fixed ν > 1. There exists

a constant7 γ > 0 such that if ε ≤ γmax{‖w‖, ‖x‖} then
∥∥∥wx>

∥∥∥ . ∥∥∥w̄x̄>
∥∥∥ and at least one

of the following holds

1.

max{‖w‖ , ‖x‖}
∥∥∥wx> − w̄x̄>

∥∥∥ . ε ∥∥∥w̄x̄>
∥∥∥

2.

min{‖w‖, ‖x‖} . ε and


|〈w, w̄〉| . ν2ε‖w̄‖

|〈x, x̄〉| . ν2ε‖x̄‖
.

3.

σ2(Y) .
ε

max{‖w‖, ‖x‖}
and


|〈w, w̄〉| . ν2ε‖w̄‖

|〈x, x̄〉| . ν2ε‖x̄‖
.

Proof. First assume that wx> = 0, then it is clear that max{‖Y x‖, ‖Y>w‖} = ‖ζ‖ ≤ ε.

Without loss of generality assume that x = 0. Let Uσ(Y)V> be the singular value

decomposition of Y . Since X = −w̄x̄> then U1 = ±w̄/‖w̄‖ and V1 = ±x̄/ ‖x̄‖ and so

ε ≥ ‖Y>w‖ =

∥∥∥∥∥σ1(Y)
‖w̄‖

〈w̄,w〉V1 + z
∥∥∥∥∥ ≥ σ1(Y)

‖w̄‖
|〈w̄,w〉| ≥

κ

2 ‖w̄‖
〈w̄,w〉 (6.33)

where z is orthogonal to V1 and the second inequality follows by Lemma 6.6.10.

This proves the first statement in the theorem.

6This is implied for example when f is Lipschitz.
7Independent of ν.
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We know move to the next statement, assume wx> , 0 and ‖(w, x)‖ ≤ ν‖(w̄, x̄)‖.

Notice that the result holds immediately if (w, x) ∈ {(αw̄, x̄/α) | α ∈ R}. Further,

due to Theorem 6.4.3 it also holds when ε = 0. Let us assume that none of these

two conditions are satisfied.

We will start by showing that
∥∥∥wx>

∥∥∥ . ∥∥∥w̄x̄>
∥∥∥ . Set

δ =

√
2
κ

(σ1(Y) + σ2(Y)) + 1. (6.34)

We showed in Lemma 6.6.10 that (σ1(Y) + σ2(Y)) ≥ κ and thus δ > 1.

Claim 6. The inequality
∥∥∥wx>

∥∥∥ ≤ δ ∥∥∥w̄x̄>
∥∥∥ holds true.

Proof. Seeking contradiction assume that this is not the case. By Lemma 6.6.11,
√

2
‖wx>‖

κ
∥∥∥wx> − w̄x̄>

∥∥∥ − ε

max{‖w‖, ‖x‖}
≤ (σ1(Y) + σ2(Y))

∥∥∥w̄x̄>
∥∥∥

‖wx>‖
. (6.35)

Using δ‖w̄x̄>‖ < ‖wx>‖, we get
√

2
‖wx>‖

κ
∥∥∥wx> − w̄x̄>

∥∥∥ =
√

2κ
∥∥∥∥∥ wx>

‖wx>‖
−

w̄x̄>

‖wx>‖

∥∥∥∥∥ ≥ √2κ
∣∣∣∣∣1 − 1

δ

∣∣∣∣∣ .
We set γ small enough to ensure γ <

√
2κ
2

∣∣∣1 − 1
δ

∣∣∣, which implies ε
max{‖w‖,‖x‖} <

√
2κ
2

∣∣∣1 − 1
δ

∣∣∣ . Combining these inequality leads

√
2κ

∣∣∣1 − 1
δ

∣∣∣
2(σ1(Y) + σ2(Y))

≤
1

(σ1(Y) + σ2(Y))

 √2
‖wx>‖

κ
∥∥∥wx> − w̄x̄>

∥∥∥ − ε

max{‖w‖, ‖x‖}


≤

∥∥∥w̄x̄>
∥∥∥

‖wx>‖
<

1
δ
.

Rearranging we get

|δ − 1| <

√
2
κ

(σ1(Y) + σ2(Y)),

contradicting the definition of δ. This establishes the claim. �
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We now move on to proving that at least one of the three conditions has to

hold. To this end, define

ρ1 :=
max{‖w‖, ‖x‖}

√
2

and ρ2 :=
1
κ

max
{
2
√

2(1 + δ), 4σ1(Y)
} ∥∥∥w̄x̄>

∥∥∥
max{‖w‖, ‖x‖}

.

Observe that if ερ2 ≥
∥∥∥wx> − w̄x̄>

∥∥∥ then condition 1 holds and the result follows.

Then, assume from now on that ερ2 <
∥∥∥wx> − w̄x̄>

∥∥∥ .
Our road map is as follows, we will start by assuming min{‖w‖, ‖x‖} ≤ 2ε/κ

and we will show that this implies the second condition in item two. Then we

will move to assume that min{‖w‖, ‖x‖} > 2ε/κ and show that item three has to

hold.

Now, let we list some facts that we will use later. By Lemma 6.6.7

max{σ1(Y)|〈V1, x〉|, σ2(Y)|〈V2, x〉|, σ1(Y)|〈U1,w〉|, σ2(Y)|〈U2,w〉|} ≤ ε (6.36)

which together with σ1(Y) > κ/2 implies that

max{|〈U1,w〉| , |〈V1, x〉|} ≤
ε

σ1(Y)
≤

2ε
κ
. (6.37)

Notice that this implies by Lemma 6.6.6

|〈U1, w̄〉〈x̄,V2〉| = |〈U1,w〉〈x,V2〉| ≤
2‖x‖ε
κ

and |〈U2, w̄〉〈x̄,V1〉| ≤
2‖w‖ε
κ

.

(6.38)

Observe that

max{‖w‖, ‖x‖} ≤ ‖(w, x)‖ ≤ ν‖(w̄, x̄)‖ =
√

2νmin{‖w̄‖, ‖x̄‖}. (6.39)

We can now continue with the proof. We will now assume that

min{‖w‖, ‖x‖} ≤ 4δε/κ and prove that item two holds.

Claim 7. Assume that min{‖w‖, ‖x‖} ≤ 4δε/κ. Then

|〈w, w̄〉| . ν2ε‖w̄‖ and |〈x, x̄〉| . ν2ε‖x̄‖.
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Proof. Notice∣∣∣∣∣〈w, w̄
‖w̄‖
〉

∣∣∣∣∣ ≤ ∣∣∣∣∣〈w, w̄
‖w̄‖
− U1〉

∣∣∣∣∣ + |〈w,U1〉| ≤ ‖w‖
∥∥∥∥∥ w̄
‖w̄‖
− U1

∥∥∥∥∥ +
2ε
κ

where the last inequality follows by Cauchy-Schwartz and (6.37). A similar

argument gives the same bound with ‖w̄/‖w̄‖ + U1‖ instead.

By letting A = −w̄x̄> and Â = wx> − w̄x̄> in the variant of Davis-Kahan sin θ

Theorem stated in Lemma 6.6.16 we get

min
{∥∥∥∥∥ w̄
‖w̄‖

+ U1

∥∥∥∥∥ , ∥∥∥∥∥ w̄
‖w̄‖
− U1

∥∥∥∥∥} ≤ √2 sin (θ(w̄/‖w̄‖,U1))

≤ 2
√

2
(2‖w̄x̄>‖ + ‖wx>‖)

‖w̄x̄>‖2
‖wx>‖

≤ 2
√

2(2 + δ)
‖wx>‖
‖w̄x̄>‖

≤ 2
√

2(2 + δ)ν
ε

‖w̄‖

where the last inequality follows since ‖w̄‖ = ‖x̄‖, ‖wx>‖ ≤ εmax{‖w‖, ‖x‖} and

(6.39). Hence from the previous inequalities we derive∣∣∣∣∣〈w, w̄
‖w̄‖
〉

∣∣∣∣∣ ≤ ‖w‖ ∥∥∥∥∥ w̄
‖w̄‖
− U1

∥∥∥∥∥ +
2ε
κ
≤ 2
√

2(2 + δ)ν
‖w‖
‖w̄‖

ε +
2ε
κ

=

(
2
√

2(2 + δ)ν2 +
2
κ

)
ε.

A completely analogous result holds for |〈x, x̄〉|. �

Suppose now that min{‖w‖, ‖x‖} > 4δε/κ. In the remainder of the proof we

will show that in this case, item three has to hold.

Claim 8. The rank of X = wx> − w̄x̄> is two.

Proof. Assume w = λw̄, then U1 = ±w/‖w̄‖. Then, (6.33) gives

λ‖w̄‖ ≤ 2ε/κ ≤ 4δε/κ,
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where we used that δ > 1. This implies min{‖w‖, ‖x‖} ≤ 4δε/κ, yielding a contra-

diction. An analogous argument holds for x = λx̄. Thus, Lemma 6.6.8 implies

that σ2(wx> − w̄x̄>) > 0. �

Claim 9. σ2(Y) < ε
ρ1
.

Proof. Without loss of generality suppose ‖w‖ = max{‖w‖, ‖x‖}. Assume seeking

contradiction that this isn’t true, thus σ2(Y) ≥ ε/ρ1 then Inequality (6.36) gives

|〈U2,w〉| ≤ ρ1. Furthermore, notice that due to Lemma 6.6.6 we have that ‖w‖2 =

〈U1,w〉2 + 〈U2,w〉2 and consequently |〈U1,w〉| ≥
√
‖w‖2 − ρ2

1. Again, due to (6.36)

σ1(Y) ≤
ε

|〈U1,w〉|
≤

ε√
‖w‖2 − ρ2

1

.

In turn this implies

κερ2 < κ
∥∥∥wx> − w̄x̄>

∥∥∥ ≤ g(w, x) − g(w̄, x̄) ≤ σ1(Y)σ1(X) + σ2(Y)σ2(X)

≤ 2σ1(Y)σ1(X)

≤ 2
ε√

‖w‖2 − ρ2
1

|〈U1,w〉〈x,V1〉 − 〈U1, w̄〉〈x̄,V1〉|

≤ 2
ε√

‖w‖2 − ρ2
1

(∥∥∥wx>
∥∥∥ +

∥∥∥w̄x̄>
∥∥∥)

≤
2
√

2ε
‖w‖

(1 + δ)
∥∥∥w̄x̄>

∥∥∥
Rearranging we get

ρ <
2
√

2(1 + δ)
κ

∥∥∥w̄x̄>
∥∥∥

max{‖w‖, ‖x‖}
,

yielding a contradiction. �

We now need to prove an additional claim.

Claim 10. |〈U2, w̄〉| ≤ |〈U1, w̄〉| and |〈V2, x̄〉| ≤ |〈V1, x̄〉|.
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Proof. Seeking contradiction we assume the possible contrary cases.

Case 1. Assume |〈U2, w̄〉| > |〈U1, w̄〉| and |〈V2, x̄〉| > |〈U1, x̄〉|, then (6.37) and

(6.38) imply

max{|〈U1,w〉〈V1, x〉|, |〈U1, w̄〉〈V1, x̄〉|} ≤
2 min{‖w‖, ‖x‖}ε

κ
.

From which we derive

κερ2 < g(w, x) − g(w̄, x̄) ≤ 2σ1(Y)σ1(X) ≤ 4σ1(Y)δ

∥∥∥w̄x̄>
∥∥∥

max{‖w‖, ‖x‖}
ε.

contradicting the definition of ρ2.

Case 2. Assume that |〈U2, w̄〉| ≤ |〈U1, w̄〉| and |〈V2, x̄〉| > |〈V1, x̄〉| . Notice that

‖w̄‖2 = 〈U1, w̄〉2 + 〈U2, w̄〉2, hence |〈U1, w̄〉| ≥ ‖w̄‖/
√

2 and similarly |〈V2, x̄〉| >

‖x̄‖/
√

2. Thus,
‖w̄‖
√

2
≤ |〈U1, w̄〉| ≤

2‖x‖ε
κ|〈x̄,V2〉|

<
2
√

2‖x‖ε
κ‖x̄‖

.

This implies that

min{‖w‖, ‖x‖} ≤ ‖w‖ ≤ δ

∥∥∥w̄x̄>
∥∥∥

‖x‖
<

4δε
κ
,

yielding a contradiction. �

Without loss of generality let us assume ‖w‖ ≤ ‖x‖.

Claim 11. |〈w, w̄〉| . ε ‖w̄‖ and |〈x, x̄〉| . ε ‖x̄‖ .

Proof. By the previous claim and the fact that ‖w̄‖2 = 〈U1, w̄〉2 + 〈U2, w̄〉2 we get

that |〈U1, w̄〉| ≥ ‖w‖/
√

2, combining this with (6.38) gives

|〈x̄,V2〉| ≤
2
√

2‖x‖ε
κ‖w̄‖

≤
4δ
κ
νε
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Then by Lemma 6.6.6

|〈x, x̄〉| = |〈V1, x〉〈V1, x̄〉 + 〈V2, x〉〈V2, x̄〉| ≤ |〈V1, x〉〈V1, x̄〉| + |〈V2, x〉〈V2, x̄〉|

≤
2ε
κ
‖x̄‖ + ‖x‖|〈V2, x̄〉|

≤

(
2
κ

+
4δ
κ
ν2

)
ε‖x̄‖ ≤

(
2
κ

+
4δ
κ
ν2

)
ε‖x̄‖.

where we used (6.39). Notice that the same analysis gives

|〈w, w̄〉| ≤
2
κ

+
2
√

2δ
κ

‖w‖
‖x‖

 ε‖w̄‖ ≤ 2
κ

+
2
√

2δ
κ

 ε‖w̄‖.
�

This last claim finishes the proof of the theorem. �

Proofs of Theorem 6.4.6

In order to prove the theorem we will apply three steps: we will show that

the graphs of ∂ fS and ∂ fP are close, use Theorem 6.6.12 to give bounds on the ε-

critical points of fP, and then connect it back to the landscape of fS by combining

the previous two steps. The following two propositions handle the first part.

Proposition 6.6.13. Fix two functions f , g : Rd1 × Rd2 → R such that g is ρ-weakly

convex. Suppose that there exists a point (w̄, x̄) and a real δ > 0 such that the inequality

| f (w, x) − g(w, x)| ≤ δ
∥∥∥wx> − w̄x̄>

∥∥∥
F

holds for all (w, x) ∈ Rd1 × Rd2 .

Then for any stationary point (w, x) of g, there exists a point (ŵ, x̂) satisfying
∥∥∥(w, x) − (ŵ, x̂)

∥∥∥ ≤ 2
√

δ‖wx>−w̄x̄>‖
ρ+δ∥∥∥dist(0, ∂ f (ŵ, x̂))

∥∥∥ ≤ (
δ +

√
2δ(ρ + δ)

)
(‖(w, x)‖ + ‖(w̄, x̄)‖) .
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Proof. The proposition is a corollary of Theorem 6.1 of [70]. Recall that for a

function l : Rd → R the Lipschitz constant at ȳ ∈ Rd is given by

lip(l, y) := lim sup
y→ȳ

|l(y) − l(ȳ)|
|y − ȳ|

.

Set u(x) = δ
∥∥∥wx> − w̄x̄>

∥∥∥, and l(x) = −δ
∥∥∥wx> − w̄x̄>

∥∥∥. It is easy to see that at

differentiable points the gradient of l(·) is equal to

∇l(w, x) = −
δ

‖wx> − w̄x̄>‖F

 (wx> − w̄x̄>)x

(wx> − w̄x̄>)>w

 =⇒ ‖∇l(w, x)‖ ≤ δ‖(w, x)‖

Then, since lip(l; w, x) = lim sup(w′,x′)→(w,x) ‖∇l(w′, x′)‖, we can over estimate

lip(l; w, x) ≤ δ (‖(w, x)‖ + ‖(w̄, x̄)‖) .

Thus applying Theorem 6.1 of [70] we get that for all γ > 0 there exists (ŵ, x̂)

such that ‖(w, x) − (ŵ, x̂)‖ ≤ 2γ and

dist(0, ∂ f (ŵ, x̂)) ≤ 2ργ + 2δ

∥∥∥wx> − w̄x̄>
∥∥∥

γ
+ δ

(∥∥∥(ŵ, x̂)
∥∥∥ + ‖(w̄, x̄)‖

)
By the triangular inequality we get

∥∥∥(ŵ, x̂)
∥∥∥ ≤ 2γ + ‖(w, x)‖ and therefore

dist(0, ∂ f (ŵ, x̂)) ≤ 2(ρ + δ)γ + 2δ

∥∥∥wx> − w̄x̄>
∥∥∥

γ
+ δ ‖(w, x)‖ .

Hence setting γ =

√
δ‖wx>−w̄x̄>‖

ρ+δ
, gives

dist(0, ∂ f (ŵ, x̂)) ≤ 2
√
δ(ρ + δ) ‖wx> − w̄x̄>‖ + δ

(∥∥∥(ŵ, x̂)
∥∥∥ + ‖(w̄, x̄)‖

)
≤ 2

√
δ(ρ + δ) (‖wx>‖ + ‖w̄x̄>‖) + δ

(∥∥∥(ŵ, x̂)
∥∥∥ + ‖(w̄, x̄)‖

)
≤ 2

√
δ(ρ + δ)

( √
‖wx>‖ +

√
‖w̄x̄>‖

)
+ δ

(∥∥∥(ŵ, x̂)
∥∥∥ + ‖(w̄, x̄)‖

)
≤

(
δ +

√
2δ(ρ + δ)

)
(‖(w, x)‖ + ‖(w̄, x̄)‖)

where we used that
√

a + b ≤
√

a +
√

b and ab ≤ (a2 + b2)/2. �
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Proposition 6.6.14. There exist numerical constants c1, c2 > 0 such that for all (w, x) ∈

Rd1×d2 we have∣∣∣∣ fS (w, x) − fP(w, x)
∣∣∣∣ . (

d1 + d2 + 1
m

log
(

m
d1 + d2 + 1

)) 1
2

‖wx> − w̄x̄>‖ (6.40)

with probability at least 1 − 2 exp(−c1(d1 + d2 + 1)) provided m ≥ c2(d1 + d2 + 1).

Proof. The proof of this proposition is almost entirely analogous to the proof of

Proposition 5.10.2 with I = ∅, β(r) � 1, c(m, r) � m, and r = 1 (note that this

setting satisfies the assumptions thanks to Lemma 5.10.6). The proof is exactly

the same up to (5.97). Instead of repeating the proof, we refer the reader to

Section 5.10.2. Up to (5.97) we had proved the following result:

Claim 12. There exists constants c1, c2, c3, c4 > 0 such that for any t ∈ (0, c4) the

following uniform concentration bound holds∣∣∣∣ fS (w, x) − fP(w, x)
∣∣∣∣ ≤ 3

2
t‖wx> − w̄x̄>‖F for all (w, x) ∈ Rd1×d2

with probability at least 1 − 2 exp(c1(d1 + d2 + 1) log(c2/t) − c3t2m).

This probability bound is at least 1 − 2 exp(−c3t2m/2) provided that

d1 + d2 + 1
m

≤
c3t2

2c1 log(c2/t)
. (6.41)

Set t = max
(√

2c1
c3
, c2

) (
d1+d2+1

m log
(

m
d1+d2+1

)) 1
2 . This choice ensures that (6.41) holds,

since

d1 + d2 + 1
m

≤
(d1 + d2 + 1) log

(
m

d1+d2+1

)
m log

(
m

d1+d2+1 log−1
(

m
d1+d2+1

)) ≤ c3t2

2c1 log(c2/t)
,

where we used that the function log(x)
log(x/ log(x)) ≥ 1 for all x ≥ e. We guarantee that

this holds for x = m/(d1+d2+1) and that t ∈ (0, c4) by setting m ≥ C(d1+d2+1) with

C sufficiently large. After relabeling the constants, this proves the result. �
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We are finally in position to proof the theorem.

Proof of Theorem 6.4.6. Fix v ≥ 1 and a fix point (w, x) satisfying ‖(w, x)‖ ≤

ν‖(w̄, x̄)‖. Proposition 6.6.14 shows that there exist constants c1, c2 > 0 such that

with probability at least 1 − 2 exp(−c1(d1 + d2 + 1)) we have

| fS (w, x) − fP(w, x)| ≤ Õ

(d1 + d2 + 1
m

) 1
2
 ‖wx> − w̄x̄>‖F ∀(w, x) ∈ Rd1 × Rd2

provided that m ≥ c2(d1 + d2 + 1). To ease the notation let us denote ∆ :=

Õ

((
d1+d2+1

m

) 1
2
)
. Assume that we are in the event in which this holds. As described

in the introduction of this chapter, we showed in Chapter 5 that fS is ρ-weakly

and µ-sharp with high probability provided that m ≥ C(d1 +d2 +1). Now, assume

that m is big enough and we are in the intersection of this two events. This holds

with probability 1 − c3 exp(c1(d1 + d2 + 1)) (for some possibly different constants

c1, c3). Hence by Proposition 6.6.13 there exits a point (ŵ, x̂) such that

‖(w, x) − (ŵ, x̂)‖ ≤
2
√
ρ

√
∆Dwx and dist(0, ∂ f (w̄, x̄)) ≤ C

√
∆Dwx

where Dwx = ‖(w, x)‖ + ‖(w̄, x̄)‖.

Notice that if ‖(w, x)‖ ≤ ∆
1
4 ‖(w̄, x̄)‖ holds then the result holds immediately.

So assume that this inequality is not satisfied. So we can lower bound

‖(ŵ, x̂)‖ ≥ ‖(w, x)‖ − ‖(ŵ, x̂) − (w, x)‖ ≥

1 − 2
(
∆̄

ρ

) 1
2 (

1 + ∆̄−
1
4
) ‖(w, x)‖ ≥

1
2
‖(w, x)‖

where the first inequality follow by applying the triangle inequality and the last

inequality follows for m sufficiently large, since we can ensure that for such m
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the term in the parenthesis is bigger than 1/2. Therefore,

dist(0, ∂ f (ŵ, x̂)) ≤ C∆
1
2 (‖(w, x)‖ + ‖(w̄, x̄)‖)

≤ C∆
1
2
(
1 + ∆−

1
4
)
‖(w, x)‖

≤ 2C∆
1
2
(
1 + ∆−

1
4
)
‖(ŵ, x̂)‖

≤ 4C∆
1
4 ‖(ŵ, x̂)‖.

Hence, by reducing ∆ if necessary we can guarantee that dist(0, ∂ f (ŵ, x̂)) ≤

γ‖(ŵ, x̂)‖ and consequently Theorem 6.6.12 gives that at least one of the follow-

ing two holds

max{‖ŵ‖, ‖x̂‖}‖ŵx̂> − w̄x̄>‖ . ∆
1
2 Dwx‖w̄x̄>‖ and


|〈w, w̄〉| . ν2∆

1
2 Dwx‖w̄‖

|〈x, x̄〉| . ν2∆
1
2 Dwx‖x̄‖

(6.42)

Let us prove that this implies the statement of the theorem.

Case 1. Assume that the second condition in (6.42) holds. Notice that due to

‖(w, x)‖ ≤ ∆
1
4 ‖(w̄, x̄)‖we have ∆

1
2 Dwx . ∆

1
4 ‖(w, x)‖ for m big enough. This implies

|〈w, w̄〉| ≤
∣∣∣〈ŵ, w̄〉∣∣∣ + ‖w̄‖‖ŵ − w‖ . (ν2 + 1)∆

1
2 Dwx‖w̄‖ . (ν2 + 1)∆

1
4 ‖(w, x)‖‖w̄‖.

A similar argument yields the result for |〈w, x〉|.

Case 2. On the other hand, if the first condition holds, there exist ew ∈
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Rd1 , ex ∈ Rd2 such that ŵ = w + ew and x̂ = x + ex with ‖ew‖, ‖ex‖ ≤ ∆
1
2 Dwx. Then

‖(w, x)‖‖wx> − w̄x̄>‖ ≤ ‖(w, x)‖‖wx> − ŵx̂>‖ + ‖(w, x)‖‖ŵx̂> − w̄x̄>‖

≤ ‖(w, x)‖‖wx> − ŵx̂>‖ + 2‖(ŵ, x̂)‖‖ŵx̂> − w̄x̄>‖

. ‖(w, x)‖‖wx> − (w + ew)(x + ex)>‖ + ∆
1
2 Dwx‖w̄x̄>‖

≤ ‖(w, x)‖
(
‖we>x ‖ + ‖ewx>‖ + ‖ewe>x ‖

)
+ ∆

1
2 Dwx‖w̄x̄>‖

≤ ‖(w, x)‖∆
1
2 Dwx

(
‖w‖ + ‖x>‖ + ∆

1
2 Dwx

)
+ ∆

1
2 Dwx‖w̄x̄>‖

. ‖(w, x)‖∆
1
2 Dwx

(
‖(w, x)‖ + ∆

1
4 ‖(w, x)‖

)
+ ∆

1
2 Dwx‖w̄x̄>‖

. ‖(w, x)‖2∆
1
2 Dwx + ∆

1
2 Dwx‖w̄x̄>‖

. (ν2 + 1)‖w̄x̄>‖∆
1
2 Dwx

. (ν2 + 1)∆
1
4 ‖(w, x)‖‖w̄x̄>‖.

Proving the desired result. �

6.6.4 Auxiliary results

This subsection presents technical lemmas we employed in our proofs. The first

result we need is a special case of the celebrated Davis-Kahan sin θ Theorem

(see [65]). For any two unit vectors u1, v1 ∈ S
d−1, define θ(u1, v1) = cos−1(|〈u1, v1〉|).

Lemma 6.6.15. Consider symmetric matrices X,∆,Z ∈ Rn×n, where Z = X + ∆. Define

δ to be the eigengap λ1(X) − λ2(X), and denote the first eigenvectors of X,Z by u1, v1,

respectively. Then

1
√

2
min {‖u − v‖2 , ‖u + v‖2} ≤

√
1 − 〈u1, v1〉

2 = |sin θ(u1, v1)| ≤
‖∆‖op

δ
.

We also need a version of this result for rectangular matrices.
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Lemma 6.6.16. Let A, Â ∈ Rd1×d2 with rank(A) = 1. Let A = Uσ(A)V> and Â =

Ûσ(Â)V̂> be their singular value decompositions. Then the

sin θ(V1, V̂1) ≤
2(2σ1(A) + ‖A − Â‖op)

‖A‖2op
‖A − Â‖F ,

the same bound holds for U1, Û1.

Proof. This is a corollary of Theorem 3 in [246]. For any pair of matrices B, B̂ said

Theorem establishes the following upper bound

| sin θ(V1(B),V1(B̂))| ≤
2(2σ1(B) + ‖B − B̂‖op)

σ1(B)2 − σ̂2(B)
‖B − B̂‖F (6.43)

where V1(X) is the top right singular value of the matrix X; and σ̂2(B) = σ2(B) if

rank(B) > 1 and σ̂2(B) = −∞ otherwise.

Fix U2 and V2 such that U2 ⊥ U1 and V2 ⊥ V1. For any n define

An := σ1(A)U1V>1 +
σ1(A)

2n
U2V>2 .

By construction V1(A) = V1(An) for all n. Then, applying (6.43) we get

| sin θ(V1, V̂1)| ≤
2(2σ1(A) + ‖A − Â‖op)

σ1(A)2 ‖A − Â‖F + en

where (en)∞n=1 is a sequence satisfying limn→∞ en = 0. Taking limits gives the de-

sired bound. An analogous argument gives the result for U, Û. �

Now, we provide a few well-known concentration inequalities.

Theorem 6.6.17 (Corollary 2.8.3 in [235]). Let X1, . . . , Xm be independent, mean zero,

sub-exponential random variables. Then, for every t ≥ 0, we have

P


∣∣∣∣∣∣∣ 1
m

m∑
i=1

Xi

∣∣∣∣∣∣∣ ≥ t

 ≤ 2 exp
[
−cm min

(
t2

K2 ,
t
K

)]
where c > 0 is a numerical constant and K := maxi ‖Xi‖ψ1 .
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Theorem 6.6.18 (Theorem 5.6 in [25]). Let X = (X1, . . . , Xm) be a vector of n inde-

pendent standard normal random variables. Let f : Rn → R denote an L-Lipschitz

function. Then, for every t ≥ 0, we have

P ( f (X) − E f (X) ≥ t) ≤ exp
(
−

t2

2L2

)
.

The following concentration inequalities deal with quantiles of distributions:

Lemma 6.6.19. Let X1, . . . , Xm be an i.i.d. sample with distribution D, choose Qq to

be the q population quantile of the distribution D, that is q = P
(
X1 ≤ Qq

)
, and let

p ∈ (0, 1) be any probability with p < q. Then,

P
(
quantp({Xi}

m
i=1) ≥ Qq

)
≤ exp

(
m(q − p)2

2(q − p)/3 + 2q(1 − q)

)
,

where quantp({Xi}
m
i=1) denotes the p-th quantile of the sample {Xi}.

Proof. It is easy to see that the following holds, quantp({Xi}
m
i ) ≥ Qq if, and only

if, 1
m

∑m
i=1 1{Xi ≤ Qq} ≤ p. Notice that 1{Xi ≤ Qq} ∼ B(q) are i.i.d. Bernoulli random

variables and thus Var(1{Xi ≤ Qq}) = q(1−q). Then, the result follows by applying

Bernstein’s inequality (Theorem 2.3.2) to 1
m

∑
1{Xi ≤ Qq} − q. �

Lemma 6.6.20. Let a, b be i.i.d. sub-gaussian random variables. For any Q > 0 such

that q := P (|ab| ≤ Q) > 1/2, consider the random variable c2 defined as a2 conditioned

on the event |ab| ≤ Q, namely for all t

P
(
c2 ≤ t

)
= P

(
a2 ≤ t | |ab| ≤ Q

)
.

Then, c2 is a sub-exponential random variable, in other words for all t ≥ 0 we have that

P
(
c2 ≥ t

)
≤ 2 exp(−t/2K)

where K is the minimum scalar such that P
(
a2 ≥ t

)
≤ 2 exp(−t/K).
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Proof. Let us consider two cases. Suppose first t ≤ 2K log 2. Then we have that

1 ≤ 2 exp(−t/2K) and therefore the stated inequality is trivial.

Suppose now t ≥ 2K log 2. Then we have that

t
2K
≥ log 2 ⇐⇒ exp(t/K − t/2K) ≥ 2 ⇐⇒ exp(−t/2K) ≥ 2 exp(−t/K).

With this we can bound the probability

P
(
c2 ≥ t

)
=

1
q
P
(
a21{|ab| ≤ Q} ≥ t

)
≤

1
q
P
(
a2 ≥ t

)
≤

2
q

exp(−t/K)

≤ 4 exp(−t/K) ≤ 2 exp(−t/2K),

as claimed. �

The following Theorem from [234] is especially useful in bounding the oper-

ator norm of random matrices:

Theorem 6.6.21 (Operator norm of random matrices). Consider an m × n matrix

A whose rows Ai are independent, sub-gaussian, isotropic random vectors in Rn. Then,

for every t ≥ 0, one has

P

(∥∥∥∥∥ 1
m

AA> − In

∥∥∥∥∥
op
≤ C

√
n
m

+ t
)
≥ 1 − 2 exp (−cmt) ,

where C depends only on K := maxi ‖Ai‖ψ2 .

Proof. The Theorem is a direct Corollary of [234, Theorem 5.39]. Specifically, the

concavity of the square root gives us
√

a +
√

b ≤
√

2
√

a + b, implying that

C
√

n
m

+

√
t
m
≤ C
√

2

√
n
m

+
t
m
.

Additionally, [234, Theorem 5.39] gives us that

P

(∥∥∥∥∥ 1
m

AA> − In

∥∥∥∥∥
op
≤ C

√
n
m

+
t
√

m

)
≥ 1 − 2 exp

(
−ct2

)
.
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Setting t′ = C
√

mt and a bit of relabeling, along with the square root inequality,

gives us the desired inequality. �

Let us record the following elementary consequence.

Corollary 6.6.22. Let a1, . . . , am ∈ Rd be independent, sub-gaussian, isotropic random

vectors in Rn and let I ⊂ {1, . . . ,m} be an arbitrary set. Then, for every t ≥ 0, one has

P


∥∥∥∥∥∥∥ 1

m

∑
i∈I

(aia>i − Id)

∥∥∥∥∥∥∥
op

≤ C

√
d
m

+ t

 ≥ 1 − 2 exp (−cmt) ,

where C depends only on K := maxi ‖Ai‖ψ2 .

Proof. Consider the matrix A ∈ R|I|×d whose rows are the vectors ai for i ∈ I.

Then we deduce∥∥∥∥∥∥∥ 1
m

∑
i∈I

(aia>i − Id)

∥∥∥∥∥∥∥
op

=
|I|

m

∥∥∥∥∥∥∥ 1
|I|

∑
i∈I

aia>i − Id

∥∥∥∥∥∥∥
op

=
|I|

m

∥∥∥∥∥ 1
|I|

AA> − Id

∥∥∥∥∥
op
.

Appealing to 6.6.21, we therefore deduce for any γ > 0 the estimate∥∥∥∥∥∥∥ 1
m

∑
i∈I

(aia>i − Id)

∥∥∥∥∥∥∥
op

≤
|I|

m

√
d
|I|

+ γ ≤ C

√
d|I|
m2 +

γ|I|2

m2 ,

holds with probability 1 − 2 exp(−c|I|γ). Now for any t > 0, choose γ such that,

d|I|
m2 +

γ|I|2

m2 = d
m + t, namely γ = m2

|I|2
[ d

m (1 − |I|m ) + t]. Noting

|I|γ = m ·
m
|I|

[
d
m

(
1 −
|I|

m

)
+ t

]
≥ mt,

completes the proof. �

Recall that we defined the functions qfail(pfail) =
5−2pfail

8(1−pfail)
and Qfail(qfail) given as

the qfail-quantile of |ab| where a, b are i.i.d. standard normal. Furthermore we

defined ωfail = E[a2 | |ab| ≤ Qfail].
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Lemma 6.6.23. The function ω : [0, 1]→ R+ given by

pfail 7→ E[a2 | |ab| ≤ Qfail]

is nondecreasing. In particular, there exist numerical constants c1, c2 > 0 such that for

any 0 ≤ pfail ≤ 0.1 we have

c1 ≤ ωfail ≤ c2,

where the tightest constants are given by c1 = ω(0) ≥ 0.5 and c2 = ω(0.1) ≤ 0.56.

Proof. The bulk of this result is contained in the following claim.

Claim 13. Let 0 ≤ Q ≤ Q′ be arbitrary numbers, then

P(a2 ≥ t | |ab| ≤ Q) ≤ P(a2 ≥ t | |ab| ≤ Q′) ∀t ∈ R.

We defer the proof of the claim and show how it implies the lemma. Observe

that the functions pfail 7→ qfail and qfail 7→ Qfail are nondecreasing, thus it suffices

to show that the function Q 7→ E[a2 | |ab| ≤ Q] is nondecreasing. Let 0 ≤ Q ≤ Q′

E[a2 | |ab| ≤ Q] =

∫ ∞

0
P(a2 ≥ t | |ab| ≤ Q)dt

≤

∫ ∞

0
P(a2 ≥ t | |ab| ≤ Q′)dt

= E[a2 | |ab| ≤ Q′],

where the inequality follows from the claim and the equalities follow from the

identity E[X] =
∫ ∞

0
P(X ≥ t)dt for nonnegative random variables X. Hence ω is a

nondecreasing function.

The above implies that for any pfail ∈ [0, 0.1] we have ω(0) ≤ ωfail ≤ ω(0.1).

Note that ω(0) is positive since it is defined by a positive integrand on a set of

non-negligible measure. The bounds on ω(0) and ω(0.1) follow by a numerical
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computation. In particular we obtain that with Q = 0.6 the probability P(|ab| ≤

Q) ≥ 0.6679 ≥ 2/3 = qfail(0.1). Then computing numerically (with precision set to

32 digits) we obtain ω(0.1) ≤ E[a2 | |ab| ≤ Q] ≤ 0.56. Similarly we find that if we

set Q = 0.5 we get P(|ab| ≤ Q) ≤ 0.5903 ≤ 5/8 = qfail(0). Then evaluating we find

ω(0) ≥ E[a2 | |ab| ≤ Q] ≥ 0.5.

Proof of the claim. The statement of the claim is equivalent to having that for any

t ∈ R+ the function ht : R+ → R given by

Q 7→
P(a2 ≤ t; |ab| ≤ Q)
P(|ab| ≤ Q)

is nonincreasing. Our goal is to show that h′t ≤ 0. In order to prove this result

we proceed as follows. Define

g(Q) :=
π

2
P(|ab| ≤ Q) =

∫ ∞

0

∫ Q/x

0
exp(−(x2 + y2)/2) dy dx,

and

ft(Q) :=
π

2
P(a2 ≤ t; |ab| ≤ Q) =

∫ √
t

0

∫ Q/x

0
exp(−(x2 + y2)/2) dy dx.

Observe ht = ft/g. Thus it suffices to show f ′t g − ftg′ ≤ 0. Invoking Leibniz rule

we get

f ′t (Q) =
∂

∂Q

∫ √
t

0

∫ Q/x

0
exp(−(x2 + y2)/2) dy dx

=

∫ √
t

0

∂

∂Q

∫ Q/x

0
exp(−(x2 + y2)/2) dy dx

=

∫ √
t

0

1
x

exp(−(x2 + Q2/x2)/2) dx.

Repeating the same procedure we get g′(Q) =
∫ ∞

0
1
x exp(−(x2 + Q2/x2)/2) dx. Some

algebra reveals we want to show

ξ(t) :=

(∫ √t

0
1
x exp(−(x2 + Q2/x2)/2) dx

)
(∫ √t

0

∫ Q/x

0
exp(−(x2 + y2)/2) dy dx

) ≤ (∫ ∞
0

1
x exp(−(x2 + Q2/x2)/2)

)(∫ ∞
0

∫ Q/x

0
exp(−(x2 + y2)/2) dy dx

) .
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It is enough to show that the function ξ(t) is monotonically increasing. Define

ζQ(t) =

∫ √
t

0

1
x

exp(−(x2+Q2/x2)/2) dx and ψQ(t) =

∫ √
t

0

∫ Q/x

0
exp(−(x2+y2)/2) dy dx,

Thus we have

ζ′Q(t) =
1
2t

exp(−(t + Q2/t)/2) and ψ′Q(t) =
1

2
√

t

∫ Q/
√

t

0
exp(−(t + y2)/2)dy.

Again, ξ(t) = ζQ(t)/ψQ(t), hence we need to show ζ′QψQ ≥ ζQψ
′
Q. After some alge-

bra, this amounts to proving∫
√

t

0

∫ Q/x

0
exp(−(x2 + y2)/2) dy dx


≥

∫
√

t

0

√
t

x
exp(−(Q2/x2 − Q2/t)/2)

∫ Q/
√

t

0
exp(−(x2 + y2)/2)dy dx

 .
The inequality is true if in particular the same holds for the integrands, i.e.∫ Q/x

0
exp(−y2/2) dy ≥

√
t

x
exp

(
−

(
Q2

x2 −
Q2

t

)
/2

) ∫ Q/
√

t

0
exp(−y2/2) dy.

Since x ≤
√

t, the previous inequality holds if

x 7→
1
x

exp
(
−

Q2

2x2

)
∫ Q/x

0
exp(−y2/2)dy

is increasing. By taking derivatives and reordering terms we see that this is

equivalent to

Q − x2

Qx

∫ Q/x

0
exp(−y2/2)dy + exp(−Q2/2x2) ≥ 0.

Since exp(−y2/2) is decreasing, we have

Q − x2

qx

∫ Q/x

0
exp(−y2/2)dy ≥

Q − x2

Qx
Q
x

exp(−Q2/2x2) ≥ − exp(−Q2/2x2)

proving the claim. �

Thus the proof is complete. �
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7

ESCAPING STRICT SADDLE POINTS OF WEAKLY-CONVEX

FUNCTIONS EFFICIENTLY

“... y alcanzó a decirle con el último aliento:

- Sólo Dios sabe cuánto te quise.”

— Gabriel Garcı́a Márquez, El amor en los tiempos del cólera

7.1 Introduction

Though nonconvex optimization problems are NP-hard in general, simple non-

convex optimization techniques, e.g., gradient descent, are broadly used and

often highly successful in high-dimensional statistical estimation and machine

learning problems. A common explanation for their success is that smooth non-

convex functions g : Rd → R found in machine learning have amenable geome-

try: all local minima are (nearly) global minima and all saddle points are strict

(i.e., have a direction of negative curvature).

This explanation is well grounded: several important estimation and learn-

ing problems have amenable geometry [106, 226, 23, 105, 227, 240], and simple

randomly initialized iterative methods, such as gradient descent, asymptoti-

cally avoid strict saddle points [142, 141]. Moreover, “randomly perturbed”

variants [123] “efficiently” converge to (ε1, ε2)-approximate second-order critical

points, meaning those satisfying

‖∇g(x)‖ ≤ ε1 and λmin(∇2g(x)) ≥ −ε2. (7.1)
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Recent work furthermore extends these results to C2 smooth manifold con-

strained optimization [58, 229, 104]. Other extensions to nonsmooth convex con-

straint sets have proposed second-order methods for avoiding saddle points, but

such methods must at every step minimize a nonconvex quadratic over a convex

set (an NP hard problem in general) [111, 178, 191].

While impressive, the aforementioned works crucially rely on smoothness

of objective functions or constraint sets. This is not an artifact of their proof

techniques: there are simple C1 functions for which randomly initialized gradi-

ent descent with constant probability converges to points that admit directions

of second order descent [67, Figure 1]. Despite this example, recent work [67]

shows that randomly initialized proximal methods avoid certain “active” strict

saddle points of (nonsmooth) weakly convex functions. The class of weakly con-

vex functions is broad, capturing, for example those formed by composing con-

vex functions h with smooth nonlinear maps c, which often appear in statistical

recovery problems. They moreover show that for “generic” semialgebraic prob-

lems, every critical point is either a local minimizer or an active strict saddle.

A key limitation of [67], however, is that the result is asymptotic, and in fact

pure proximal methods may take exponentially many iterations to find local

minimizers [87]. Motivated by [67], the recent work [119] develops efficiency

estimates for certain randomly perturbed proximal methods. The work [119]

has two limitations: its measure of complexity appears to be algorithmically

dependent and the results do not extend to subgradient methods.

The purpose of this Chapter is to develop “efficient” methods for escaping

saddle points of weakly convex functions. Much like [119], our approach is

based on [67], but the resulting algorithms and their convergence guarantees
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are distinct from those in [119]. We begin with a useful observation from [67]:

near active strict saddle points x̄, a certain C1 smoothing, called the Moreau en-

velope, is C2 and has a strict saddle point at x̄. If one could exactly execute the

perturbed gradient method of [123], efficiency guarantees would then imme-

diately follow. While this is not possible in general, it is possible to inexactly

evaluate the gradient of the Moreau envelope by solving a strongly convex op-

timization problem. Leveraging this idea, we extend the work [123] to allow for

inexact gradient evaluations, proving similar efficiency guarantees.

Setting the stage, we consider a minimization problem

minimizex∈Rd f (x) (7.2)

where f : Rd → R ∪ {+∞} is closed and ρ-weakly convex, meaning the mapping

x 7→ f (x) +
ρ

2‖x‖
2 is convex. Although such functions are nonsmooth in general,

they admit a global C1 smoothing furnished by the Moreau envelope. For all

µ < ρ−1, the Moreau envelope and the proximal mapping are defined to be

fµ(x) = min
y∈Rd

f (y) +
1

2µ
‖y − x‖2 and proxµ f (x) = arg min

y∈Rd
f (y) +

1
2µ
‖y − x‖2, (7.3)

respectively. The minimizing properties of f and fµ are moreover closely

aligned, for example, their first-order critical points and local/global mini-

mizers coincide. Inspired by this relationship, this work thus seeks (ε1, ε2)-

approximate second-order critical points x of fµ, satisfying:

‖∇ fµ(x)‖ ≤ ε1 and λmin(∇2 fµ(x)) ≥ −ε2. (7.4)

An immediate difficulty is that fµ is not C2 in general. Indeed, the seminal work

[146] shows fµ is C2-smooth globally, if and only if, f is C2-smooth globally.

Therefore assuming that fµ is C2 globally is meaningless for nonsmooth opti-

mization. Nevertheless, known results in [84] imply that for “generic” semial-

gebraic functions, fµ is locally C2 near x whenever ‖∇ fµ(x)‖ is sufficiently small.
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Turning to algorithm design, a natural strategy is to apply a “saddle escap-

ing” gradient method [123] directly to fµ. This strategy fails in general, since it

is not possible to evaluate the gradient

∇ fµ(x) =
1
µ

(x − proxµ f (x)) (7.5)

in closed form. Somewhat expectedly, however, our first contribution is to

show that one may extend the results of [123] to allow for inexact evaluations

G(x) ≈ ∇ fµ(x) satisfying

‖G(x) − ∇ fµ(x)‖ ≤ a‖∇ fµ(x)‖ + b for all x ∈ Rd,

for appropriately small a, b ≥ 0. The algorithm (Algorithm 7) returns a point x

satisfying (7.4), with Õ(max{ε−2
1 , ε

−4
2 }) evaluations of G, matching the complexity

of [123].

Our second contribution constructs approximate oracles G(x), tailored to

common problem structures. Each oracle satisfies

G(x) = µ−1
(
x − PROXORACLEµ f (x)

)
,

where PROXORACLEµ f is an approximate minimizer of the strongly convex sub-

problem defining proxµ f (x). Since the subproblem is strongly convex, we con-

struct PROXORACLEµ f from K iterations of off-the-shelf first-order methods for

convex optimization. We focus in particular on the class of model-based meth-

ods [66]. Starting from initial point x0 = x, these methods attempt to minimize

f (y) + 1
2µ‖y − x‖2 by iterating

xk+1 = arg min
y∈Rd

{
fxk(y) +

1
2µ
‖y − x‖2 +

θk

2
‖y − xk‖

2
}
, (7.6)

where θk > 0 is a control sequence and for all z ∈ Rd, the function fz : Rd →

R ∪ {+∞} is a local weakly convex model of f . In Table 7.1, we show three
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Algorithm Objective Model function fz(y)

Prox-Subgradient [66] l(y) + r(y) l(z) + 〈vz, y − z〉 + r(y)
Prox-gradient F(y) + r(y) F(z) + 〈∇F(y), y − z〉 + r(y)
Prox-linear [99] h(c(x)) + r(x) h(c(x) + ∇c(x)(y − x)) + r(y)

Table 7.1: The three algorithms with the update (7.6); we assume h is convex
and Lipschitz, r is weakly convex and possibly infinite valued, both F and c are
smooth, and l is Lipschitz and weakly convex on domr with vz ∈ ∂l(z).

models, adapted to possible decompositions of f . In Table 7.2, we show how

the model function fz influences the total complexity Õ(K × max{ε−2
1 , ε

−4
2 }) of

finding a second order stationary point of fµ (7.4). In short, prox-gradient

and prox-linear methods require Õ(max{ε−2
1 , ε

−4
2 }) iterations of (7.6), while prox-

subgradient methods require Õ(d max{ε−6
1 ε
−6
2 , ε

−18
2 }). The efficiency of the prox-

gradient method directly matches the analogous guarantees for the perturbed

gradient method in the smooth setting [123]. The convergence guarantee of the

prox-subgradient method has no direct analogue in the literature. Extensions

for stochastic variants of these algorithms follow trivially, when the proximal

subproblem (7.6) can be approximately solved with high probability (e.g. using

[114, 115, 125, 207]). The rates for the prox-gradient and prox-linear method

are analogous to those in [119], which uses an algorithm-dependent measure of

stationarity. Although the algorithms and the results in this work and in [119]

are mostly of theoretical interest, they do suggest that efficiently escaping from

saddle points is possible in nonsmooth optimization.

Related work. We highlight several approaches for finding second-order

critical points. Asymptotic guarantees have been developed in deterministic

[142, 141, 67] and stochastic settings [202]. Other approaches explicitly lever-

age second order information about the objective function, such as full Hessian

or Hessian vector products computations [189, 60, 3, 42, 4, 216, 217, 199, 59].
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Algorithm to Evaluate g(x) Overall Algorithm Complexity

Prox-Subgradient [66] Õ(d max{ε−6
1 ε
−6
2 , ε

−18
2 })

Prox-gradient Õ(max{ε−2
1 , ε

−4
2 })

Prox-linear [99] Õ(max{ε−2
1 , ε

−4
2 })

Table 7.2: The overall complexity of the proposed algorithm Õ(K×max{ε−2
1 , ε

−4
2 }),

where K is the number of steps of (7.6) required to evaluate g(x). The rate for
Prox-subgradient holds in the regime ε1 = O(ε2).

Several methods exploit only first-order information combined with random

perturbations [104, 123, 61, 124, 122]. The work [122] also studies saddle

avoiding methods with inexact gradient oracles G; a key difference: the ora-

cle of [122] is the gradient of a smooth function G = ∇g. Several existing works

have developed methods that find second-order stationary points of manifold

[58, 229], convex [178, 191, 164, 244], and low-rank matrix constrained problems

[249, 197].

Road map. Section 7.2 presents a result for finding second-order stationary

points with inexact gradient evaluations. Section 7.3 develops several oracle

mappings that approximately evaluate the gradient of the Moreau Envelope

and derives the complexity estimates of Table 7.2.

7.2 Escaping saddle points with inexact gradients

In this section, we analyze an inexact gradient method on smooth functions,

focusing on convergence to second-order stationary points. The consequences

for nonsmooth optimization, which will follow from a smoothing technique,

will be explored in Section 7.2.
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We begin with the following standard assumption, which asserts that the

function f in question has a globally Lipchitz continuous gradient.

Assumption 7.2.1 (Globally Lipschitz gradient). Fix a function g : Rd → R that is

bounded from below and whose gradient is globally Lipschitz continuous with constant

L1, meaning

‖∇g(x) − ∇g(y)‖ ≤ L1‖x − y‖ for all x, y ∈ Rd.

The next assumption is more subtle: it requires the Hessian ∇2g to be Lip-

schitz continuous on a neighborhood of any point where the gradient is suffi-

ciently small. When we discuss consequences for nonsmooth optimization in

the later sections, the fact that f is assumed to be C2-smooth only locally will be

crucial to our analysis.

Assumption 7.2.2 (Locally Lipschitz Hessian). Fix a function g : Rd → R and

assume that there exist positive constants α, β, L2 satisfying the following: For any point

x̄ with ‖∇g(x̄)‖ ≤ α, the function g is C2-smooth on Bβ(x̄) and satisfies the Lipschitz

condition:

‖∇2g(x) − ∇2g(y)‖ ≤ L2‖x − y‖ for all x, y ∈ Bβ(x̄).

We aim to analyze an inexact gradient method for minimizing the function

f under Assumptions 7.2.1 and 7.2.2. The type of inexactness we allow is sum-

marized by the following oracle model.

Definition 7.2.3 (Inexact oracle). A map G : Rd → Rd is an (a, b)-inexact gradient

oracle for f if it satisfies

‖∇g(x) −G(x)‖ ≤ a · ‖∇g(x)‖ + b ∀x ∈ Rd. (7.7)

Turning to algorithm design, the method we introduce (Algorithm 7) directly

extends the perturbed gradient method introduced in [123] to inexact gradient
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Algorithm 7: Perturbed inexact gradient descent

Data: x0 ∈ Rd, T ∈ N, and η, r, ε1,M > 0
Set tpert = −M
Step t = 0, . . . ,T :

Set ut = 0
If ‖G(xt)‖ ≤ ε1/2 and t − tpert ≥ M:

Update tpert = t
Draw perturbation ut ∼ Unif(rB)

Set xt+1 ← xt − η · (G(xt) + ut).

oracles in the sense of Definition 7.2.3. The convergence guarantees for the al-

gorithm will be based on the following explicit setting of parameters. Fix target

accuracies ε1, ε2 > 0 and choose any ∆g ≥ g(x0)−inf g. We first define the auxiliary

parameters:

φ := 224 max
{

1, 5
L2ε1

L1ε2

}
L2

1

δ

√
d

∆g max

L2
2

ε5
2

,
1

ε2
1ε

1
2

 +
1
ε2

2

 and γ := log2(φ log2(φ)8),

(7.8)

and

F =
1

800γ3

1 − a
(1 + a)2

ε3
2

L2
2

and R =
1

4γ
ε2

L2
.

The parameters required by the algorithm are then set as

η =
1 − a

(1 + a)2

1
L1
, r =

ε2
2

400L2γ3 min
{

1,
L1ε2

5ε1L2

}
, M =

(1 + a)2

(1 − a)
L1

ε2
γ. (7.9)

The following is the main result of the section. The proof follows closely the

argument in [123] and therefore appears in Appendix 7.4.1.

Theorem 7.2.4 (Perturbed inexact gradient descent). Suppose that g : Rd → R is a

function satisfying Assumptions 7.2.1 and 7.2.2 and G : Rd → Rd is an (a, b)-inexact

gradient oracle for g. Let δ ∈ (0, 1), ε1 ∈ (0, α), ε2 ∈ (0,min{4γβL2, L1, L2
1}), and suppose

that

a ≤ min
{

1
20
,

1
L1ηM2γ+2 ,

R
ε1ηM2γ+2

}
and

b ≤ min

 ε1

64
,

(
F

40ηM

)1/2

,

(
L1F

M(5L1 + 1)

)1/2

,
R

Mη2(γ+2)

 .
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Then with probability at least 1 − δ, at least one iterate generated by Algorithm 7 with

parameters (7.9) is a (ε1, ε2)-second-order critical point of g after

T = 8∆g max
{

2
M
F
,

256
(1 − a)ηε2

1

}
+ 4M = Õ

(
L1∆g max

{
L2

2

ε4
2

,
1
ε2

1

})
iterations. (7.10)

The necessary bounds for a and b can be estimated as

a .
δ

L3
1∆g
· d−1/2 ·min

{
ε6

2

L2
2

, ε2
1ε

2
2

}
·min

{
1,

L1ε2

L2ε1

}2

and

b .
δ

L2
1L2∆g

· d−1/2 ·min
{
ε7

2

L2
2

, ε2
1ε

3
2

}
·min

{
1,

L1ε2

L2ε1

}
,

(7.11)

where the symbol “.” denotes inequality up to polylogarithmic factors. Thus,

Algorithm 7 is guaranteed to find a second order stationary point efficiently,

provided that the gradient oracles are highly accurate. In particular, when a =

b = 0 we recover the known rates from [123].

7.3 Escaping saddle points of the Moreau envelope

In this section, we apply Algorithm 7 to the Moreau Envelope (7.3) of the weakly

convex optimization problem (7.2) in order to find a second order stationary

point of fµ (7.4). We will see that a variety of standard algorithms for nonsmooth

convex optimization can be used as inexact gradient oracles for the Moreau en-

velope. Before developing those algorithms, we summarize our main assump-

tions on fµ, describe why approximate second order stationary points of fµ are

meaningful for f , and show that Assumption 7.2.2, while not automatic for gen-

eral fµ, holds for a large class of semialgebraic functions.

As stated in the introduction, for µ < ρ−1, the Moreau envelope is an every-

where C1 smooth with Lipschitz continuous gradient. In particular,
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Figure 7.1: Critical poins of f in (7.12). We use ε1 = ε2 = 0.04. On the left:
The function, a point (x, f (x)) with x an (ε1, ε2)-second-order critical point of fµ
and its corresponding quadratic q(·). On the right: The set of first-order critical
points of f (yellow) and the set of (ε1, ε2)-second-order critical points of fµ (red).

Assumption 7.2.1 holds automatically for fµ with L1 = max
{
µ−1, ρ

1−µρ

}
.

See for example [67] for a short proof. Assumption 7.2.2, however, is not auto-

matic, so we impose the following assumption throughout.

Assumption 7.3.1. Let f : Rd → R ∪ {∞} be a closed ρ-weakly convex function whose

Moreau envelope fµ satisfies Assumption 7.2.2 with constants α, β, L2.

Turning to stationarity conditions, a natural question is whether the second

order condition (7.4) is meaningful for f . The next proposition shows that the

condition (7.4) implies the existence of an approximate quadratic minorant of f

with small slope and curvature at a nearby point.

We defer the proof to Section 7.4.3.

Proposition 7.3.2. Consider f : Rd → R̄ satisfying Assumption 7.3.1. Assume that

x ∈ Rd is an (ε1, ε2)-second order critical point of fµ with ε1 ≤ min{α, ε2
2L2µ
} and let

x̂ := proxµ f (x). Then there exists a quadratic function q : Rd → R and a neighborhood

U = B3ε2/4L2(x̂) of x for which the following hold.

1. (Nearby point) The point x̂ is close to x: ‖x − x̂‖ ≤ µ · ε1.
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2. (Minorant) For any y ∈ U, we have q(y) ≤ f (y).

3. (Small subgradient) The quadratic has a small gradient at x̂:

‖∇q(x̂)‖ ≤ ε1.

4. (Small negative curvature) The quadratic has small negative curvature:

∇2q(x̂) � −3ε2.

5. (Approximate match) The quadratic almost matches the function at x̂:

f (x̂) − q(x̂) ≤
µ

2
(1 + 3µε2) ε2

1.

In Figure 7.1, we illustrate the proposition with the following nonsmooth

function:

f (x, y) = |x| +
1
4

(y2 − 1)2. (7.12)

The Moreau envelope of this function has three first-order critical points: a strict

saddle point (0, 0) and two global minima (−1, 0), and (1, 0). As shown in the

right plot of Figure 7.1, approximate second-order critical points of fµ cluster

around minimizers of f . In addition, the left plot of Figure 7.1 shows the lower

bounding quadratic from Proposition 7.3.2.

Finally, we complete this section by showing that Assumption 7.3.1 is rea-

sonable: it holds for generic semialgebraic functions.1

Theorem 7.3.3. Let f : Rd → R̄ be a semi-algebraic ρ-weakly-convex function. Then,

the set of vectors v ∈ Rd for which the tilted function g(x; v) = f (x) + 〈v, x〉 satisfies

Assumption 7.3.1 has full Lebesgue measure.

1A set is semialgebraic if its graph can be written as a finite union of sets each defined by
finitely many polynomial inequalities.
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The proof appears in Section 7.4.4, and is a small modification of the argu-

ment in [67].

7.3.1 Inexact Oracles for the Moreau Envelope

In this section, we develop inexact gradient oracles for ∇ fµ = µ−1(x − proxµ f (x)).

Leveraging this expression, our oracles will satisfy

G(x) = µ−1
(
x − PROXORACLEµ f (x)

)
, (7.13)

where PROXORACLEµ f is the output of a numerical scheme that solves (7.3). To

ensure G meets the conditions of Definition 7.2.3, we require that

‖PROXORACLEµ f (x) − proxµ f (x)‖ ≤ a · ‖x − proxµ f (x)‖ + µ · b.

for some constants a ∈ (0, 1) and b > 0.

Since f is ρ-weakly convex, evaluating proxµ f (xk) amounts to minimizing

the (µ−1 − ρ)-strongly convex function f (x) + 1
2µ‖x − xk‖

2. We now use this strong

convexity to derive efficient proximal oracles via a class of algorithms called

model-based methods [66], which we now briefly summarize. Given a minimiza-

tion problem minx∈Rd g(x), where g is strongly convex, a model-based method is an

algorithm that recursively updates

xk+1 ← arg min
x

gxk(x) +
θt

2
‖x − xk‖

2, (7.14)

where gxk : Rd → R̄ is a function that approximates g near xk. Returning to the

proximal subproblem, say we wish to compute proxµ f (x0) for some given x0. We

consider an inner loop update of the form

xk+1 ← arg min
x∈Rd

fxk(x) +
1

2µ
‖x − x0‖

2 +
θk

2
‖x − xk‖

2, (7.15)
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Algorithm 8: PROXORACLEK
µ f

Data: Initial point x0 ∈ Rd.
Parameters: Stepsize θk > 0, Flag one sided.
Output: Approximation of proxµ f (x0).
Step k (k ≤ K + 1):

xk+1 ← arg minx∈Rd fxk(x) +
1+θkµ

2µ

∥∥∥∥x − (x0+θkµ·xk)
1+θkµ

∥∥∥∥2

If one sided :
x̄K = 2

(K+2)(K+3)−2

∑K+1
k=1 (t + 1)xk

return x̄K

Else:
return xK

where fxk : Rd → R̄ is a function that locally approximates f (see Table 7.1 for

three examples). Completing the square, this update can be equivalently writ-

ten as a proximal step on fxk , where the reference point is a weighted average of

x0 and xk as summarized in Algorithm 8. Turning to complexity, we note that

the approximation quality of a model governs the speed at which iteration (7.15)

converges. In what follows, we will present two families of models with differ-

ent approximation properties, namely one- and two-sided models. We will see

that models with double-sided accuracy require fewer iterations to approximate

proxµ f (x0).

One-sided models

We start by studying models that globally lower bound the function and agree

with it at the reference point. Subgradient-type models are the canonical exam-

ples, and we will discuss them shortly.

Assumption 7.3.4 (One-sided model). Let f = l + r, where r : Rd → R ∪ {+∞} is

a closed function and l : Rd → R is locally Lipschitz. Assume there exists τ > 0 and a

family of models lx : Rd → R, defined for each x ∈ Rd, such that the following hold: For
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all x ∈ Rd, lx is L-Lipschitz on domr and satisfies

lx(x) = l(x) and lx(y) − l(y) ≤ τ‖y − x‖2 for all y ∈ Rd. (7.16)

In addition, for all x ∈ Rd, the model

fx := lx + r

is ρ-weakly convex.

Now we bound the number of iterations that are needed for Algorithm 8 to

obtain a (a, b)-inexact proximal point oracle with one-sided models. The algo-

rithm outputs an average of the iterates with nonuniform weights that improves

the convergence speed.

Theorem 7.3.5. Fix a, b > 0 and let f : Rd → R̄ be a ρ-weakly-convex function and let

fx : Rd → R̄ be a family of models that satisfy Assumption 7.3.4 for τ = 0. Let µ−1 > ρ be

a constant, and set θk =
(µ−1−ρ)

2 (k + 1) then Algorithm 8 with flag one sided = true

outputs an a point x̄K such that

‖x̄K − proxµ f (x0)‖2 ≤ a · ‖x0 − proxµ f (x0)‖2 + µ · b,

provided the number of iterations is at least K ≥ 4
a + 16L2

(1−µρ)2b2 .

The proof of this result follows easily from Theorem 4.5 in [66] and thus, we

omit it. By exploiting this rate, we derive a complexity guarantee with one-sided

models.

Theorem 7.3.6 (One-sided model-based method). Consider an L f -Lipschitz ρ-

weakly-convex function f : Rd → R̄ that satisfies Assumption 7.3.1 and a family of

models fx satisfying Assumption 7.3.4. Then, for all sufficiently small ε1 > 0, and

any ε2 > 0, δ ∈ (0, 1) there exists a parameter configuration (η, r,M) that ensures that
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with probability at least 1 − δ one of the first T iterates generated by Algorithm 7 with

gradient oracle

g(x) = µ−1
(
x − PROXORACLEK

µ f (x)
)

(Algorithm 8)

is an (ε1, ε2)-second-order critical point of fµ provided that the inner and outer iterations

satisfy

K = Õ

(
(1 − µρ)−2L2

f L
4
1L2

2∆
2
f ·

d
δ
·max

{
L4

2

ε14
2

,
1
ε4

1ε
6
2

}
·max

{
L2

2ε
2
1

L2
1ε

2
2

, 1
})

and

T = Õ

(
L1∆ f max

{
L2

2

ε4
2

,
1
ε2

1

}) (7.17)

where L1 := max
{

1
µ
, ρ

1−µρ

}
and ∆ f = f (x0) − inf f .

Proof. This result is a corollary of Theorem 7.3.5 and Theorem 7.2.4. By [67,

Lemma 2.5] and Assumption 7.3.1 we conclude that the Moreau envelope satis-

fies the hypothesis of Theorem 7.2.4. Hence, the result follows from this theorem

provided that we show that the gradient oracle is accurate enough. By Theorem

7.3.5 if we set the number of iterations according to (7.17) we get an inexact

oracle that matches the assumptions of Theorem 7.2.4 �

The rate from Table 7.2 follows by noting that max
{

L2
2ε

2
1

L2
1ε

2
2
, 1

}
= 1 when ε1 ≤

L1
L2
ε2.

Example: proximal subgradient method. Consider the setting of Assump-

tion 7.3.4, where f = l + r. Assuming that l is τ-weakly convex, it possesses an

affine model:

lx(y) = l(x) + 〈v, y − x〉, where v ∈ ∂l(x).

By weak convexity, fx = lx +r satisfies Assumption 7.3.4. Moreover, the resulting
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update (7.15) reduces to the following proximal subgradient method:

xk+1 = prox µ
1+θkµ

r

(
1

1 + θkµ
(x0 + θkµ · xk − µ · v)

)
.

Theorem 7.3.6 applied to this setting thus implies the rate in Table 7.2.

Two-sided models

The slow convergence of one-sided model-based algorithms motivates stronger

approximation assumptions. In this section we study models that satisfy the

following assumption.

Assumption 7.3.7 (Two-sided model). Assume that for any x ∈ Rd, the function

fx : Rd → R̄ is ρ-weakly convex and satisfies

| fx(y) − f (y)| ≤
q
2
‖y − x‖2 for all y ∈ Rd. (7.18)

When equipped with double-sided models, model-based algorithms for the

proximal subproblem converge linearly.

Theorem 7.3.8. Suppose that f : Rd → R̄ is a ρ-weakly-convex function, let fx be a

family models satisfying Assumption 7.3.7. Fix an accuracy level a. Set µ−1 > ρ+q and

the stepsizes to θt = θ > q, then Algorithm 8 with flag one sided = false outputs

a point xK such that

‖xK − proxµ f (x0)‖2 ≤ a · ‖x0 − proxµ f (x0)‖2,

provided that K ≥ 2 log(a−1) log
(
µ−1−ρ+θ

q+θ

)−1
.

We defer the proof of this result to Section 7.4.5. Given this guarantee for

two-sided models, we derive the following theorem. The proof is analogous to
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that of Theorem 7.3.6: the only difference is that we use Theorem 7.3.8 instead

of Theorem 7.3.5. Thus we omit the proof.

Theorem 7.3.9 (Two-sided model-based method). Consider a weakly convex func-

tion f : Rd → R̄ that satisfies Assumption 7.3.1 and a family of models fx satisfying

Assumption 7.3.7. Then for any δ ∈ (0, 1) and sufficiently small ε1 > 0, there exists a

parameter configuration (η, r,M) such that with probability at least 1− δ one of the first

T iterates generated by Algorithm 7 with inexact oracle

g(x) = µ−1
(
x − PROXORACLEK

µ f (x)
)

(Algorithm 8)

is an (ε1, ε2)-second-order critical point of fµ provided that the inner and outer iterations

satisfy

K = Õ(1) and T = Õ

(
max

{
1
µ
,

ρ

1 − µρ

}
( f (x0) − inf f ) min

{
L2

2ε
−4
1 , ε

−2
1

})
.

We close this section with two examples of two-sided models.

Example: Prox-gradient method. Suppose that

f = F + r

where r : Rd → R ∪ {+∞} is closed and ρ-weakly convex and F is C1 with q-

Lipschitz continuous derivative on domr. Then due to the classical inequality

|F(y) − F(x) − 〈∇F(x), y − x〉| ≤
q
2
‖y − x‖2 for all x, y ∈ domr,

the model

fx(y) = F(x) + 〈∇F(x), y − x〉 + r(x),

satisfies Assumption 7.3.7. Moreover, the resulting update (7.15) reduces to the

following proximal gradient method:

xk+1 = prox µ
1+θkµ

r

(
1

1 + θkµ
(x0 + θkµ · xk − µ · ∇F(xk))

)
.
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Theorem 7.3.9 applied to this setting thus implies the rate in Table 7.2.

Example: Prox-linear method. Suppose that

f = h ◦ c + r

where r : Rd → R ∪ {+∞} is closed and ρ-weakly convex, h is L-Lipschitz and

convex on domr, and c is C1 with β-Lipschitz Jacobian on domr. Then due to the

classical inequality ‖c(y) − c(x) − ∇c(x), y − x‖ ≤ β

2‖y − x‖2, we have

|h(c(y)) − h(c(x) + ∇c(x)(y − x))| ≤
βL
2
‖x − y‖2, for all x, y ∈ domr.

Consequently, the model

fx(y) = h(c(x) + ∇c(x)(y − x)) + r(x),

satisfies Assumption 7.3.7 with q = βL. Moreover, the resulting update (7.15)

reduces to the following prox-linear method [99]:

xk+1 = arg min
y∈Rd

h(c(xk) + ∇c(xk)(y − xk)) + r(x) +
1 + θkµ

2µ

∥∥∥∥∥x −
x0 + θkµ · xk

1 + θkµ

∥∥∥∥∥2

.

Theorem 7.3.9 applied to this setting thus implies the rate in Table 7.2.

7.4 Analysis

7.4.1 Proof of Theorem 7.2.4

Throughout this section, we assume the setting of Theorem 7.2.4. We begin by

recording some inequalities that we will use later on.

Lemma 7.4.1. The following inequalities hold.
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1. (Radius) √
32η

(1 + a)2

(1 − a)
MF + ηr < R.

2. (Function value)

ε1ηr + L1η
2r2/2 ≤ F/2.

3. (Probability)

p :=
T L1

(1+a)2

(1−a)

√
d

ε2
γ2 max

{
1, 5 L2ε1

L1ε2

}
29

2γ
≤ δ.

Proof. We start with the first inequality, observe that

32η
(1 + a)2

(1 − a)
≤ 32

1
L1

and FM =
1

800γ3

1 − a
(1 + a)2

ε3
2

L2
2

·
(1 + a)2

(1 − a)
L1

ε2
γ =

ε2
2L1

800L2
2γ

2
.

Therefore, since

η ≤
1
L1

and r =
ε2

2

400L2γ3 min
{

1,
L1ε2

5ε1L2

}
≤

ε2
2

400L2γ3 ,

we have √
32η

(1 + a)2

(1 − a)
MF + ηr ≤

1
5γ

ε2

L2
+

ε2
2

400L1L2γ

≤
1

5γ
ε2

L2
+

1
400γ

ε2

L2
<

1
4γ

ε2

L2
= R.

where the third inequality follows from L1/ε2 ≥ 1.

Now, we prove the second statement: ε1ηr + L1η
2r2/2 ≤ F/2. Indeed, first

recall the definition of r above and that η = 1−a
(1+a)2

1
L1

, F = 1
800γ3

1−a
(1+a)2

ε3
2

L2
2
. Thus, we

bound the first term:

ε1 · η · r ≤ ε1 ·
1 − a

(1 + a)2

1
L1
·

ε2
2

400L2γ3

L1ε2

5ε1L2
≤

1 − a
(1 + a)2

ε3
2

2000L2
2γ

3
≤

2
5

F.
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Next, we bound the second term:

L1 · η
2 · r2

2
=

1
2

L1 ·

(
1 − a

(1 + a)2

1
L1

)2

·

(
ε2

2

400L2γ3

)2

=
ε2

L1

1 − a
(1 + a)2

1
400γ3

1
800γ3

1 − a
(1 + a)2

ε3
2

L2
2

≤
1

400γ3

1
800γ3

1 − a
(1 + a)2

ε3
2

L2
2

≤
F
10

where we used (1 − a)/(1 + a)2 ≤ 1, ε2 ≤ L1 and the simple inequality 1/400γ3 ≤

1/10.

Finally, we show that p ≤ δ. Recall that by definition,

T = 8∆g max
{

M
F
,

256
ηε2

1

}
+ 4M.

We upper bound T using F = 1
800γ3

1−a
(1+a)2

ε3
2

L2
2
, M =

(1+a)2

(1−a)
L1
ε2
γ, and η = 1−a

(1+a)2
1
L1

:

T = 24 (1 + a)2

1 − a
∆gL1 max

{
800γ4 (1 + a)2

1 − a
L2

2

ε4
2

,
256
ε2

1

}
+ 4

(1 + a)2

(1 − a)
L1

ε2
γ

≤ 24 · 800
(
(1 + a)2

1 − a

)2

· L1γ
4 ·

(
∆g max

{
L2

2

ε4
2

,
1
ε2

1

}
+

1
ε2

)
.

This yields:

p ≤
213 · 800

(
(1+a)2

1−a

)3
· L2

1γ
6
√

d ·max
{
1, 5 L2ε1

L1ε2

} (
∆g max

{
L2

2
ε5

2
, 1
ε2

1ε2

}
+ 1

ε2
2

)
2γ

.

Next, recall that 2γ = φ · log2(φ)8, where

φ := 224 L2
1

δ

√
d max

{
1, 5

L2ε1

L1ε2

} (
∆g max

{
L2

2

ε5
2

,
1
ε2

1ε2

}
+

1
ε2

2

)
.

Note that φ ≥ 224 L2
1
ε2

2
≥ 224 since ε2 ≤ L1. Therefore,

p ≤ 213 · 800
(
(1 + a)2

1 − a

)3
γ6

224 log8
2(φ)

δ ≤ δ

where the final inequality follows from log2(x log2(x)8)6 ≤ log2 (x)8 for any x ≥ 224

and 213 × 800 ×
(

(1+a)2

1−a

)3
≤ 224 since a ≤ 1/20. �
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We assume that G is an (a, b)-inexact gradient oracle for g. We derive two

simple consequences of Definition 7.2.3.

Lemma 7.4.2. Then we have that for any x ∈ Rd the following inequalities hold:

1. (Norm similarity) |‖G(x)‖ − ‖∇g(x)‖| ≤ a‖∇g(x)‖ + b.

2. (Correlation) 〈∇g(x),G(x)〉 ≥ (7/8)(1 − a)‖∇g(x)‖2 − 2b2.

Proof. Throughout the proof we let v = ∇g(x) and u = G(x) and use that ‖u − v‖ ≤

a‖v‖ + b. The first part of the theorem is then a consequence of the triangle

inequality. The second part follows since ‖u‖2 ≥ (1−a)2‖v‖2−2b(1−a)‖v‖+b2 and

‖u‖2 − 2〈u, v〉 + ‖v‖2 = ‖u − v‖2 ≤ a2‖v‖2 + 2ab‖v‖ + b2,

which implies the following:

2〈u, v〉 ≥ (1 − a)2‖v‖2 + (1 − a2)‖v‖2 − 2(1 − 2a)b‖v‖

= 2(1 − a)‖v‖2 − 2(1 − 2a)b‖v‖

≥ 2(1 − a)(1 − c)‖v‖2 −
(1 − 2a)2

2(1 − a)c
b2

≥ 2(1 − a)(1 − c)‖v‖2 −
1
2c

b2

where the third inequality uses a ≤ 1/2 and the second inequality follows from

Young’s inequality: 2 · ((1 − 2a)b · ‖v‖) ≤ ((1 − 2a)b)2/(2c(1 − a)) + 2c(1 − a)‖v‖2. To

complete the result, set c = 1/8. �

As a consequence of this Lemma, we prove that the function g decreases

along the inexact gradient descent sequences with oracle G.

Lemma 7.4.3 (Descent lemma). Given y0 ∈ Rd, consider the inexact gradient descent

sequence: yt+1 ← yt − η ·Gt(yt). Then for all t ≥ 0, we have

g(yt) − g(y0) ≤ −
η

8
(1 − a)

t−1∑
i=0

‖∇g(yi)‖2 + 5tηb2. (7.19)
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Proof. Since the function g has L1-Lipschitz gradients we have

g(yt+1) ≤ g(yt) − η〈∇g(yt),G(yt)〉 +
L1η

2

2
‖G(yt)‖2

≤ g(yt) − η
7(1 − a)

8
‖∇g(yt)‖2 + 2ηb2 +

L1η
2

2
((1 + a)‖∇g(yt)‖ + b)2

≤ g(yt) − η
7(1 − a)

8
‖∇g(yt)‖2 + 2ηb2

+
L1η

2

2

(
6
5

(1 + a)2‖∇g(yt)‖2 + 6b2
)
.

Here the second inequality follows from Lemma 7.4.2 and the third follows from

Young’s inequality: 2(1 + a)‖∇g(yt)‖b ≤ 1
5 (1 + a)2‖∇g(yt)‖2 + 5b2. Next, observe that

− η
7(1 − a)

8
‖∇g(yt)‖2 + 2ηb2 +

L1η
2

2

(
6
5

(1 + a)2‖∇g(yt)‖2 + 6b2
)

≤ −η

(
7(1 − a)

8
−

6
10

(1 + a)2
)
‖∇g(yt)‖2 + (2 + 3) ηb2

≤ −
η(1 − a)

8
‖∇g(yt)‖2 + 5ηb2,

where the second line follows since η ≤ 1/L1 and the last inequality follows from

(6/10)(1 + a)2 ≤ (3/4)(1 − a) for a ≤ 1/20. Thus, we have shown that

g(yt) − g(y0) ≤ −
η(1 − a)

8
‖∇g(yt)‖2 + 5ηb2,

which implies (7.19). �

As a consequence of the above Lemma, we now show that inexact gradient

descent sequences {yt} either (a) significantly decrease g or (b) remain close to y0.

Lemma 7.4.4 (Improve or localize). Given y0 ∈ Rd, consider the inexact gradient

descent sequence: yt+1 ← yt − η ·Gt(yt). Then, for all τ ≤ t, we have

‖yτ − y0‖
2 ≤ 16ηt

(1 + a)2

(1 − a)

(
g(y0) − g(yt) + (5 + η) tb2

)
. (7.20)
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Proof. By Lemma 7.4.2, we have

‖yτ − y0‖
2 = η2

∥∥∥∥∥∥∥
τ−1∑
i=0

G(yi)

∥∥∥∥∥∥∥
2

≤ η2

 t−1∑
i=0

(1 + a)‖∇g(yi)‖ + tb

2

≤ 2

tη2
t−1∑
i=0

(1 + a)2‖∇g(yi)‖2 + η2t2b2

 ,
where the last inequality follows from Jensen’s inequality. Next apply

Lemma 7.4.3, to bound η2 ∑t−1
i=0 ‖∇g(yi)‖2 ≤

8η
(1−a) (g(y0) − g(yt) + 5b2). Plugging this

bound into the above inequality, we have

‖yτ − y0‖
2 ≤ 2

(
8ηt

(1 + a)2

(1 − a)

(
g(y0) − g(yt) + 5b2t

)
+ η2t2b2

)
≤ 16ηt

(1 + a)2

(1 − a)

(
g(y0) − g(yt) + (5 + η) tb2

)
.

This concludes the proof. �

In the next two Lemmas, we show that, when randomly initialized near a

critical point with negative curvature, inexact gradient descent sequences de-

crease the objective g with high probability. The first result (Lemma 7.4.5) will

help us estimate the failure probability.

Lemma 7.4.5. Fix a point ỹ satisfying ‖∇g(ỹ)‖ ≤ ε1 and λmin(∇2g(ỹ)) ≤ −ε2 and let

e0 denote an eigenvector associated to the smallest eigenvalue of ∇2g(ỹ). Consider two

points y0 and y′0 with

y0 = y′0 + ηr0e0 and max{‖y0 − ỹ‖, ‖y′0 − ỹ‖} ≤ ηr,

where r0 ≥ ω := 1
η
23−γR. Let {yt}, {y′t} be two inexact gradient descent sequences, initial-

ized at y0 and y′0, respectively:

yt+1 = yt − ηG(yt) and y′t+1 = y′t − ηG(y′t).

Then min{g(yM) − g(y0), g(y′M) − g(y′0)} ≤ −F.
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Proof. We argue by contradiction. Suppose that

max{g(y0) − g(yM), g(y′0) − g(y′M)} < F.

Then by Lemma 7.4.4, the iterates of both sequences remain close to their ini-

tializers:

max{‖yt − y0‖, ‖y′t − y′0‖} ≤

√
16η

(1 + a)2

(1 − a)
M

(
F + (5 + η) Mb2) (7.21)

≤

√
32η

(1 + a)2

(1 − a)
MF, for all t ≤ M.

where the second inequality follows from two upper bound: η ≤ 1/L1 and b2 ≤

L1F
M(5L1+1) . We now use (7.21) to show for all t ≤ M, iterates yt and y′t remain close

to ỹ. By Lemma 7.4.1, we get

max{‖yt − ỹ‖ ,
∥∥∥y′t − ỹ

∥∥∥} ≤ max{‖yt − y0‖, ‖y′t − y′0‖} + max{‖y0 − ỹ‖, ‖y′0 − ỹ‖}

≤

√
32η

(1 + a)2

(1 − a)
MF + ηr < R.

(7.22)

In the remainder of the proof, we will argue that inequality (7.22) cannot hold.

In particular, we will show that negative curvature of g implies the sequences yt

and y′t must rapidly diverge from each other.

To leverage negative curvature, we first claim that g is C2 with L2-Lipschitz

Hessian in BR(ỹ), which contains yt and y′t for t ≤ M. Indeed, since ỹ satisfies

‖∇g(ỹ)‖ ≤ ε1 ≤ α, Assumption 7.2.2 ensures ∇2g(y) is defined and L2-Lipschitz

through Bβ(ỹ). The claim then follows since R = 1
4γ

ε2
L2
≤ β, which follows from

the assumption ε2 ≤ 4γβL2

Now observe that {y′t + s(yt − y′t) | s ∈ [0, 1]} ⊆ BR(ỹ) for all t ≤ M. Therefore,

definingH := ∇2g(ỹ), vt := ∇g(yt) −G(yt), v′t := ∇g(y′t) −G(y′t), and ŷt := yt − y′t , we
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have for all t ≤ M − 1

ŷt+1 = ŷt − η(∇g(yt+1) − ∇g(y′t+1)) − η(vt − v′t)

= (I − ηH)ŷt − η

[∫ 1

0

(
∇2g(y′t + s(yt − y′t)) −H

)
ds

]
ŷt − η(vt − v′t)

= (I − ηH)t+1ŷ0︸          ︷︷          ︸
=:p(t+1)

− η

t∑
(I − ηH)t−τ

[∫ 1

0

(
∇2g(y′τ + s(yτ − y′τ)) −H

)
ds

]
ŷτ︸                                                                   ︷︷                                                                   ︸

=:q(t+1)

− η

t∑
τ=0

(I − ηH)t−τ(vτ − v′τ)︸                          ︷︷                          ︸
=:n(t+1)

where the last equality follows from the recursive definition of yt and y′t . In what

follows we will argue that p(t) diverges exponentially and dominates q(t) and

n(t).

Beginning with exponential growth, notice that ŷ0 is an eigenvector of H

with eigenvalue λ := −λmin(H). Therefore,

‖p(t)‖ = (1 + ηλ)t‖̂y0‖ = (1 + ηλ)tηr0. (7.23)

Consequently, if max{‖q(t)‖, 2‖n(t)‖} ≤ ‖p(t)‖
2 , then the following bound would

hold:

max{‖yM − ỹ‖, ‖y′M − ỹ‖} ≥
‖ŷM‖

2

≥
1
2

(‖p(M)‖ − ‖q(M)‖ − ‖n(M)‖)

≥
1
8
‖p(M)‖

=
(1 + ηλ)Mηr0

8

≥ 2γ−3ηr0 ≥ R,

where the fourth inequality follows since M = γ/ηε2, (1 + ηλ) ≥ (1 + ηε2) and

(1+x)1/x ≥ 2 for all x ∈ (0, 1), while the final inequality follows since r0 ≥ ω = R
2γ−3η

.
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Thus, by proving the following claim, we will contradict (7.22) and prove the

result.

Claim 14. For all t ≤ M, we have max{‖q(t)‖, 2‖n(t)‖} ≤ ‖p(t)‖
2 .

The proof of the claim follows by induction on t and the following bound

‖I − ηH‖ ≤ (1 + ηλ),

which holds since η is small enough that I − ηH < 0.

Turning to the inductive proof, we note that the base case holds since

2n(0) = q(0) = 0 ≤ ‖ŷ0‖/4.

Now assume the claim holds for all τ ≤ t. Then for all τ ≤ t we have

‖ŷτ‖ ≤ ‖p(τ)‖ + ‖q(τ)‖ + ‖n(τ)‖ ≤ 2 ‖p(τ)‖ ≤ 2(1 + ηλ)τηr0,

where the final inequality follows from (7.23). Consequently, we may bound

‖q(t + 1)‖ as follows:

‖q(t + 1)‖ ≤ η
t∑

τ=0

‖I − ηH‖t−τ
∥∥∥∥∥∥
∫ 1

0

(
∇2g(y′τ + s(yτ − y′τ)) −H

)
ds

∥∥∥∥∥∥ ‖ŷτ‖
≤ ηL2

t∑
τ=0

‖I − ηH‖t−τ max{‖yt − ỹ‖ ,
∥∥∥y′t − ỹ

∥∥∥} ‖ŷτ‖
≤ ηL2R

t∑
τ=0

‖I − ηH‖t ηr0

= ηL2RM ‖I − ηH‖t ηr0

≤ 2ηL2RM‖p(t + 1)‖

≤
‖p(t + 1)‖

2
,

where the second inequality follows from L2-Lipschitz continuity of ∇2g on

BR(ỹ), the third inequality follows from the inclusions yt, y′t ∈ BR(ỹ), the fourth in-
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equality follows from (7.23), and the fifth inequality follow from 2ηL2RM ≤ 1/2.

This proves half of the inductive step.

To prove the other half of the inductive step, we bound ‖n(t + 1)‖ as follows:

‖n(t + 1)‖ ≤ η
t∑

τ=0

‖I − ηH‖t−τ
∥∥∥vτ − v′τ

∥∥∥
≤ η

t∑
τ=0

‖I − ηH‖t−τ
[
a
(
‖∇g(yτ)‖ +

∥∥∥∇g(y′τ)
∥∥∥) + 2b

]
≤ 2η

t∑
τ=0

‖I − ηH‖t−τ
[
a (L1R + ε1) + b

]
≤ 2η(1 + ηλ)t

[
Ma (L1R + ε1) + Mb

]
where the third inequality follows from L1 Lipschitz continuity of ∇g, the inclu-

sions yt, y′t ∈ BR(ỹ), and the bound ‖∇g(ỹ)‖ ≤ ε1; and the fourth inequality follows

from the bound ‖I − ηH‖t−τ ≤ (1 + ηλ)t. To complete the proof, we recall that

three inequalities: b ≤ R
Mη2(γ+2) , a ≤ 1

ηM2γ+2 min{ 1
L1
, R
ε1
}, and r0 ≥ ω = R

2γ−3η
. Then, we

find that

‖n(t + 1)‖ ≤ 2η(1 + ηλ)t
[
Ma (L1R + ε1) + Mb

]
≤

3(1 + ηλ)tR
2γ+1

≤
3(1 + ηλ)tηr0

16

≤ ‖p(t + 1)‖/4.

This concludes the proof of the claim. Consequently, the proof of the Lemma is

complete. �

Using the Lemma 7.4.5, the following Lemma proves that inexact gradient

descent will decrease the objective value by a large amount if it is randomly

initialized near a point with negative curvature.
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Lemma 7.4.6 (Descent with negative curvature). Fix a point ỹ satisfying ‖∇g(ỹ)‖ ≤

ε1 and λmin(∇2g(ỹ)) ≤ −ε2. Consider an initial point y0 := ỹ + η · u with u ∼ Unif(rB).

Let {yt} be an inexact gradient descent sequence, initialized at y0:

yt+1 = yt − ηG(yt).

Then with probability at least

p := 1 − L1
(1 + a)2

(1 − a)

√
d
ε2
γ2 max

{
1, 5

L2ε1

L1ε2

}
29−γ, (7.24)

we have g(yM) − g(ỹ) ≤ −F/2

Proof. We show that the bound g(yM) − g(ỹ) ≤ −F/2 follows from the inequality

g(yM) − g(y0) ≤ −F. To that end, first observe that.

g(y0) − g(ỹ) ≤ 〈∇g(ỹ), y0 − ỹ〉 +
L1η

2

2
‖y0 − ỹ‖2 ≤ ε1ηr +

L1η
2r2

2
≤ −F/2

where the last inequality follows by Lemma 7.4.1. Consequently,

g(yM) − g(ỹ) ≤ g(yM) − g(y0) + g(y0) − g(ỹ) ≤ −F/2.

This shows that it is sufficient to study g(yM) − g(y0) ≤ −F as desired.

In the remainder of the proof, we show the event {g(yM) − g(y0) ≤ −F} holds

with the claimed probability in (7.24). To that end, given any y′0 ∈ Rd, let us

define TM(y′0) = y′M, where y′t+1 = y′t − ηG(y′t) for all t ≥ 0. Consider the set of

points y ∈ Bηr(ỹ), for which M steps of the inexact gradient method with oracle

G fail to decrease the g significantly:

Xstuck = {y ∈ Bηr(ỹ) | g(TM(y)) − g(y0) > −F}.

We now show that P(y0 ∈ Xstuck) ≤ 1 − p. Indeed, Lemma 7.4.5 shows that there

exists e0 ∈ S
d−1 such that width of Xstuck along e0 is upper bounded by ηω. Thus
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the volume of Xstuck is bounded by the volume of the cylinder [0, ω] × Bd−1
ηr (0),

which yields the result:

P(y0 ∈ Xstuck) =
Vol(Xstuck)
Vol(Bd

ηr(0))
≤
ηω · Vol(ηrBd−1)

Vol(ηrBd)

≤
ω · Γ

(
d+1

2 + 1
2

)
r
√
πΓ

(
d+1

2

)
≤
ω

r
·

√
d
π

≤
23−γR
ηr
·

√
d
π

≤ L1
(1 + a)2

(1 − a)

√
d
ε2
γ2 max

{
1, 5

L2ε1

L1ε2

}
29−γ.

where the second inequality follows from the identity Vol(ηrBd) = (ηr)dπd/2/Γ(d
2 +

1); the third inequality follows from the bound Γ(x + 1
2 )/Γ(x) ≤

√
x for any x ≥ 0

[121]; the fourth inequality follows from the definition ω = R
2γ−3η

; and the fifth

inequality follows from the definitions η = (1 − a)/L1(1 + a)2, R = 1
4γ

ε2
L2

, and

r =
ε2

2
400L2γ3 min

{
1, L1ε2

5ε1L2

}
, as well as the bound 400 · 23/(4

√
π) ≤ 29. This concludes

the proof. �

To conclude this section, we now combine all the Lemmas to prove Theo-

rem 7.2.4.

Proof of Theorem 7.2.4. Set the number of iterations to

T = 8∆g max
{

M
F
,

256
ηε2

1

}
+ 4M.

Then, we will prove the slightly stronger claim that there is at least one (ε1/4, ε2)-

second-order critical point. Let {xt}
T
t=0 be the sequence generated by Algorithm

7. We partition this sequence into three disjoint sets:

1. The set of (ε1/4, ε2)-second-order critical points, denoted S2.
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2. The set of (ε1/4)-first-order critical points that are not in S2, denoted S1.

3. All the other points S3 = {xt}
T
t=0 \ (S1 ∪ S2).

We first prove that |S3| ≤ T/4:

g(xT ) − g(x0) =

T−1∑
t=0

(g(xt+1) − g(xt))

≤ −η
(1 − a)

8

T−1∑
t=0

‖∇g(xt)‖2 + 5ηTb2

≤ −η
(1 − a)

8

∑
t∈S3

‖∇g(xt)‖2 + 5ηTb2

< −η|S3|ε
2
1(1 − a)

1
128

+ 5ηTb2

Rearranging, and applying b2 ≤
ε2

1
4096 , we find

|S3| ≤
g(x0) − g(xT )
ηε2

1(1 − a) 1
128

+
5Tb2

ε2
1(1 − a) 1

128

≤
T

(1 − a)16
+

640T
(1 − a)4096

≤ T/4,

since a ≤ 1/20.

Now suppose for the sake of contradiction that |S2| is empty. Define Γ ⊂ [T ]

be the set of iteration numbers where Algorithm 7 adds a perturbation to the

iterate:

Γ := {t ∈ [T ] | ‖G(xt)‖ ≤ ε1/2 and t − tpert ≥ M}.

Every xt with t ∈ Γ is first-order stationary, since

‖∇g(xt)‖ ≤
1

1 − a
(‖G(xt)‖ + b) ≤

1
1 − a

(
ε1

2
+ b

)
≤

20
19

(
ε1

2
+
ε1

64

)
≤ ε1.

Moreover, since |S2| is empty, such xt satisfy λmin(∇2g(xt)) < −ε2. Therefore, by

Lemma 7.4.6 and a union bound, the following event

E =

{
g(xt+M) − g(xt) ≤ −

F
2

for all t ∈ Γ

}
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does not happen with probability at most

P(Ec) ≤
T L1

(1+a)2

(1−a)

√
d

ε2
γ2 max

{
1, 5 L2ε1

L1ε2

}
29

2γ
. (7.25)

By Lemma 7.4.1, this probability is upper bounded by δ. Therefore, throughout

the remainder of the proof, we suppose the event E happens. In this event we

will show that we will show that g(xt) < inf g for some t, which yields the desired

contradiction.

To that end, recall that by Lemma 7.4.3, g cannot increase by much at each

iteration:

g(xt+1) − g(xt) ≤ 5ηb2 for all t ∈ [T ].

Thus, defining tlast := max{t | t + M < T } and we find that

g(xtlast+M+1) − g(x0) =

tlast+M∑
t=0

(g(xt+1) − g(xt))

≤
∑
k∈Γ

k≤tlast

∑
t∈[k,k+M−1]

(g(xt+1) − g(xt)) + 5ηb2|T |

=
∑
k∈Γ

k≤tlast

(g(xt+M) − g(xt)) + 5ηb2|T |

≤ −(|Γ| − 1)F/2 + 5ηb2|T |

To arrive at the desired contradiction, we will show that |Γ| is large. In particular,

we claim that

|Γ| ≥
3T
4M

.

To prove this claim, first observe that the definition of Algorithm 7 ensures that

{xt | ‖G(xt)‖ ≤ ε1/2} ⊆
⋃

k∈Γ{k, . . . , k + M}. Moreover, S1 ⊆ {xt | ‖G(xt)‖ ≤ ε1/2} by

Lemma 7.4.2:

‖∇g(xt)‖ ≤ ε1/4 =⇒ ‖G(x)‖ ≤ (1 + a)
ε1

4
+ b ≤

21
20
ε1

4
+
ε1

64
≤
ε1

2
,
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since a ≤ 1/20 and b ≤ ε1/64. Therefore, since |S1| = T − |S3| ≥ 3T/4, we have

(3T/4) ≤ |S1| ≤ |Γ|M, as desired.

Finally, we find

g(xtlast+M+1) − g(x0)

≤ −(|Γ| − 1)F/2 + 5ηb2|T |

≤ −

(
3T
4M
− 1

)
F
2

+ 5ηb2|T |

≤ −
T F
4M

+ 5ηb2|T |

≤ −
T F
8M

< inf g − g(x0),

where the third inequality follows since T ≥ 4M and the fourth inequality

follows since b2 ≤ 1
40η

F
M . Thus, yielding a contradiction. This completes the

proof. �

7.4.2 Proof of Proposition 7.3.2

To prove Part 1, recall that ‖∇ fµ(x)‖ = µ−1(x − x̂), so

‖x − x̂‖ ≤ µ‖∇ fµ(x)‖ ≤ µε1,

as desired. Note that this implies x ∈ U = B3ε2/4L2(x̂) since ε1 ≤
ε2

2L2µ
.

To prove the remaining statements, we recall the following consequence of

the L2-Lipschitz continuity of ∇2 fµ on the ball Bβ(x) [186, Lemma 1.2.4]: for all

y ∈ Bβ(x)

fµ(x) + 〈∇ fµ(x), y − x〉 +
1
2
〈∇2 fµ(x)(y − x), y − x〉 −

L2

6
‖y − x‖3 ≤ fµ(y).
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Since x is an (ε1, ε2)-second order critical point, we may lower bound the left

hand side by a simple quadratic: letting r = 3ε2/2L2, we have

q0(y) := fµ(x) + 〈∇ fµ(x), y − x〉 −
3
4
ε2‖y − x‖2 ≤ fµ(y) for all y ∈ Br(x) (7.26)

Now, define the quadratic

q(y) := f (x̂) −
µ

2
(1 + 3µε2) ε2

1 + 〈∇ fµ(x), y − x̂〉 −
3ε2

2
‖y − x̂‖2

We claim that q(y) ≤ q0(y).

Indeed, first observe that by ∇ fµ(x) = µ(x − x̂), we have

fµ(x) + 〈∇ fµ(x), y − x〉 = f (x̂) −
1

2µ
‖x − x̂‖2 + 〈∇ fµ(x), y − x̂〉.

Next, we may recenter the quadratic up to a small error:

‖y − x‖2 ≤ 2‖y − x̂‖2 + 2‖x − x̂‖2

Therefore, we have

q0(y) = f (x̂) −
1

2µ
‖x − x̂‖2 + 〈∇ fµ(x), y − x̂〉 −

3ε2

4
‖y − x‖2

≥ f (x̂) −
1
2

(
µ−1 + 3ε2

)
‖x − x̂‖2 + 〈∇ fµ(x), y − x̂〉 −

3ε2

2
‖y − x̂‖2 ≥ q(y),

where the third inequality follows from the bound ‖x̂ − x‖2 ≤ µ2ε2
1. This proves

the claim.

We now prove the remaining parts of the claim. First, Part 2 follows

from (7.27) since U ⊆ Br(x) and q(y) ≤ q0(y) ≤ fµ(y) ≤ f (y) for all y ∈ Br(x).

Second, Part 3 follows since ∇q(x̂) = ∇ fµ(x). Finally Parts 4 and 5 follow by

direct computation.

347



7.4.3 Proof of Proposition 7.3.2

To prove Part 1, recall that ‖∇ fµ(x)‖ = µ−1(x − x̂), so

‖x − x̂‖ ≤ µ‖∇ fµ(x)‖ ≤ µε1,

as desired. Note that this implies x ∈ U = B3ε2/4L2(x̂) since ε1 ≤
ε2

2L2µ
.

To prove the remaining statements, we recall the following consequence of

the L2-Lipschitz continuity of ∇2 fµ on the ball Bβ(x) [186, Lemma 1.2.4]: for all

y ∈ Bβ(x)

fµ(x) + 〈∇ fµ(x), y − x〉 +
1
2
〈∇2 fµ(x)(y − x), y − x〉 −

L2

6
‖y − x‖3 ≤ fµ(y).

Since x is an (ε1, ε2)-second order critical point, we may lower bound the left

hand side by a simple quadratic: letting r = 3ε2/2L2, we have

q0(y) := fµ(x) + 〈∇ fµ(x), y − x〉 −
3
4
ε2‖y − x‖2 ≤ fµ(y) for all y ∈ Br(x) (7.27)

Now, define the quadratic

q(y) := f (x̂) −
µ

2
(1 + 3µε2) ε2

1 + 〈∇ fµ(x), y − x̂〉 −
3ε2

2
‖y − x̂‖2

We claim that q(y) ≤ q0(y).

Indeed, first observe that by ∇ fµ(x) = µ(x − x̂), we have

fµ(x) + 〈∇ fµ(x), y − x〉 = f (x̂) −
1

2µ
‖x − x̂‖2 + 〈∇ fµ(x), y − x̂〉.

Next, we may recenter the quadratic up to a small error:

‖y − x‖2 ≤ 2‖y − x̂‖2 + 2‖x − x̂‖2

Therefore, we have

q0(y) = f (x̂) −
1

2µ
‖x − x̂‖2 + 〈∇ fµ(x), y − x̂〉 −

3ε2

4
‖y − x‖2

≥ f (x̂) −
1
2

(
µ−1 + 3ε2

)
‖x − x̂‖2 + 〈∇ fµ(x), y − x̂〉 −

3ε2

2
‖y − x̂‖2 ≥ q(y),
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where the third inequality follows from the bound ‖x̂ − x‖2 ≤ µ2ε2
1. This proves

the claim.

We now prove the remaining parts of the claim. First, Part 2 follows

from (7.27) since U ⊆ Br(x) and q(y) ≤ q0(y) ≤ fµ(y) ≤ f (y) for all y ∈ Br(x).

Second, Part 3 follows since ∇q(x̂) = ∇ fµ(x). Finally Parts 4 and 5 follow by

direct computation.

7.4.4 Proof of Theorem 7.3.3

By [84, Theorem 3.7], there exist disjoint open sets {V1, . . . ,Vk} in Rd, whose union

has full measure in Rd, and such that for each i = 1, . . . , k, there exist finitely

many smooth maps g1, . . . , gm satisfying

(∂ f )−1(v) = {g1(v), . . . , gm(v)} ∀v ∈ Vi.

In particular, since gi are locally Lipschitz continuous, for every v ∈ Vi, there

exists a constant ` satisfying

(∂ f )−1(Bε(v)) ⊂
k⋃

j=m

B`ε(g j(v)), (7.28)

for all small ε > 0. Moreover, by [84, Corollary 4.8] we may assume that for

every point v in Vi and for sufficiently small ε > 0 the set g j(Bε(v)) is an active

manifold around g j(v) for the tilted function f (·; v) = f (·) − 〈v, ·〉. Taking into

account [67, Theorem 3.1], we may also assume that the Moreau envelope fµ(·; v)

of f (·; v) is Cp-smooth on a neighborhood of each point g j(v).

Fix now a set Vi a point v ∈ Vi. Clearly, then there exist constants r, β, L2 > 0,

such that for any point y with dist(y, (∂ f )−1(v)) ≤ r, the Hessian ∇2 fµ(·; v) is L2-

Lipschitz on the ball Bβ(y). It remains to show that for all sufficiently small
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α > 0, any point y satisfying ‖∇ fµ(y; v)‖ ≤ α also satisfies dist(y, (∂ f )−1(v)) ≤ r.

To this end, consider a point y with ‖∇ fµ(y; v)‖ ≤ α for some α > 0. Note the

proximal point ŷ of fµ(·; v) at y then satisfies

dist(v, ∂ f (ŷ)) ≤ α and ‖ŷ − y‖ ≤ µ · α.

Therefore we deduce, ŷ ∈ (∂ f )−1(Bα(v)) and dist(y, (∂ f )−1(Bα(v)) ≤ µ · α. Thus,

using (7.28) we deduce that for sufficiently small α > 0, we have

dist(y, (∂ f )−1(v)) ≤ (µ + `) · α.

Choosing α < r/(µ + `) completes the proof.

7.4.5 Proof of Theorem 7.3.8

The proof of the theorem is a consequence of the following Lemma.

Lemma 7.4.7. Assume that g : Rd → R ∪ +∞ is α-strongly convex with minimizer

x?. Let gx : Rd → R̄ be a family of convex models satisfying Assumption 7.3.7. Let

x0 ∈ Rd, let θ > q, and consider the following sequence:

xk+1 ← arg min
x∈Rd

{
gxk(x) +

θ

2
‖x − xk‖

2
}

Then

‖xk+1 − x?‖ ≤
(
θ + q
α + θ

) k+1
2

‖x0 − x?‖. (7.29)

Proof. By θ-strong convexity and quadratic accuracy, we have(
gxk(xk+1) +

θ

2
‖xk − xk+1‖

2
)

+
θ

2
‖x∗ − xk+1‖

2 ≤ gxk(x∗) +
θ

2
‖x∗ − xk‖

2

≤ g(x∗) +
θ + q

2
‖x∗ − xk‖

2.
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From g(xk+1) ≤ gxk(xk+1) + θ
2‖xk − xk+1‖

2 and and the above inequality, we have

g(xk+1) +
θ

2
‖x∗ − xk+1‖

2 ≤ g(x∗) +
θ + q

2
‖x∗ − xk‖

2

Subtract g(x∗) from both sides and use g(xk+1) − g(x∗) ≥ α
2 ‖xk+1 − x∗‖2 to get the

result. �

To complete the proof notice that both the function g(y) = f + 1
2µ‖y − x0‖

2 and

the models gx = fx + 1
2µ‖y − x0‖

2 are α = (µ−1 − ρ)-strongly convex. Therefore,

Theorem 7.3.8 follows from an application of Lemma 7.4.7.
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Cutting-Plane Algorithm: Primal Forms of Bundle Methods, pages 275–330.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.

[119] Minhui Huang. Escaping saddle points for nonsmooth weakly con-
vex functions via perturbed proximal algorithms. arXiv preprint
arXiv:2102.02837, 2021.

[120] Wen Huang and Paul Hand. Blind deconvolution by steepest descent
algorithm on a quotient manifold. arXiv:1710.03309v2, 2018.

362



[121] GJO Jameson. Inequalities for gamma function ratios. The American Math-
ematical Monthly, 120(10):936–940, 2013.

[122] Chi Jin, Lydia T Liu, Rong Ge, and Michael I Jordan. On the local min-
ima of the empirical risk. Advances in neural information processing systems,
2018.

[123] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I.
Jordan. On nonconvex optimization for machine learning: Gradients,
stochasticity, and saddle points. J. ACM, 68(2), February 2021.

[124] Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient
descent escapes saddle points faster than gradient descent. In Sébastien
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d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors. Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, 2019.

[238] Adriaan Walther. The question of phase retrieval in optics. Optica Acta:
International Journal of Optics, 10(1):41–49, 1963.

[239] G. Wang, G.B. Giannakis, and Y.C. Eldar. Solving systems of random
quadratic equations via a truncated amplitude flow. arXiv:1605.08285,
2016.

[240] Kaizheng Wang, Yuling Yan, and Mateo Dı́az. Efficient clustering for
stretched mixtures: Landscape and optimality. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

[241] James D Watson and Francis HC Crick. Molecular structure of nucleic

373



acids: a structure for deoxyribose nucleic acid. Nature, 171(4356):737–738,
1953.

[242] Philip Wolfe. A Method of Conjugate Subgradients for Minimizing Nondif-
ferentiable Functions, pages 145–173. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1975.

[243] S.J. Wright. Identifiable surfaces in constrained optimization. SIAM J.
Control Optim., 31:1063–1079, July 1993.

[244] Yue Xie and Stephen J Wright. Complexity of projected newton meth-
ods for bound-constrained optimization. arXiv preprint arXiv:2103.15989,
2021.

[245] X. Yi, D. Park, Y. Chen, and C. Caramanis. Fast algorithms for robust pca
via gradient descent. In Advances in neural information processing systems,
pages 4152–4160, 2016.

[246] Y Yu, T. Wang, and R. J Samworth. A useful variant of the davis–kahan
theorem for statisticians. Biometrika, 2015.

[247] Yuqian Zhang, Yenson Lau, Han-wen Kuo, Sky Cheung, Abhay Pasu-
pathy, and John Wright. On the global geometry of sphere-constrained
sparse blind deconvolution. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4894–4902, 2017.

[248] Yiqiao Zhong and Nicolas Boumal. Near-optimal bounds for phase syn-
chronization. SIAM Journal on Optimization, 28(2):989–1016, 2018.

[249] Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B Wakin. The global
optimization geometry of low-rank matrix optimization. IEEE Transac-
tions on Information Theory, 67(2):1308–1331, 2021.

374


	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	Introduction
	A comment about structure and related publications

	Preliminaries
	Notation
	Nonsmooth analysis
	High-dimensional probability

	Infeasibility detection with the primal-dual hybrid gradient method
	Introduction
	Preliminaries of the chapter
	Sublinear convergence of nonexpansive operators
	The complete behavior of PDHG for solving LP problems
	Finite time identifiability and eventual linear convergence
	Numerical experiments
	Analysis

	Optimal convergence rates for the proximal bundle method
	Introduction
	Bundle methods
	The parallel bundle method
	Numerical experiments
	Analysis

	Composite optimization for low-rank matrix recovery
	Introduction
	Regularity conditions and algorithms
	Regularity under RIP
	Guarantees for subgradient & prox-linear methods
	Examples of 1/2 RIP
	Matrix Completion
	Robust PCA
	Recovery up to a tolerance
	Numerical experiments
	Analysis

	Blind deconvolution: a case study
	Introduction
	Data generating model and local convergence guarantees
	Initialization
	Nonsmooth landscape
	Numerical Experiments
	Analysis

	Escaping strict saddle points of weakly-convex functions efficiently
	Introduction
	Escaping saddle points with inexact gradients
	Escaping saddle points of the Moreau envelope
	Analysis

	Bibliography

