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Continuous optimization has become a prevalent tool across the sciences
and engineering. Modern applications have displayed steady growth in prob-
lem sizes. Such sizes often prohibit the use of classical algorithmic solutions
that heavily rely on costly operations, such as matrix inversion, and do not scale
well. To counter this phenomenon practitioners have turned their focus to sim-
pler first-order heuristics, such as gradient descent, that are often highly suc-
cessful, yet are not well-understood. In this thesis, we study a few nonsmooth
settings where simple algorithms are provably convergent.

We start with the problem of detecting infeasibility of large-scale linear pro-
gramming problems using the primal-dual hybrid gradient method of Cham-
bolle and Pock (2011). The literature on PDHG has focused chiefly on feasible
problems. When the problem is not feasible, the iterates of the algorithm do not
converge. In this scenario, we show that the iterates diverge at a controlled rate
towards a well-defined ray. Leveraging this fact, we design a simple scheme to
extract certificates of infeasibility from the iterates.

We then turn to unconstrained convex optimization and consider the classic
proximal bundle methods, an algorithmic family dating back to the 70s. We
prove convergence rates for bundle methods under a variety of assumptions.
In particular, we show that these algorithms automatically adapt to problem

regularity, exhibiting faster convergence rates. We complement these findings



with a new parallelizable variant of the bundle method that attains near-optimal
rates without prior knowledge of function parameters. These results improve
on the limited existing convergence rates and provide a unified approach across
problem settings and algorithmic details.

After that, we study rapid local convergence guarantees for nonconvex for-
mulations of low-rank matrix recovery problems, a problem family that in-
cludes phase retrieval, blind deconvolution, matrix completion, and robust
PCA. Standard approaches for solving these problems use smooth penalty func-
tions and often exhibit an undesirable phenomenon: the condition number, clas-
sically defined, scales poorly with the dimension. In contrast, we show that nat-
ural nonsmooth penalty formulations have two clear advantages: (1) they do
not suffer from the same type of ill-conditioning, and (2) they are robust against
noise and gross outliers. Consequently, we prove that off-the-shelf algorithms
for nonsmooth optimization converge at a rapid dimension-independent rate
when initialized close to the solution, even when a constant fraction of the mea-
surements are adversarially corrupted.

To complement these local convergence guarantees, we turn to the question
of escaping saddle points of nonsmooth functions. Recent work has shown that
stochastically perturbed gradient methods can efficiently strict saddle points of
smooth functions. We extend this body of work to nonsmooth optimization,
by analyzing an inexact analogue of a stochastically perturbed gradient method
applied to the Moreau envelope. The main conclusion is that a variety of algo-
rithms can escape strict saddle points of the Moreau envelope at a controlled

rate.
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1
INTRODUCTION

“Good problems and mushrooms of certain kinds have

something in common; they grow in clusters.”

— George Poélya, How to Solve It: A New Aspect of Mathematical Method

Optimization has become a widespread tool throughout the sciences and
engineering. Modern applications dealing with learning and estimation tasks
have led to a steady increase in problem sizes. Classical algorithms, such as sim-
plex and interior-point methods, rely on costly operations and tend to struggle
with such large-scale applications. Motivated by this drawback, practitioners
have switched to simpler first-order heuristics, e.g., gradient descent, that are

often highly successful, yet are not well-understood.

This thesis investigates several large-scale settings where simple first-order

algorithms are provably convergent. In particular, in

e Chapter[3} We study huge-scale linear programming problems and propose a
practical approach to detect infeasibility using the iterates of the primal-dual
hybrid gradient method.

* Chapter @ We analyze a classical and widely-used algorithm for convex op-
timization called the proximal bundle method. We design adaptive stepsize
rules that lead to optimal convergence for a number of nonsmooth settings.

* Chapter [5f We consider nonconvex formulations for low-rank matrix recov-
ery problems. We link notions of strong identifiability, e.g., restricted isome-

try properties, with favorable conditioning of nonsmooth optimization prob-



lems, leading to fast local convergence of off-the-shelf numerical algorithms,
such as subgradient and prox-linear methods, for a suite of high-impact data
science tasks.

* Chapter [ff We focus on the blind deconvolution problem and leverage the
results in Chapter[5|to develop a two-stage method that can handle a constant
fraction of gross outliers.

* Chapter [} We investigate the question of escaping saddle points of non-
smooth functions and design efficient algorithms that escape strict saddle

points of the Moreau envelope of weakly convex functions.

In what follows, we describe the main contributions of these chapters in detail.

Infeasibility detection for large-scale linear programming

Our first subject of study is classical Linear Programming (LP). Formally, we

consider the canonical primal-dual problems,

minimize c¢'x maximize by
subjectto Ax=0b subjectto ATy <c. (1.1)
x>0,

where A € R™", b € R”, and ¢ € R" are given. The state-of-the-art algorithmic
solutions — simplex [63] and interior point methods [188| 210] — have con-
tinuously improved over the past few decades and exhibit great practical per-
formance for medium scale-problems, thus, leaving little room for first order

methods to make inroads.

However, for large-scale problems, where the input data bearly fits in mem-

ory, these classical algorithms tend to struggle due to their dependence on ma-



trix inversion. To counter this drawback, a recent paper [14] proposed to apply
the Primal-Dual Hybrid Gradient method (PDHG) [43] — a first-order method for
general convex optimization problems — to LP. When specialized to PDHG
updates

X = PrOij(xk - UATyk —1¢)

(1.2)
Y =y rAQ - X — b .

Said paper showed empirically that with the right enhancements, a PDHG-
based solver presents moderate to significant gains compared to state-of-the-art

solvers in the large scale regime.

Nonetheless, the existing theory for PDHG falls short of providing theoret-
ical foundations for many of the features that a modern LP solver requires. In
paticular, the literature has mostly focused on settings where the problem at
hand is assumed to have at least one solution. Infeasibility detection and com-
putation of certificates are an essential aspect of solving LP, not only to provide
feedback on modeling errors but also for algorithms that directly exploit LP
certificates such as Benders decomposition, and branch-and-cut [2]. Chapter
studies the problem of detecting infeasibility of LP problems using PDHG.
When the problem is not feasible, the iterates of the algorithm do not converge.
In this scenario, we show that the iterates diverge at a controlled rate towards a
well-defined ray. The direction of this ray is known as the infimal displacement

vector v.

The first contribution of Chapter [3|is to prove that v recovers certificates of
primal and dual infeasibility whenever they exist. Based on this fact, we pro-
pose a simple way to extract approximate infeasibility certificates from the iter-

ates of PDHG. We study three different sequences that converge to the infimal



displacement vector:

(Difference of iterates) (' - 7°),
Zk
(Normalized iterates) "
2
(Normalized average iterates) k+_1_k

where 7 = (X%, ) denotes the kth iterate and z* = 1 3% 2/, the average of
iterates. All of them are easy to compute, and thus the approach is suitable for

large-scale applications.

Our second contribution is to establish tight convergence rates for these se-
quences. We demonstrate that the normalized iterates and the normalized av-
erage achieve a convergence rate of O (%), improving over the known rate for
the difference O (‘/%) [163]]. This rate is general and applies to any fixed-point
iteration of a nonexpansive operator. Thus, the result covers a broad family
of algorithms beyond PDHG, including, for example, the Alternating Direction
Method of Multipliers (ADMM), and can be applied settings beyond linear pro-
gramming, such as quadratic and semidefinite programming. Further, in the
case of linear programming, we show that, under non-degeneracy assumptions,
the iterates of PDHG identify the active set of an auxiliary feasible problem in
finite time, ensuring that the difference of iterates exhibits eventual linear con-

vergence to the infimal displacement vector.



Optimal convergence rates for the proximal bundle method

Next, we turn to the arguably more general problem of unconstrained convex

optimization. Formally, we aim to minimize
minimize cga f(x)

where f: R - Ris a convex function. We consider the classic proximal bundle
methods [143] 242], an algorithmic family dating back to the 70s. They are con-
ceptually similar to model-based methods [66, 193] [85]. That is, methods that
update their iterates by applying a proximal step to an approximation of the

function, known as the model f;:

Xew1 — argmin fi(x) + %nx — P (1.3)

However, bundle methods only update the next iterate x;,; when the decrease
in objective value is at least a fraction of the decrease that the model predicted.
If the next iterate is not updated, they use the solution of (1L.3) to update f;. A

common choice for the model is
Siu(x) = mJaXf(Zj) +48j»X—2;)

where {z;} are the solutions to and g; € 0f(z;) are subgradients. Unlike other
local algorithms, bundle methods retain information about the geometry of the

function around many iterates as opposed to the last one.

Though bundle methods are known to converge under different settings
[128] 177, 12] and have been successfully used in applications [221} 220, 73],
nonasymptotic guarantees have remained mostly elusive. In Chapter @, we
prove convergence rates for bundle methods under a variety of assumptions.

We show that, without any modification, these algorithms adapt to converge



faster in the presence of smoothness or Holder growth. Our analysis reveals
that with a constant stepsize, the bundle methods are adaptive, yet they attain

suboptimal convergence rates.

We overcome this shortcoming by proposing nonconstant stepsize schemes
with optimal rates. These schemes use function information such as growth con-
stants, which might be prohibitive in practice. We complete the chapter with a
new parallelizable variant of the bundle method that attains near-optimal rates
without prior knowledge of function parameters. These results improve on the
limited existing convergence rates and provide a unified approach across prob-

lem settings and algorithmic details.

Composite optimization for low-rank matrix recovery

The task of recovering a structured signal from its noisy measurements plays
a central role in data science. Relevant examples include compressed sens-
ing, phase retrieval, matrix completion, and robust PCA. Optimization-based
approaches naturally lead to nonconvex formulations, which are NP-hard in
general. To bypass this issue, researchers developed convex relaxations based
on linear and semidefinite programming [80, 36, 231, 46, 41, 38| [77]. These re-
laxations enjoy strong guarantees and can be solved in polynomial time. Yet,
in practice, they do not scale well. This motivated the community to change
its focus to nonconvex iterative methods better suited for large scale datasets

[54] 39,190, 228].

In Chapter 5, we investigate nonsmooth nonconvex formulations for a hand-

ful of concrete recovery problems. We show that these nonsmooth formulations



present two clear advantages over their smooth counterparts: first, they are ro-
bust against gross outliers, and second, their condition number does not de-
grade as the dimension grows. In turn, this implies that local algorithms, such
as the subgradient and prox-linear method, are robust and exhibit fast dimension-

independent convergence rates.

Let us elaborate. For the analysis we consider a broad class of functions
that extends the convex and smooth classes. Given finite dimensional Euclidian
spaces E and Y, we study f: E — R U {co} with

f=hoF (1.4)

where F: E — Y is a smooth map and #: Y — R U {eo} is a convex function.

To illustrate our results, recall the quadratic sensing problem, a problem with
applications to X-ray crystallography, astronomy, and microscopy among others
[27,173]238]. The objective of the problem is to recover a matrix X € R™" from
a set of m quadratic measurements

b=AXX)+£&eR" with AM) = p! Mp;,

where the p;’s are known random vectors and ¢ represents noise. Notably, when
the measurement vectors (p;)"_, are sampled values of complex sinusoids and
r = 1, these measurements correspond to X-ray diffraction images, an imagining
modality that enabled the discovery of the double helix [241]. In this context,
we propose to minimize

arg;ninf(X) where f(X) = %II?((XXT) - b||;. (1.5)

Notice that f decomposes as with A() = || - ||, and F(-) = A(-) - b.

To solve this problem we study the subgradient method, which iterates

Xk+1 — Xk - (l’ka with Gk S 6f(Xk)



where df(X) is the subdifferential set of f at X, a generalization of the gradient
mapping, and o, > 0 are stepsizes. We also investigate the prox-linear method,

which recursively updates
Xir1 < myiank(Y) + 'gllY - XiI* where fx(Y) = h(F(X)+ VFX)" (Y - X)).

where 8 > 0 is a fixed parameter. In other words, at each iteration, we minimize
the composition of & with a linear approximation of F at X; plus a quadratic
term. The quadratic ensures that the next iterate is not far from a region where
the approximation is good. The inner problems are convex and can be solved

efficiently with first-order methods, such as ADMM or PDHG.

Rates for these algorithms were understood for convex functions [109, 31],
but have only recently been studied in the nonconvex setting [68] 82]. Inspired
by this line of work, we show that the subgradient and prox-linear methods
exhibit linear and quadratic convergence, respectively, as long as the function f
satisfies the following local regularity properties. For any X, Y near the solution

setS:

(Sharp growth) f(x) —inf f > u - dist(x, S),
(Lipschitz) |f(X)-f(M|<L-|IX-Y],

(Quadratic approximation) |f(x) — fx(Y)| > g IX - Y12

The first two inequalities parallel the variational description of the minimum
and maximum singular values of linear maps and, in fact, the condition number
L/u determines the efficiency rates of the methods. While the third condition is

linked to the size of the basin of attraction where the algorithms are fast.

In turn, these regularity conditions are closely related to the restricted isom-

etry property (RIP) of 1 A; a seminal concept that ignited a decade of theoretical



—

;‘L:’Izj:—‘\*‘\\ \_‘é\_‘\ij///’
2 0 )

Figure 1.1: Expected quadratic sensing loss Ef(x) = E|(pTx)> — (pT1)?|

and computational advances in compressive sampling [80, 38, 231]. By leverag-
ing this connection, we prove that the quadratic sensing loss satisfies the
desired regularity conditions, with high probability, as soon as the number of
measurements m exceeds a constant multiple of d - r, the information-theoretical
limit required for recovery. Further, we show these properties hold even when

a constant fraction of the measurements is corrupted by gross outliers.

We use this framework to analyze several statistical recovery problems. In
particular, Chapter 5sketches a similar picture for bilinear sensing, matrix com-

pletion, and robust PCA.

In Chapter [p| we specialize these local convergence rates to the so-called
blind deconvolution problem — a rank-one bilinear recovery problem with appli-
cations to signal processing — and complement them with a robust spectral ini-
tialization method. We prove that using this initialization algorithm in tandem
with any of the two local refinement methods provides a convergent algorithm

that can stand a constant fraction of gross outliers.

Even though the initialization procedure is necessary to make the theory

hold, numerical experiments show that a randomly initialized subgradient



method consistently solves the blind deconvolution problem. In a preliminary
attempt to understand this phenomenon, Chapter [f] characterizes the critical
points of the nonsmooth blind deconvolution problem and shows that the set
of spurious critical points concentrate near a co-dimension two subspace. Thus,

suggesting that there is a vast region of the space with benign geometry.

Escaping strict saddle points of weakly-convex functions

Though nonconvex optimization problems are NP-hard in general, simple non-
convex optimization techniques, e.g., gradient descent, are broadly used and
often highly successful in high-dimensional statistical estimation and machine
learning problems. For smooth formulations, a common explanation for this
phenomenon is that nonconvex functions found in machine learning have be-
nign geometry: all local minima are (nearly) global minima, and all saddle
points are strict — meaning that they have a direction of negative curvature.
This explanation is well-grounded: several important estimation and learning
problems have amenable geometry [106]226| 23] [105, 227, 240] and recent works
[124, 123] have shown that when this property holds, stochastically perturbed

gradient methods can efficiently converge to a global minimum.

While impressive in scope, these works fall short of establishing rates in the
nonsmooth setting. In Chapter [/, we propose and analyze an algorithm that
extends these ideas to the context of p-weakly convex functions; functions f for
which x — f(x)+ §||x||2 is convex. This is a large family of nonsmooth nonconvex

functions that contains, for example, the composite class (1.4).

Weakly convex functions admit a global C' smoothing: for all u < p~!, define

10
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Figure 1.2: Function f(x,y) = [x]+1(*=1)% a point (x, f(x)) with x an approximate
second-order critical point of f, and its corresponding quadratic ¢(-).

the Moreau envelope and the proximal mapping to be

. 1 . 1
Sy =min fo) + =lly = x> and  prox,.(x) = argmin { f) + 5~ Iy — I’
yeRd 2u yeRd 2u

respectively. Moreover, the first order critical points of f and f, agree. Although
the Moreau envelope f, is not C* in general, we prove that for generic semialge-

braic functions it is C* around any x with ||V f,(x)|| ~ 0.

Inspired by these facts, we investigate the problem of finding an (g, &;)-

second-order critical point x of f:
VAN <& and  Apin(V2fu(2) 2 —&2. (1.6)

We argue that the geometry of f around any such x is favorable. Indeed, (1.6)
implies the existence of an approximate quadratic minorant g of f with small

slope and curvature at a nearby point, see Figure

We propose an efficient outer-inner loop scheme for the task of finding x
satistying (1.6). The outer loop executes a perturbed and inexact variation of
the proximal point method, while the inner loop solves the proximal subprob-

lem. For the inner loop, we consider model-based methods (1.3), and estab-

11



lish nonasymptotic complexity guarantees. The theory covers a comprehensive
class of algorithms, including variants of the subgradient, prox-gradient, and

prox-linear methods.

1.1 A comment about structure and related publications

This manuscript assumes a certain familiarity with nonsmooth analysis and
high dimensional probability. However, for convenience, we have compiled
most of the necessary notation and background in Chapter 2l The remaining
chapters in this thesis follow a similar structure. They start with a few sections,
introducing the problem of interest, an algorithmic solution, and theoretical re-
sults, followed by a section with numerical experiments. We defer long proofs
to the last section of each chapter named “Analysis”, which might be omitted in

a first read.
This thesis wouldn’t have been possible without my incredible collaborators:

¢ Chapter 3| is based on joint work with David Applegate, Haihao Lu, and
Miles Lubin [13]. This work was done during an internship at Google.

¢ Chapter E] is based on joint work with Ben Grimmer [76]. This project was a
byproduct of a topics course taught by Adrian Lewis.

¢ Chapter [5/is based on joint work with Vasilis Charisopoulos, Yudong Chen,
Damek Davis, Lijun Ding, and Dmitriy Drusvyatskiy [48].

e Chapter|f]is based on joint work with Vasilis Charisopoulos, Damek Davis,
and Dmitriy Drusvyatskiy [49] and [75].

¢ Chapter 7| is based on joint work with Damek Davis and Dmitriy Drusvy-
atskiy [69].
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2
PRELIMINARIES

“Aungque siembren las raices como les dé la gana,

los palos de guandbana no dan manzanas.”

— Residente, Hijos del cafiaveral

In this chapter, we summarize the notation and results we will use throughout
this thesis. We note that the material presented here is not new but serves as the

starting point for our studies.

2.1 Notation

Henceforth, the symbols E and Y will denote a Euclidean spaces with inner
product (-, -) and the induced norm ||x|l, = V(x, x). The symbol B will denote the
closed unit ball in E, while a closed ball of radius € > 0 around a point x will
be written as B.(x). For any point x € E and a set Q C E, the distance and the
nearest-point projection in {,-norm are defined by
dist(x; Q) = i‘;é lx=yll and  projy(x) = ar%ergin llx = yll2s

respectively. The symbol cl(Q) denotes the closure of Q. For any pair of func-
tions f and g on E, the notation f < g will mean that there exists a numerical
constant C such that f(x) < Cg(x) for all x € E. Given a linear map between Eu-
clidean spaces, A: E — Y, the adjoint map will be written as A*: Y — E. Given
amap T : R > RY its range is defined as range(T) = {T(z) | z € R?}. Given

two mappings T, T, : R — R? we denote their composition as T o T, that is

13



T, o T»(z) = T\(T2(z)). We will use I, for the d-dimensional identity matrix and
0 for the zero matrix with variable sizes. The symbol [m] will be shorthand for

theset {1,...,m}.

We will always endow the Euclidean space of vectors R? with the usual dot-
product (x,y) = x"y and the induced ¢,-norm. More generally, the £, norm of a
vector x will be denoted by ||x]|, = (3; |x|?)!/?. We use supp(x) := {i € [d] | x; # 0}
to denote the support of the vector x. We will equip the space of rectangular
matrices R"*% with the trace product (X,Y) = Tr(X"Y) and the induced Frobe-
nius norm |IX||r = VTr(X"X). The operator norm of a matrix X € R"*% will be
written as [|X||,p. The symbol o-(X) will denote the vector of singular values of a
matrix X in nonincreasing order. With this notation, we may equivalently write
IXllop = 01(X) and [IX]lr = llo(X)ll,. We also define the row-wise matrix norms
IXWlpa = NUX1 s 1X2 Ml - - -5 1Xa, o). We denote the pseudo inverse of X by X'.
Given a matrix M € R™? we use 4;(M), ..., 14(M) to denote its eigenvalues. We
define the spectral radius of a matrix M as p(M) = maxjeq |4,;(M)]. We use the
symbol M > 0 to denote that M is positive definite. Every positive definite ma-
trix M > 0 defines an inner product and norm given by (x,y)y = x"My and
IxII3, = (x, x)u, respectively. The symbols 8¢, 8¢, O(d), and GL(d) will denote the
sets of symmetric, positive semidefinite, orthogonal, and invertible matrices,

respectively.

2.2 Nonsmooth analysis

Nonsmooth functions will play a central role in this work. Consequently, we

will require some basic constructions of generalized differentiation, as described

14



for example in the monographs [214, 182, 24]. Consider a function f: E - R U
{+0c0} and a point x, with f(x) finite. The subdifferential of f at x, denoted by df(x),

is the set of all vectors ¢ € E satisfying

JO) 2 f()+&y—x)+o(ly-xl2) asy— x. (2.1)

Here o(r) denotes any function satisfying o(r)/r — 0 as r — 0. Thus, a vector
¢ lies in the subdifferential df(x) precisely when the linear function y — f(x) +
£,y — x) lower-bounds f up to first-order around x. Standard results show that
for a convex function f the subdifferential df(x) reduces to the subdifferential

in the sense of convex analysis, in the sense that

fO) = f(x)+<(&,y—x) forally€eE.

While for a differentiable function it consists only of the gradient df(x) = {V f(x)}.
We say that a point x is stationary for f whenever the inclusion 0 € df(x) holds.
Equivalently, stationary points are precisely those that satisfy first-order nec-
essary conditions for minimality: the directional derivative is nonnegative in

every direction.
For any closed convex set C C E, we define its normal cone at x € C to be
Ne(%):={geR?|(g,x—%) <0 forallxeC}.

Analogously, N¢(%) can be seen as the set of all points x such that proj.(x) = x.
For convex functions the subdifferential satisfies a nice of set of calculus rules.
For any pair of closed convex functions f;: E = R, f,: E = R U {0}, and closed

convex set C, we have

o(f1 + fo)(x) = 0f1(x) + 0fa(x) and Ote(x) = Ne(x) forallx e E. (2.2)
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Additionally, for any closed convex functions #: Y — Rand g: E — R U {+00}

and C'-smooth map F: E — Y, the chain rule holds:

O(hoF + g)(x) = VF(x)"0h(F(x)) + dg(x).

We say that a function f: E — R U {+o0} is p-weakly conve if the function
x B f(x) + gllxllg is convex. This encompasses a broad family of nonsmooth
nonxonvex functions. In particular, composite functions f = h o F satisfying the

approximation guarantee

£0) = FOl < Blly—xE  Vaxy

are automatically p-weakly convex [83, Lemma 4.2]. Subgradients of weakly
convex functions are very well-behaved. Indeed, notice that in general the little-
o term in the expression may depend on the basepoint x, and may there-
fore be nonuniform. The subgradients of weakly convex functions, on the other
hand, automatically satisfy a uniform type of lower-approximation property.
Indeed, a lower-semicontinuous function f is p-weakly convex if and only if it

satisfies:

fO) 2 f@+Ey-0-Fly -5l VxyeE.£eaft.

Although such functions are nonsmooth in general, they admit a smoothing: for
all u < p~!, we define the Moreau envelope and the proximal mapping to be

. 1 . 1
fuo) == min f() +5=-lly=? and prox, (x) := argmin{ f() + 5~y - «l* ¢,
yeRd 2u yeRd 2u

(2.3)

'Weakly convex functions also go by other names such as lower-C?, uniformly prox-
regularity, paraconvex, and semiconvex. We refer the reader to the seminal works on the topic
[213, 204, 192} 215} [11]].
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respectively. These two constuctions are well-defined thanks to weak-convexity
and moreover the Moreau envelope is a C' function [66]. The proximal map can

be characterized via the subdifferential as

x€(+0f)(x") & x = prox,(x). (2.4)

2.3 High-dimensional probability

We will leverage the concentration of measure phenomena to control several
random quantities. Here, we summarize the main inequalities that we use and

refer the interested reader to the excellent monographs [235] 236, 25]].

We start with the quintessential Hoeffding’s inequality for symmetric

Bernoulli random variables X, ie., P(X =-1)=PX =1) = 1/2.

Theorem 2.3.1 (Theorem 2.2.2 in [235]). Let X, ..., Xy be independent symmetric

Bernoulli random variables. Then for any t > 0, we have

Similarly, Bernstein’s Inequality gives a bound that depends on the variance.

Theorem 2.3.2 (Theorem 2.8.4 in [235]). Let X, ..., Xy be independent mean-zero

random variables, such that for |X;| < K for all i. Then for any t > 0, we have

N tz
Xj|>t|<L2 -
; J eXp( 2 + Kt/3))

here o* = Y, E[X?] is the variance of the sum.

P
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A common way to generalize concentration for unbounded random vari-

ables is to consider variables X with Gaussian-like tails: for some r > 0,

e
P(X| > 1) < 2exp (—T) forall 7 > 0.

In turn, this is equivalent (up to constants) to

2
Eexp (X—z) <2. (2.5)
n

A random variable X is p-sub-gaussian whenever this inequality holds. One of
the benefits of using this definition is that it defines a norm. The sub-gaussian

nornf] of a random variable X is given by

XZ
X1y, = inf{t >0:Eexp (t—2) < 2}.
Theorem 2.3.3 (Theorem 2.6.3 in [235]). Let X;,. .., Xy be independent, mean zero,

sub-gaussian random variables and (ay, . .., ay) € RY. Then, for every t > 0, we have

ct?
P[ Zt]SZexp(—m)
2

Concentration also manifests for random variables with heavier tails, albeit

N

Z a; X;

i=1

where K = max; [|1Xill,-

at worst rates. We define sub-exponential norm of a random variable X as

X
IX1ly, = inf {t >0:Eexp (l—tl) < 2}

and say that X is n-sub-exponential if || X]|,, < 7.
Theorem 2.3.4 (Theorem 2.8.2 in [235]). Let Z,,...,Z, be an independent, mean
zero, sub-exponential random variables and let a € R™ be a fixed vector. Then, for any

t > 0 we have that

- 1 t
P a;Z; < —t| < exp|—cmin ,
(Z ) p( {K2||a||§ K||a||m})

i=1

where K := max; ||Zl,, and ¢ > 0 is a numerical constant.

2 Also known as Orlicz-2 norm.
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More generally, we say a that a random vector X in R? is p-sub-gaussian or 7-
sub-exponential if its projection (4, X) onto any direction u € S*~! is sub-gaussian

or sub-exponential, respectively.
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3
INFEASIBILITY DETECTION WITH THE PRIMAL-DUAL HYBRID
GRADIENT METHOD

“Sonhar mais um sonho imposstvel

Lutar quando é fdcil ceder.”

— Maria Bethénia, Sonho Impossivel

3.1 Introduction

First-order methods (FOMs) have been extensively studied by the optimization
community since the late 2000s, following a long period where interior-point
methods dominated research in continuous optimization. FOMs are appealing
for their simplicity and low computational overhead, in particular when solving
large-scale optimization problems that arise in machine learning and data sci-
ence. These methods have matured in many aspects [21] and are known to be
useful for obtaining moderately accurate solutions to convex and non-convex
optimization problems in a reasonable amount of time. Despite this progress,
FOMs have made only modest inroads into linear programming (LP), a funda-

mental problem in mathematical optimization.

FOMs applied to LP provide relatively simple methods whose most expen-
sive operations are matrix-vector multiplications with the (typically sparse) con-
straint matrix. Such matrix-vector products are amenable to scale efficiently

given increasingly ubiquitous computing resources like multi-threaded CPUs,
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Algorithm 1: Primal-dual hybrid gradient
Data: xj € R¢
Step k: (k > 0)
Update x**' « prox, ,(x" —nATy"),
Update y**' « prox,, (yk + TAQX - xk)).

GPUs [232], or distributed clusters [93]]. In contrast, interior-point and simplex-
based methods that dominate current practice are limited in how they use avail-
able computing resources because they depend on matrix inversion. To mark
this distinction, Nesterov [187] defines methods that use at most matrix-vector
products as capable of handling large-scale problems and methods that use ma-
trix inversion as handling medium-scale problems. In the context of LP, these def-
initions of scale perhaps belie the reliability and practical efficiency of interior-
point and simplex methods, but nevertheless the contrast in the computing re-
quirements of the algorithms is an important one. Even though such compu-
tational aspects are outside the scope of this work, it is this practical potential
to efficiently solve large-scale LP that motivates the theoretical developments in

this work.

While FOMs are typically studied in more general settings, the underlying
assumptions and convergence rates in these settings do not necessarily hold or
may not be tight for the special case of LP. Of particular relevance to this work,
theory for FOMs is often developed under the assumption that an optimal solu-
tion exists, whereas LP solvers need to be able to detect infeasibility (i.e., when
no optimal solution exists) and compute corresponding certificates. Infeasibility
detection and computation of certificates are an essential aspect of solving LP,
not only to provide feedback on modeling errors but also for algorithms that di-

rectly exploit LP certificates like Benders decomposition and branch-and-cut [2].
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This chapter addresses the question of how to detect infeasibility in LP using
the Primal-Dual Hybrid Gradient method (PDHG). PDHG is a popular first-order
method introduced by Chambolle and Pock [43] to solve convex-concave minimax

problems, that is, problems of the form

minmax (Ax,y) + g(x) — h(y) (3.1)

xeR" yeR™

where g : R” = R U {co} and / : R” — R U {co} are proper lower semicontinuous
convex functions and A € R™". LP can be recast as a minimax problem through
duality, and hence PDHG is applicable. The method consists of alternating up-
dates between the primal and dual variables, see Algorithm I} where prox is the
proximal operator (see the definition in (2.3)). In particular, when instantiated
for LP, these updates correspond to matrix-vector products and projections onto
simple sets (such as the positive orthant). In contrast with other methods like
the Alternating Direction Method of Multipliers (ADMM), PDHG does not require
projections onto linear subspaces, which involve matrix inversions by direct or

indirect methods.

The behavior of PDHG for feasible problems (i.e., problems that have an op-
timal solution) has been studied in depth under several regularity assumptions.
In their seminal work, Chambolle and Pock [43] show that the algorithm con-
verges at a rate of O(1/k) given appropriate choices for the step sizes  and 7.

However, the situation for infeasible problems remains largely unstudied.

While it is relatively straightforward to formulate always-feasible auxiliary
problems that can be used to detect infeasibility, for example, by penalizing
violations of primal and dual constraints, this approach is unappealing for two
reasons: First is the aesthetic interest of having a single algorithm that robustly

handles all possible input [136]. Second is the practical interest in effectively
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using available computing resources, as solving such auxiliary problems would
approximately double the necessary work. Instead, we aim to use one execution

of PDHG and ask the following question:

Do the PDHG iterates encode information about infeasibility?

We answer this question in the affirmative. We show that if the primal (and/or
dual) problem is infeasible, the iterates of PDHG recover primal (and/or dual)
infeasibility certificates. Moreover, we completely characterize the behavior of
the iterates under different infeasibility settings. Before diving into our main
contributions, let us present an illustrative example. Recall that for a primal-
dual LP pair, there exist three exhaustive and mutually exclusive possibilities:
(1) both primal and dual are feasible, (2) both primal and dual are infeasible, and
(3) one of the two problems is unbounded, and consequently, the other problem
is infeasible. Small numerical experiments reveal that the behavior of PDHG is

different depending on the setting.
Example 3.1.1. Consider the LP problem with constants a, 3 € R:

minimize Xxog+ X; — ax,
subject to  xo +2x; <2
3xg+x <2
Xo+x1=20.

Figure|3.1|displays four choices of « and 3

1. Both feasible. Set a = 0 and B = 1, then both primal and dual problems are

feasible. In this case, both the primal and dual variables converge to a solution.
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Figure 3.1: Four different settings depicted in Example Every subplot
shows the component-wise value of the iterates against the iteration count. The
first and the second rows correspond to the primal and dual iterates, respec-

tively.

2. Both infeasible. Set « = 1 and B = 2, then both primal and dual are infeasible.

We observe that both primal and dual iterates diverge at a rate proportional to the

number of iterations.

Unbounded dual. Set « = 0 and § = 2, then the dual problem is unbounded
and, thus, the primal problem is infeasible and the dual is feasible. Then the dual

iterates diverge, and, interestingly, the primal iterates converge.

Unbounded primal. Set « = 1 and 8 = 1, then the primal problem is unbounded
and, thus, the dual problem is infeasible and the primal is feasible. Then the primal

iterates diverge, and the dual iterates converge.

From the experiments, we see that the iterates have a very stable asymptotic

behavior. In particular, if the primal is feasible, then the dual variables converge,

and analogously if the dual is feasible, then the primal iterates converge. Simi-

larly, whenever the primal is infeasible, the dual iterates diverge at a controlled

linear rate and vice-versa. Such behavior has not been previously observed or

characterized in the literature.



Main contributions

For notational convenience, we use z = (x,y) as the primal-dual pair, and 7* :=

x Z/;':I 7/ as the average of iterates. We propose to detect infeasibility using three

sequences:
(Difference of iterates) d, = (' - 7", (3.2a)
k
(Normalized iterates) % , (3.2b)
2
(Normalized average iterates) mzk . (3.2¢)

Our proposal to detect infeasibility is as follows:

Use these three sequences’ primal and dual components as candi-
dates for dual and primal infeasibility certificates. The algorithm
should periodically check if any of these iterates satisfy the condi-
tions that define an infeasibility certificate within numerical toler-
ances. If at any point this happens, it should conclude that the prob-

lem is (primal or dual) infeasible.

The overhead cost of extracting the certificates is negligible, making it suitable
for large-scale problems. Most of the content of this work justifies this strategy

theoretically.

Operator theory shows that all three of these sequences converge to a point v
known as the infimal displacement vector. Section 3.2 will give a formal definition
of this and other relevant concepts. We list our contributions assuming, for now,

the existence of such a vector v.
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Sublinear convergence rate to the infimal displacement vector (Section[3.3).
It is natural to wonder how fast the three sequences converge to the infimal
displacement vector. We study this question through the lenses of general oper-
ators and fixed-point iteration. To the best of our knowledge, the only known re-
sult in this vein ensures a rate of O (\/i];) for the difference of iterates (3.2a), which
is known to be tight [163, 71]. In contrast, we show that two other sequences, the
normalized iterates and the normalized average iterates (3.2d), converge
at a faster rate of O (%) in this same situation. Furthermore, this faster sublin-
ear result generalizes to any fixed-point iteration of a nonexpansive operator, not
only the firmly nonexpansive operators studied in [163]. Specifically, it also ap-
plies to many popular first-order methods, including but not limited to PDHG,
ADMM [205], and Mirror-prox [185], and it extends to other settings beyond LP
such as quadratic convex programming and semidefinite programming. Fur-
thermore, we show that this result is tight for PDHG; i.e., there exist instances
with a convergence rate lower bounded by Q (%) . This result suggests that cur-
rent ADMM-based codes like OSQP [225] that use exclusively the difference of

iterates to detect infeasibility should additionally consider the normalized iter-

ates and normalized average iterates.

Characterization of the iterates for infeasible problems (Section [3.4). We
characterize the behavior of PDHG for all the LP feasibility scenarios (see Table
B.I). In particular, we show that if the primal (or dual) iterates diverge, then the
iterates diverge in the direction of a ray, where the direction of the ray recovers
certificates of dual (or primal) infeasibility. Such direction turns out to be the
infimal displacement vector (v,,v,). This justifies using the sequences as
infeasibility certificate candidates. Furthermore, we show that when the primal

problem is feasible, then the dual iterates, without any normalization, converge
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to some y* that is closely related to v. An analogous result holds if the dual is
teasible. This describes the dynamics of PDHG for unbounded problems. The

next table summarizes our findings for the four possible cases.

. Dual Feasible Infeasible
Primal
Feasible x*,y* both converge x* diverges, y* converges
Infeasible x* converges, y* diverges x*,y* both diverge

Table 3.1: Behavior of PDHG for solving under different feasibility assumptions.

Eventual linear convergence for nondegenerate problems (Section3.5). In
the process of characterizing the dynamics of PDHG, we show that the iterates
(x*,y%) always converge to a unique ray {(x*,y*) + v | 1 € R,}. We show that
under a non-degeneracy condition (a direct extension of the strict complemen-
tary condition to the infeasible LPs), the iterates (x*, y*) fix their active set after
finitely many iterations. In turn, this leads to the eventual linear convergence of
the difference of iterates (3.2a). Formally, we show that there exists K > 0 such

that for all sufficiently large k > K we have
ld* —v|| < O(yk_K) for some y € (0, 1) .

We further show that even after the active set is fixed, the normalized iterates
and normalized average do not exhibit faster convergence. Thus, it is strictly

better to use the difference of iterates to detect infeasibility in this regime.

Computational experiments (Section [6.5). We verify our theoretical results
by presenting numerical experiments displaying the efficacy of the different cer-
tificate candidates (3.2). Specifically, our experiments show that using all three
sequences in is beneficial. On the one hand, if the active set’s finite time
identification occurs relatively quickly, then the differences of iterates ex-

hibit faster convergence. On the other hand, for some problems, identifying the
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active set might not happen in a reasonable amount of time. In this case, both the
normalized iterates (3.2b) recovers approximate infeasibility certificates much

more efficiently than the differences.

Related work

Chambolle and Pock [44] review PDHG among other methods and describe
its applications in computer vision. O’Connor and Vandenberghe [194] show

that PDHG is in fact a particular application of Douglas-Rachford Splitting
(DRS) [81, 108} 101} 162].

Lan et al. [138] and Renegar [211] develop FOMs for LP, considered as a spe-
cial case of semidefinite programming, with O (%) convergence rates. Gilpin et
al. [107] obtain a restarted FOM for LP with a linear convergence rate. These
analyses assume an optimal solution exists. Pock and Chambolle [203] apply
PDHG with diagonal preconditioning to LP on a small number of test instances.
They note that on small-scale problems, interior-point methods clearly dom-
inate, while their method outperforms MATLAB’s LP solver on one larger LP
motivated by a computer vision application. Most recently, Basu et al. [17] apply
accelerated gradient descent to a specialized LP instance, obtaining solutions to

industrial problems with up to 10'? variables.

Classically, the primal simplex method for LP detects primal infeasibility
while solving a “phase-one” auxiliary problem for an initial feasible basis and
detects dual infeasibility based on conditions when computing a step size (i.e.,
the ratio test) [169]. Infeasibility certificates are extracted from the iterates of

interior-point methods without substantial extra work [230]. Infeasibility detec-
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tion is only the first step of diagnosing the cause of the infeasibility in an LP

model [55].

Most research on infeasibility detection capabilities for FOMs for convex op-
timization has focused on ADMM or equivalently Douglas-Rachford Splitting.
Eckstein and Bertsekas [92] show that when no solution exists, then the iterates
diverge. Recent practical successes motivated further research in this direction,
characterizing the asymptotic behavior of the iterates under additional assump-
tions. For example, the line of work [18, [19} 183] studies Douglas-Rachford ap-
plied to problems that look for a point at the intersection of two non-intersecting
convex sets. On the other hand, Raghunathan and Di Cairano [206] investigate
the asymptotic dynamics of ADMM for convex quadratic problems when the

matrices involved are full rank.

Banjak et al. [16] show that the infimal displacement vector of ADMM re-
covers certificates of infeasibility for convex quadratic problems with conic con-

straints. Based on this, they proposed to use the difference of iterates to test

L
vk

rate for the difference of iterates of any algorithm that induces a firmly nonex-

infeasible. Complementing this work, [163] establishes a O ( ) convergence
pansive operator and introduced a scheme that utilizes multiple runs of ADMM
to detect infeasibility. This type of scheme aims to handle pathological scenarios

that do not occur in LP.

O’Donoghue et al. [196] propose to apply ADMM to a homogeneous self-
dual embedding of a convex conic problem[] A nice byproduct of this ap-
proach is that it automatically produces infeasibility certificates. Subsequent

work [195] extends this approach to Linear Complementarity Problems, which

!Linear objective with conic constraints.
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cover quadratic convex losses with conic constraints.

To our knowledge, the only work analyzing the behavior of PDHG on po-
tentially infeasible instances is by Malitsky [168], which considers linearly con-
strained problems. This analysis applies only to linear equality constraints, not

to linear inequalites present in LP.

Finite time identifiability has a long history in the field of optimization. This
phenomenon is first documented for the projected gradient descent method
[91] 134}, 132, 29]. Soon after it is studied for other methods, such as the Proximal
Point Method [96] and Projected subgradient descent [97], among others [10].
Identifiability is also exploited as tool for algorithmic design for the so called
“UV-algorithms” [176]. Recent works [179] 158, 159] study finite time identifi-
cation for popular FOMs. In particular, Liang et al. [159] show that the iterates
of PDHG identify the active constraints in finite time, provided the limit point
is nondegenerate. All of these works assume the underlying problem is feasi-
ble. The significant number of algorithms exhibiting this behavior motivated
researchers to develop general theory (even beyond the realms of optimization)
[243,1174,1175,1151, 186, [148]. We refer the interested reader to [148] for an elegant

geometrical definition that generalizes most notions of nondegeneracy.

Outline of the chapter. Section 3.2 presents all the necessary background. In
Section we show a convergence rate of O(1/k) for the normalized iterates
and normalized average generated by the fixed-point iteration of a nonexpan-
sive operator. Then, Section [3.4]shows a complete characterization of the behav-
ior of PDHG under different infeasibility assumptions. In Section 3.5, we study

a condition that ensures finite time identifiability of the active set. We show
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that under this condition, the difference of iterates exhibits eventual linear con-
vergence. We present numerical experiments that complement the theoretical
results in Section Section |3.7| contains all the omitted proofs of the first sec-

tions.

3.2 Preliminaries of the chapter

In this section, we introduce the notation we use throughout the chapter, sum-
marize the LP formulations we solve, introduce PDHG algorithm for LP, and

discuss some existing results.

Notation. We use the symbols N and R to denote the natural numbers and
reals. Our results take place in a finite dimensional spaces R?. We denote the
cone of nonnegative vectors as R?. Often, || - || will denote a norm with respect to
which an operator is (firmly) nonexpansive; see a formal definition below. Since
we study primal and dual problems, we use z = (x,y) € R"™" as a placeholder
for primal and dual variables. We will sometimes refer to a vector v € R™" and
use v, and v, to denote its primal and dual components. In this chapter, we use

superscripts to denote iteration counts, consequently z* is the kth iterate.

Linear programming [62] [170]. LP problems can be parameterized using
multiple equivalent forms. For our theoretical results we focus on the standard

form of LP:

minimize c¢'x

subjectto Ax=b (€ R") (P)

x>0 (eRY,
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where A € R™", b € R", and ¢ € R" are given. The dual of this problem is given
by

maximize b'x
(D)

subjectto ATy <c (eR").

Although the proofs in this chapter are tailored to this form, the techniques we

use should extend easily to any other form.

Farkas’ Lemma states that a feasible solution of exists if, and only if, the

following set is empty
{yeR"|b'y<0and ATy >0} . (3.3)

We call the elements of this set certificates of primal infeasibility, as their existence
guarantees that the primal problem is infeasible. Analogously, the certificates of

infeasibility for the dual problem (D) are

(xeR"|c"x<0,Ax=0and x > 0} . (3.4)

Primal-dual hybrid gradient. Chambolle and Pock [43] establish conver-
gence to a saddle point at a rate of O(1/k) provided that a saddle exists and
nllAll; < 1E| The primal-dual problems (P)-(D) can be recast as a convex-concave
saddle point problem. In particular we choose g(x) = ¢"x + (x»0)(x) and A(y) = bTy.
In this case the proximal updates can be computed in closed form. In fact, a
PDHG update reduces to

X" = projg: (x = nATy = 5¢)
(3.5)

Y=y +1AQRx" —x)-1h.

ZMore precisely, Chambolle and Pock proved this rate for the primal-dual gap of the aver-
aged iterates.
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Observe that the most complex operations in the update formula are matrix-

vector products, and all other operations are separable by component.

An update of PDHG (Algorithm [1) can be equivalently defined with a dif-

ferential inclusion of the form

xk _ xk+1 ag(xkﬂ) ATyk+1
M € + with M = , (3.6)
yk_yk+l 6h(yk+l) —A.Xk+l —A %Im

= 1=

this follows from (2.4). We will later leverage this inclusion in our proofs.

Operators and the fixed-point iteration. We will find it useful to think of
iterative algorithms from an operator viewpoint. Given an arbitrary map 7 :

R? — RY, the corresponding fixed-point iteration is defined as
F =T . (3.7)

Most first-order methods can be described in this form. The primal-dual hybrid
gradient method can be encoded as T'(x,y) = (x*,y*) where the output pair is de-
fined in (3.5). When looking at an algorithm from this perspective, we transform
the problem of finding a solution of the optimization problem to that of finding
a fixed-point of the operator, i.e., z* = T(z*). This idea has proven fruitful for

proving optimal converge rates for a variety of algorithms [71].

Here we make a minimal assumption that is sufficient to analyze PDHG in
the infeasible case. An operator T is said to be nonexpansive if it is 1-Lipschitz
continuous with respect to a matrix norm || - ||, meaning that for any z;,z, € R¢

we have

T(z1) = T(2)Il < llz1 = zall - (3.8)

Nonexpansiveness does not ensure the convergence of iterates in the feasible

case. Yet a slightly stronger condition does. An operator 7 is firmly nonexpansive
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if it satisfies
IT(z1) — TP < llzi — 22l = (T = D(z1) = (T = DI forall z;,z, € R?.

Note that the norm here is not necessarily the Euclidean norm. All the results
concerning (firmly) nonexpansiveness in this section and the next one are with
respect to the norm in which these properties hold. The following is a beautiful

geometrical result proved by Pazy that defines a pivotal object in our studies.

Lemma 3.2.1 (Lemma 4 in [201]]). Let T be a nonexpansive operator, then the set
cl(range(T — 1)) is convex. Consequently, there exists a unique minimum norm vector
in this set:

. 1
vy = argmin =|z|. (3.9)
zecl(range(T-1))

This vector is known as the infimal displacement vector. We drop the subscript
T and make the corresponding operator clear from the context. Intuitively, v
is the minimum size perturbation we should subtract from T to ensure it has a

tixed point.

Theorem 3.2.2 ([201] and [15])). Let T be a nonexpansive operator and (z*) be a se-
quence generated by the fixed-point iteration (3.7). Then, we have

2
If further T is firmly nonexpansive, then
lim ' - =v. (3.11)

k—o0

That is the normalized iterate converges to the infimal displacement vector
when T is nonexpansive and if T is firmly nonexpansive the difference of iter-
ates also converge. One might wonder whether the the stronger condition is

necessary. This turns out to be the case.
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The following proposition shows two things: first, (3.11)) is provably stronger
than (3.10) and second, the convergence of the iterates ensures converges of the
normalized average. Recall from the previous section that we use * := { Y%, 2/

to denote the average.

Proposition 3.2.3. Let ()72, € RY be an arbitrary sequence and let v € R? be a fixed

vector. Then the following implications hold:

1. Difference convergence implies normalized iterate convergence.

k

Z
H=v = lim==v.
k—)ook

hm (Zk+l
k—o0

2. Normalized iterate convergence implies normalized average convergence.
2—k

lim ke - v = lim
k— oo k k— o0 (k + 1)

Moreover, these implications cannot be reversed as there exist simple counterexamples

in R.

The proof of this proposition is technical, so it is deferred to Section[3.7.1]

Naturally when concerned with practical algorithms one would like to have
convergence rates for (3.10) and (3.11). As far as we know, the state-of-the-art

result in this vein is due to Liu, Ryu, and Yin [163].

Theorem 3.2.4 ([163]). Let T be a firmly nonexpansive operator and (z*) be a sequence

generated by (3.7). Then, for any & > 0, then there exists a point z. such that

(Average iterate rate).

V@)

\/ IIZ -zl +e,
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(Last iterate rate).

1
< \/;nz(’ —all+e,

1k 0
vk(z Z))

(Difference rate).

. o 1
min ||v — 2/ = /|| < \/jllz0 —zll+e.
j<k k

Remark 1. In the paper [163], this result is presented only for the difference of iterates,

yet a simple modification of their arqument proves the other two results.

The theorem guarantees a rate of convergence that depends on a target ac-
curacy &. The rate could get worse as ¢ — 0. Indeed, z. could diverge as ¢ goes
to zero, see Example in Section We will see in the next section that

for LP it is possible to get rates that are independent of the accuracy «.

Since the algorithm of interest is PDHG, we might wonder whether or not
its operator is firmly nonexpansive. It turns out that it is, but with respect to the

norm induced by the matrix M.

Proposition 3.2.5. If ntl||All; < 1, then the operator defined by a PDHG iteration is

firmly nonexpansive with respect to the norm the || - ||,y with M defined as in (3.6).

Proof. This is a known result [116], yet we include a proof for the interested
reader. A Schur complement argument proves that the condition n7||Alj; < 1
ensures that M > 0 is positive definite. Then a direct application of Proposition

4.2 in [20] proves the result. O
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3.3 Sublinear convergence of nonexpansive operators

This section presents the O(1/k) convergence rate of the normalized iterates
and the normalized average for nonexpansive operators. This rate applies to
a broader class of operators than the previously known results (restated in The-
orem as it does not require the operator to be firmly nonexpansive. The re-
sulting rate applies to many popular FOMs for convex optimization, including
but not limited to PDHG [43], the Alternating Method of Multipliers (ADMM)
or equivalently Douglas-Rachford Splitting (DRS) [205], and Mirror-Prox [185].

Theorem presents our main result in this section.

Theorem 3.3.1. Let T be a nonexpansive operator for some norm || - || and define v to
be the minimum norm element in cl(range(T — I)). Then, for any & > 0, there exists z,

such that the following two inequalities hold

(Average iterate rate).

HV - (ki pE =)

4 0
< —|I¥ - . .
< 1||z zll + & (3.12)

(Last iterate rate).

2
< §||z° —zll+e. (3.13)

1
V- z(Zk - ZO)

Furthermore, if range(T —1) is closed, then there exists a finite z* such that T(z*) = z*+v

and for any such z* and all k:

(Average iterate rate).

4 0 *
< —|z° - ; .14
< k+1”Z Fall (3.14)




(Last iterate rate).

2
< Enzo -2 (3.15)

1
V- ;(Zk - ZO)

Remark 2. We comment that when range(T — I) is not closed, Theorem may not
imply a O(1/k) sublinear convergence rate. In fact, as € — 0, the vector ||z.|| could grow
to infinity, see Example in Section for a one dimensional example. When

range(T — I) is closed, we obtain a O(1/k) sublinear rate.

Remark 3. When range(T — 1) is closed, the above result together with the lower bound
proved later in Theorem shows that the normalized iterates and normalized aver-
age of a nonexpansive operator exhibit a © (%) convergence rate. It is faster than the
difference of iterates, by noticing that the difference of iterates converges at rate © («/LE)
(see Theorem 8 of [71]]).

The next Lemma is used in the proof of Theorem [3.3.1]

Lemma 3.3.2. Suppose the assumptions of Theorem Fix € > 0, then there exists

a point z,, such that the following two inequalities hold for all k > O:

1T (z0) = THze) — vl < &

2. (T"(ze) = ze) = kvl < ke.

Furthermore, if range(T —I) is closed, then there exists a point z* such that T (z*) = z*+v.

For all such z*, for all k > O:

3. Tk+l(z*) _ Tk(z*) = .

4. THz*) = 7* = kv.
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Proof. Without loss of generality we assume that ¢ < 1. Notice v € cl(range(T-1)),

thus there exists z, such that

2

E
T e) =2 = < 2+ 1)

(3.16)

We start by proving the first claim. Fix an arbitrary £ > 0. We will make use
of two facts in the proof. Since T is a nonnexpansive operator, an application of

the triangle inequality yields

2

&
IT*(ze) = T @)l = IVl < 1T (ze) = zell = VI < 1T (2e) = 26 = VIl < 5o
2(Ivll + 1)

. (3.17)

Noticing v is the nearest point to zero in W = cl(range(T — I)) with respect to the
norm |||| and the set W is convex, it follows from the optimality conditions of this
problem that

w,vy>|v|>  forallwe W. (3.18)

Armed with these two facts, we derive for any arbitrary k:

IT"(ze) = T (ze) = VIP = IT(ze) = T @I = 2AT*(z) = T ze), v) + VI
< IT(ze) = T @I = 2IWIP + VI

= (IT*(ze) = T Goll + M) (1T (ze) = T oIl = V)

82

< (1T (zs) — 2z = VIl + 2IIvI)) 2+ D
2

€ 2

< 2 2 _ <
< (¢ +2M) 5 <

where the first inequality utilizes (3.18) by noticing T*(z.) — T*'(z.) € W, the
second inequality uses (3.17) and the triangle inequality, the third inequality is

from (3.16), and the last inequality uses & < 1. This proves the first statement.

The second claim follows by induction. The base case k = 0 holds directly.

For the inductive step, assume that the statement holds for k — 1. Then

I(T*(ze) = ze) = kvl < IIT*(ze) = T (ze) = Il + 1T (z6) = 26 = (k = VIl < ke,
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where we used the first claim and the inductive hypothesis.

Furthermore, if range(7T — 1) is closed, the statements follow by taking £ = 0

in the previous proofs. o

Proof of Theorem Let z, be the point given by Lemma We proceed to

prove the first two statements.

1. It follows from z/ = T/(Z°) that

2 S 0 2 k o .
k(k+1);(zf_z)—v k(k+1)Z::J(T](Z)_Z —]v)
2 k , . |
~ kG + D JZ:; ((T‘/(ZO) — T (z) + (2o — 2) + (TV(zs) — 25 — ].V))
2 k
- ,
=+ 4 (M@ - Ti@)| + (k Sl -zl e,

where the inequality uses Lemma and the triangle inequality. Applying

the triangle inequality to the first term yields

k
DT - To)| <

j=1

Z |77 = T/(z0)

k(k +1) k(k +1)

0 —
< k(k+1);||z —Zel| =

where the second inequality follows since 7' is nonexpansive.

b

0
(k+ L

2. Notice that

1
”%(Zk - ZO) -V

- H% ((Tk(zo) -2 = (TMz) — z0) + (TH(ze) — 76 — kv))
: H% ‘ +&

<1 2 (I = TH el + 11 = 2ol + &

(7" - 2°) = (T*(z0) - 20))

N

<21 -zl + &,

b
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where the first inequality uses triangle inequality and Lemma and the last

inequality is from non-expansiveness of 7.

Finally, if range(T — I) is closed, we obtain the results following the same
argument as above with ¢ = 0, using the results for closed range(T — I) from

Lemmal(3.3.2) a

A drawback of and in Theorem [3.3.1} as well as the results
in Theorem is that the constants accompanying the rates depend on «.
Nonetheless, we can bypass this issue, using and (3.15), for problems
where range(T - I) is closed. The next proposition guarantees that range(T" — 1) is

indeed closed for a broad family of algorithms for solving LP.

Proposition 3.3.3. Let T : RY — R? be an operator that can be decomposed as T =
Tyo---oT, where T} is either an affine mapping or a projection onto a polyhedron. Then,

range(T) is a finite union of polyhedra.

Proof. The proof follows inductively. Assume that C = range(T;o0---0T)) is a
finite union of polyhedra. Without loss of generality, we can assume that C is

equal to a single polyhedron. Now we consider two cases:

Case 1. Assume that 7'}, is an affine transformation. This is a well-known

consequence of Fourier-Motzkin elimination [170].

Case 2. Assume that T, is a projection onto a polyhedron Q. First, we
start with an intuitive sketch of the proof and then formalize it. In this case,
different pieces of the polyhedron C are going to be projected to different

faces of the polyhedron Q. Each one of these pieces is a polyhedron and
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since there are only finitely many faces of Q, the projection is a finite union

of polyhedra.

More formally, any polytope Q defines a finite polyhedral partition of the
space {Pr}rea Where A is the collection of faces of the polyhedron QE| Each
cell Pr corresponds to the region of the space that projects onto F, that
is proj,(Pr) = F. Define a partition of the polyhedron C as {Cr}rea given
by Cr = Pr N C. Within each cell Pr the projection proj, |p, is an affine
transform. Thus, by Case 1 we have that proj,(Cr) is a polyhedron and

thus

Tj41(C) = projo(C) = | projo(Ci)

FeF

is a finite union of polyhedra.

As a result of Proposition applied to the PDHG update for solving an

LP problem, range(T — I) is a polyhedron, thus closed:

Corollary 3.3.4. Let T be the PDHG operator for an LP problem, then range(T — I) is

a finite union of closed polyhedra.

Proof. Notice that the operator T — I is composite of linear operators and projec-

tion operators, thus we obtain the results by using Proposition 3.3.3| m

Remark 4. Proposition shows that range(T — I) is closed when T is an operator

that corresponds to other first-order algorithms, such as ADMM and mirror-prox, to

solve an LP problem. Further, one can extend the result to cover convex quadratic

problems with polyhedral constraints.

31.e., each cell Pr € R? is a polyhedron and Upea Pr = R.
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3.4 The complete behavior of PDHG for solving LP problems

In Figure we saw low-dimensional examples of the dynamics of PDHG
when solving LP problems in different feasibility settings. Indeed, such con-
vergence/divergence dynamics generally hold when using PDHG to solve ar-
bitrary LP problems. In this section, we present a complete description of the
behavior of PDHG for feasible and infeasible LP problems and discuss how to
recover the infeasibility certificate from the iterates of PDHG. The next theorem

compiles the full characterization. The proof of this theorem will be deferred to

Section

Theorem 3.4.1. Consider the primal (P) and dual (D) problems. Assume that ntl|All; <
1, let T be the operator induced by (3.9), and let {Z*}; be a sequence generated by the
fixed-point iteration for an arbitrary starting point 2°, i.e., z* = T*(Z°) Then, one of the

following holds:

1. If both primal and dual are feasible, then the iterates (x*,y*) converge to a

primal-dual solution z* = (x*,y*) and v = (T - I)(z*) = 0.

2. If both primal and dual are infeasible, then both primal and dual iterates
diverge to infinity towards the direction of the infimal displacement vector v =
(v, vy). Moreover, the primal and dual components of the infimal displacement

vector v, and v, give certificates of dual and primal infeasibility, respectively.

3. If the primal is infeasible and the dual is feasible, then the dual iterates di-
verge to infinity in the direction of vy, while the primal iterates converge to a vector
x*. Furthermore, the dual-component v, is a certificate of primal infeasibility, and

there exists a vector y* such that v = (T — I)(x*,y*).
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4. If the primal is feasible and the dual is infeasible, then the same conclusions

as in the previous item hold by swapping primal with dual.

To show this characterization, we establish two intermediate results: first,
the infimal displacement vector v is nonzero if, and only if, either the primal
or dual problems are infeasible; and second, the iterates (x*, y) “converge” to a
well-defined ray of the form (x*,y*) + Av for A € R,. The first result describes the
asymptotic divergent behavior of the primal (resp. dual) iterates when the dual
(resp. primal) problem is infeasible. The second one, ensures the asymptotic
convergence of the primal (resp. dual) iterates without any normalization when

the dual (resp. primal) problem is feasible. These two intermediate results are

proved in Section and Section respectively.

3.4.1 The infimal displacement vector recovers certificates

In Section we demonstrated that the differences of iterates, the normalized
iterates, and the normalized average for a nonexpansive operator converge to
the infimal displacement vector v. Here, we show that the infimal displacement
vector v for PDHG applied to LP recovers infeasibility certificates whenever it

is nonzero. First, some simple properties of v.

Lemma 3.4.2. Consider the primal (P) and dual (D)) problems. Assume that ntl|All3 <
1, let T be the operator induced by (3.5), and let v = (v, v,) be the infimal displacement

vector of T. Then v, >0, Av, =0, and ATv, > 0.

Proof. From Theorem m

%(Xk,yk) —v=(v,,v,) and %(Zkﬂ -2) > 0. (3.19)
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Notice that PDHG for LP has the following iteration update in terms of a

differential inclusion,

xk _ xk+1 NRn (xk+1) +ATyk+1 +c
M el , (3.20)
yk _ yk+l —Axk+1 +b

where this relation comes from (3.6) and (2.2). Dividing (3.20) by & and letting
k — oo, we have from (3.19) that

1
0 € lim Ng ) + AT%yk C-R'+ATy, = ATy, >0, (3.21)

where we utilize the fact that Ng:(x) C R} for any x € R} and lim;_,, %yk =y,
and

1
0= }(im—%Axk =—Av, = Av, =0. (3.22)
(o]

Furthermore, note that v, > 0 since v, = limy_,., X*/k and x* > 0 for all k. O

Now we derive the main result of this section.

Proposition 3.4.3. Consider the primal and dual (D) problems. Assume that
ntllAll; < 1, let T be the operator induced by (3.5), and let (z*)ien be a sequence generated
by the fixed-point iteration for an arbitrary starting point z°. Then, the primal problem
is infeasible if and only if v, is a nonzero vector, and in this case, v, is an infeasibility
certificate for the primal problem. Analogously, the dual problem (D)) is infeasible if and
only if v, is a nonzero vector, and in this case, v, is an infeasibility certificate for the

dual problem.

Proof. To establish the first implication in this result we have to prove that if v,

is non-zero, then v, is an infeasibility certificate for the primal problem, namely,

A'vy>0and b'v, <0,
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thus the primal problem is infeasible. Similarly if v, is non-zero, then v, is an

infeasibility certificate for the dual problem, namely
Av,=0,v, >0, andc'v, <0,

thus the dual problem is infeasible. We proved all the nonstrict inequalities in

Lemma/(3.4.2] so it suffices to show the strict ones.

First, consider the case when v, # 0. Let B = {i € [n] | (v,); > 0} and let
N =1{i € [n] | (vy); = 0}, then BU N = [n] by noticing v, > 0 (from Lemma .
Given a vector x, let x5 be the vector of entries of x with indices in B; similarly
given a matrix A, let Ag be the submatrix with columns of A with indices in
B. Then for any i € B, we have (v,); > 0, thus there exists some K such that

(x*/k); > 0 for all k > K, and furthermore
(g = (M) = nARy* —nes .
Taking the limit k — oo and noticing limy_,.(x**")z — (x*)5 = (v,)5, we obtain
(vo)p = lim —n(Azy" +cp) .
Thus it holds that
. T 1 2 . INT 1 2
vy =cp(v)p = —T—Illvxllz = im () Ap(v)s = —T—Illvxllz <0, (3.23)

where the last equality uses Ag(v,)p = Av, = 0. Combining with v, > 0 and

Av, = 0 proves that v, is a certificate of infeasibility whenever it is nonzero.

Second, consider the case when v, # 0. By taking k — oo, we have

vy = lim yep =y = lim TAQRX! — ¥ — 1 = lim TAX**? — 1D, (3.24)

k—oo

where the second equality uses the update rule (3.5), and the third equality uses

limk_m 2Xk+l - )Ck = limk_)(x, Xk+l +v, = limk_,oo )Ck+2.
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Now we claim the following two facts:
Fact 3.4.4. There exists some K such that if (ATvy); > 0 then x = 0 for all k > K.

Fact 3.4.5. The support (nonzero components) of ATv, satisfies supp(ATvy) C N.

The first fact is because if (ATvy); > 0 then we have that (ATy*/k); > (ATv,);/2 >

0 for large enough k. Dividing (3.20) by & yields

1 1
S (ATYR), + — (K= € Nen (51 .
ZATY) nk(x K~ ne) € Ny ()

For large enough k, the second term on the left-hand side of the inclusion will be
as small as (ATy*/k);/2 and hence the sign of entire expression on the left-hand
side will be negative. If Ng, ((x**!);) contains a negative number, then (x**!), = 0,

which implies that (x**1); = 0 for large enough .

The second fact is because for any entry i in the support of ATv,, namely
(ATvy); > 0, it follows from the first part that (x*); = 0 for all k large enough, thus
(vy)i = limg_,e %x{‘ = 0, which proves the second fact by the definition of the set

N.
Returning to the proof of Proposition notice that
fim A = fim ) (ATt =0, (3.25)
ieN
where the first equality uses Fact and the second equality uses Fact
Therefore, it holds that

1 1
T 2 : T A K42 2
V‘b———V +llmV,A.x = ——||V <O

where the first inequality uses (3.24) and the second equality is from (3.25). To-
gether with (3.21), we know v, is an infeasibility certificate for the primal prob-

lem.
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Now we turn to the inverse direction. Recall that it follows from the closed-
ness of the set range(7T — I) that there exists a pair z* = (x*,y*) such that
T(z*) = z* + v. If the dual problem is infeasible, we will show that v, # 0 by

contradiction. Assume v, = 0; then it follows from the update rule (3.5) that
X* = projgs (x* = n(A"y* +10))

thus ATy* + nc > 0 by noticing x* > 0, which contradicts the assumption that
the dual problem is infeasible. If the primal problem is infeasible, we will show
that v, # 0 by contradiction. Suppose v, = 0, then it follows from the update rule

that

Y =y +1AQK* +v,) —x*)—7h,

thus Ax* = b by noticing Av, = 0 from (3.22). Furthermore, we know x* > 0,

thus the primal is a feasible problem, which contradicts with assumption.

This concludes the proof.

3.4.2 The iterates converge to a ray

Combining facts from the previous sections we know that if both primal and
dual problems are feasible then the iterates (without normalization) will con-
verge to a solution, and when both primal and dual problems are infeasible then
the normalized iterates converge to a vector (v, v,) with nonzeros on both pri-
mal and dual components. Yet the techniques used to prove these results do not
explain what happens when one of the problems is feasible and the other one is

infeasible. In this scenario the convergence of the primal and dual iterates hap-
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pen at different scales, one with normalization by ; and the other without it.
In this section, we fill in this gap by showing that the iterates of PDHG always
converge to ray with direction v, emanating from a point z*. In turn, this allows

us to connect the convergence results for the two scales.

Definition 3.4.6 (Ray). Given a starting point z* € R"" and a direction v € R™", we
define their ray as
[Z5, vl ={z"+Av|1eR}.

With this definition at hand we can now state the main result of this section.

Theorem 3.4.7. Consider the primal (P) and dual (D) problems. Assume that ntl|All; <
1, let T be the operator induced by (3.5), and let (Z")ex be a sequence generated by
the fixed-point iteration for an arbitrary starting point z°. Then, the iterates of PDHG

converge to a ray [z*, v], in particular

I —z* =kl > 0 forsome z*e(T-D"'().

To prove this result, we establish a connection between the iterates of PDHG
applied to the original (possibly infeasible) problem and the iterates of PDHG
applied to a feasible auxiliary LP problem. Let us start by defining this auxiliary

problem. Define the index sets

B={ic[n]| (>0},
Ni={i€[n]|(v);=0,(ATv,); =0}, (3.26)

Ny ={i€[n]| (v =0,(A"v); > 0} .
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Define the operator T : R™" — R™" given by T(z) := z* with

(x")p = xp —nAgy —ncp — (Vs
(X, = projgmi(xy, =AY,y = neN,) = Vo,
(X, = =V,

V =y +TAQxT —x)—th—v,.

In turn, this is a PDHG operator for the auxiliary LP problem:

minimize (cg + (Vi)p/m) " Xp + Cy, XN, + Cr, XN,
Vy

subject to  Apxp + Ay, Xy, + Ay, Xy, =b+ =
T

Xy, 20, xy, =0

Then we claim the following connection between T and T.

(3.27)

(3.28)

Proposition 3.4.8. Given an arbitrary initial solution 7°, there exists a large enough

K € N such that

T =T - kv forallk>0.

(3.29)

Proof. For any initial solution, we know that there exists some K such that it

holds for any k > K that

(") > 0and (x")y, = 0.

(3.30)

The former is because (v,)z > 0, and the latter follows from Fact With some

abuse of notation, we let 2 « zX, so that we may study the iterates starting at z°

(rather than starting at z*), for notational convenience. From Lemma m

v, >0, Av,=0, and ATy, >0.
In addition, from the converse of Fact
(ATVy)B =0.
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We show the stated claim by induction. Denote 7* = T*(z°) and #* = T*(Z°).
First, (3.29) holds with k£ = 0. Now suppose (3.29) holds for k, and consider & + 1.
Then by induction we have #*! = T(z* — kv), thus it holds by (3.27) that

(X = (Mg — k(vo)p — nAROF = kvy) — e — (Vg

= (N = (k+ Dp

where the second equality utilizes the update rule of PDHG by noticing Azv, = 0

and (x**!)z > 0. For the components in N; we get

(@D = projemi((y, = k@ow, = 1Az, 0" = kvy) = ew,) = W,
= projgmi (X, = nANY = nen)
= (N, = k+ D, »

where the second equality follows from Aj v, = 0 and (v,)y, = 0, the third one

utilizes (v,)y, = 0 and the update rule of PDHG. Similarly, for the N, block
F Dy, = =y, = 0= (), = K+ D, »
where the equations follow from (x**!)y, = 0 and (v,)y, = 0. Finally, for the dual
iterates we have
P =y — kv, +7AQ - ) —1h - v,

=Y+ TAQUM! = (k+ 1)) — (& —kvy) — b — (k + 1)y,

=y +7AQX = X —1h — (k+ 1)y,

=y — (k+ L)y, ,

where the third equality utilizes Av, = 0, and the last equality is from the update
rule of PDHG. o

Equipped with this proposition we can now prove the theorem.
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Proof of Theorem[3.4.7] Since T is a PDHG operator, it is firmly nonexpansive
with respect to || - |[y. Thus, if T has a fixed point, then the iteration T*(zX)
should converge to it. To see that T has a fixed point, let z* be a point such that
(T — I)(z*) = v and let K be the iteration after which T5(T*(z*)) = T*¥(z*) — kv,
which exists thanks to Proposition We claim that T%(z*) is a fixed point of
T. To see this, note that
T8 =T @) —v =T,

where the last equality follows from Lemma 3.3.2}

Now, let z° an arbitrary initial point and recall that K is defined in (3.29).
Now that we know that the set of fixed points of T is nonempty, we can define

7% = limy_e TX(T*(29)). We will prove that z* satisfies (T — I)(z*) = v. Due to

Proposition we know that

=T =TI —v.

Finally, using decomposition (3.29) we get
124 = 2" =kl = IT (") — 2l - 0. (3.31)

The statement of theorem claimed this convergence where the coefficient ac-
companying v is (k + K). We can get around this by setting z* « z* — Kv, a point
that also satisfies (T — I)(z*) = v thanks to Lemma This establishes the

result. O

3.4.3 Proof of Theorem 3.4.1

Proof. As a direct result of Proposition we know that if both primal and
dual are feasible, then v = 0 and Theorem ensures that PDHG converges
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to an optimal solution (or equivalently a fixed point of 7). If primal (and/or
dual) is infeasible, then the dual iterate of PDHG (and/or primal) diverges to
infinity, and the diverging direction recovers primal (and/or dual) infeasibility

certificate.

Thus, the only thing left to prove is the final conclusion of item 3 (and anal-
ogously item 4). Assume that the primal problem is infeasible and the dual is
teasible. By Proposition we know that v, = 0. Then, Theorem guar-
antees the existence of some z* = (x*,y*) such that ** — x* + kv, = x* and
(T — I)(z*) = v. The proof for the case where the primal is feasible and the dual
is infeasible follows from an analogous argument. This completes the proof of

the theorem. O

3.5 Finite time identifiability and eventual linear convergence

In this section, we introduce a nondegeneracy condition that ensures that after
a finite amount the difference of iterates converges linearly to the infimal con-
vergence vector. To show this, we demostrate under said condition the iterates
“identify” the support of x*, i.e., the support freezes after a finite number iter-
ations. Finite-time identification has a long history in the analysis of iterative
algorithms for feasible problems [91, 34| 32, 29, 07| 151}, 159]]. Roughly speak-
ing, these algorithms’ behaviors exhibit two phases: a first one that only takes
finitely many steps but suffers from slow sublinear convergence, and then a sec-
ond one after the active set is identified where the convergence is significantly

faster and becomes linear.

For PDHG, finite-time identifiability is known to hold for feasible minimax
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problems under suitable nondegeneracy conditions [159]. In contrast, here we
study this phenomenon for infeasible LP problems. We demonstrate that even
when there is no primal (and/or dual) feasible solution, active set of the iterates with

respect to an auxiliary feasible LP problem is fixed after finitely many iterations.

Recall that the iterates of PDHG converge to a ray [z*,v] = {z* + kv | k € N}
where z* is a solution to the feasible LP problem given by (3.28). Consider the

constraint set defined by said auxiliary problem, that is
Ax=b+2, x>0 and  xy =0. (3.32)
T

Here, the active set is the set of inequality constraints that attain their extreme
values, namely, {i € N; | x* = 0}. Note that when the problem is feasible, N; =
{1,...,n} and thus the constrained set defined by the auxliary problem (3.32)

matches that of the original problem.

Now, we introduce the nondegeneracy condition for possibly infeasible
problems, which generalizes the classical identifibility theory of PDHG for fea-
sible LP problems [151} 159]. Similar variations of the nondegeneracy condition
have appeared in numerous works that deal with finite time identifiability. Fur-
ther generalizations of this idea have led to conditions beyond the context of
optimization, we refer the interested reader to [148] for a perspective from dif-

ferential geometry.

Definition 3.5.1. A ray [z*,v] is nondegenerate if for any i € N, (recall N, is defined
in (3.26))), the pair (x*,(ATy* + ¢);) satisfies strict complementarity with respect to the

auxiliary problem (3.28): x* > 0 if, and only if, (ATy* + ¢); = 0.

Although here we chose to define nondegeneracy in terms of the extreme

point z*, this definition is independent of the point we take in the ray [z*, v]. This
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follows easily from the fact that (v,)y, and (A7v,)y, are zero vectors. Additionally,
notice that when the original problem is feasible, this definition reduces to the

classical strict complementarity of the original problem.

We now state the finite time identifibility of PDHG for infeasible LP:

Lemma 3.5.2. Suppose [z*,v] is a nondegenerate ray. Then, every PDHG iterate se-
quence z¢ = (x*,y"), converging to the ray [z*,v], fixes the active set of (3.32) after
finitely many steps. Furthermore, this ensures that the support of x* is fixed for all large

enough k.

Proof. Firstlet us prove that the active set of (3.32) is identified in finite time. No-
tice that this is equivalent to saying that the support of x}, freezes after finitely
many iterations. Let i € N;, due to strict complementary it is enough to consider

two cases:

Case 1. Assume that (Ay* + ¢); > 0, then complementary slackness implies
(x*); = 0. By construction, we should have n- (ATy* + ¢); > x* for all k large

enough. After this condition starts to hold, the PDHG update at i gives
k+1 _ (K (AT N\ =
X; —(xl.—n (Ay+c),)+—0.

Hence, we have x! = 0 for all large k.

Case 2. Assume that x > 0, then after finitely many iterations we have

x> 0.

Thus, the support of x}, is identified in finite time. Now, we argue that the same
happens to the support of x*. Assume that i € B, then (v,); > 0 and consequently

for all large k we have xf/k > 0, as we wanted. Lastly, if i € N, then ATy, > 0
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and Fact guarantees that x¥ = 0 for large enough k. This concludes the

proof. o

When nondegeneracy holds, PDHG eventually identifies the support of the
primal iterate x*. This simplifies the form of each iteration. Let S be the support
of any x* with k large enough. The projection to the positive orthant applied
by PDHG becomes a projection to the subspace {x | supp(x) = S}. As a

consequence, one can recast each iteration (3.5) as an affine transformation:

xh I —nDAT xk nDc
= - (3.33)
Y TAD I —-2mnADA™ ||y 2tnADc + b
[ —
QZ: p=

where D is a diagonal matrix with ones on the indices (i, i) such that i € § and

zeros everywhere else, and matrix Q and vector p are defined in (3.33).

The next theorem presents upper and lower bounds for the convergence of
the three sequences (3.2) under the nondegeneracy condition. In particular, we
show that the difference of iterates (3.2a) exhibit eventual linear convergence,

while normalized iterates (3.2b) and normalized average iterates (3.2c) exhibit

eventual sublinear convergence.

Theorem 3.5.3 (Eventual convergence rate under nondegeneracy). Consider the
primal (P) and dual (D)) problems. Assume that ntl|Alj3 < 1, and let (Z*)ien be a sequence
generated by PDHG. Suppose that the iterates 7 = (x*, y*) converge to a nondegenerate
ray. Then, the kth power of Q converges lim;_,, QX = Q* to a projection matrix, and
there exists a finite K such that for any k > 0, the active set of x*** is fixed. Furthermore,

there exist positive constants K €15 €2, C3,Ca > 0 such that the following holds:

1. Linear convergence of the differences. For any p € (\/1 — nromin(A)2, 1), the

K+k+1 _

differences z Xk converge at a linear rate to the infimal displacement vector
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v, i.e., for all sufficiently large k
HAIQ = D + (0™ = Dplb < 11251 = 2% vl < 1I(Q ~ D" ~ pllo. (3.34)

2. Sublinear convergence of the iterates. The normalized iterates converge to v
ata® (%) rate, i.e., for all sufficiently large k

‘1 k<HlK+k_ < S2qk
kL <2 v < k“L( (3.35)

2
where £* = ||(I = Q*)pllo and U* = (II(Q - DU = Q™)p = K|l + IIKL).

3. Sublinear convergence of the average. The normalized average converges to v

at a ©(y) rate, i.e., for all sufficiently large k,

2 k
K+j
k(k+l);z Y

where L5 = |[(I = Q)plly and U* = (JI(Q = ' = 0°)p — K|l +IIKIL).

c3
k+1

< S qr (3.36)

k
<
L= T k+1

2

Some remarks are in order. Although equations and state a
bound for the normalized iterates and normalized average of PDHG started
from z¥, this result implies the same asymptotic bounds (with sightly worse
constants) for the normalized iterates and normalized averaged started from z°.
Thus, the result concludes that under nondegeneracy, the difference of iterates
converges much faster than the iterates and average. Furthermore, such conclu-

sion is tight, as we provide both the upper and lower bounds for each sequence.

The proof of this result shows the same rates for Bilinear games. Recall that

a Bilinear game is a minimax problem of the form

minmaxc' x+ {(Ax,y)—b'y.
xeR™ xeR™

For these problems, the updates of PDHG (Algorithm [1) take the form of (3.33))

with D = I. Thus, all the arguments in the proof of this result follow with K = 0.
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In particular, this shows that the upper bound derived in Theorem is tight

for Bilinear minimax problems.

Every LP problem that has an optimal solution furthermore has at least one
primal-dual solution that satisfies strict complementarity [170, Theorem 2.35].
Consequently, every infeasible problem has at least one nondegenerate ray.
Thus there exists at least one initial point z°, such that if PDHG is initialized
at this point, then the iterates converge to the nondegenerate ray and thus enjoy

linear convergence.

3.6 Numerical experiments

In this section, we test numerically the proposed approach to check infeasibility
using PDHG. For the experiments, we implemented PDHG for LP problems

with the following primal and dual form

minimize c¢'x maximize b'y+1"r,—u'r_
subjectto Ax>b subjectto ¢—-A'y=r , (3.37)
[<x<u y=>0

where b € R",[ € (RU{~00})",u € (RU{c0})", A € R"™" are given and r, = projg (r)
and r_ = - projg, () are the projections of r onto the positive and negative or-
thant, respectively. We chose this form over the standard form (P)-(D) since it
is algorithmically easier to reduce arbitrary LP problems to it. Given that the
PDHG algorithm for this formulation generates iterates (x*, y*), for our compu-

tations we generate r* by finding the closest point to c—ATy* that makes the dual
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objective finite; i.e., r* = proj,(c — ATy*) with

:0 ifli:—OO,Ml‘:OO,
A=ixeR": forie[n], xi{>0 ifl,e R u = oo,
<0 ifli:—OO,MiER,

All the results proved in this chapter also apply to this form under suitable

modifications of the statements.

For our experiments we use the Netlib dataset of infeasible LP instances [102].
We use this dataset to illustrate the different dynamics that PDHG exhibits. For
all our experiments we measure statistics that quantify how close are the candi-

date iterates (3.2) to being approximate certificates of inteasibility.

Before we describe these statistics, let us define what we mean by approxi-
mate infeasibility certificates. The set of (exact) primal infeasibility certificates

for (3.37) is given by all the vectors (y, 7) € R} x R" satisfying

b'y+l'r,—u'r->0, and r=-ATy, (3.38)

while the set of (exact) dual infeasibility certificates is given by all the vectors

x € R” satisfying

¢c'x<0, xeC,, and Ax>0, (3.39)
where the set C, is given by
=0 ifl,u; €R,
C,=qxeR": forie[n], xi{>0 ifl, e R,y = oo,
<0 ifl;=—-oco,u; €R,

We define an e-approximate primal infeasibility certificate to be any point (y, r) €

R x R" satisfying

b'y+0r,—u'r->0, and O y+!{r—u"r)r+ATl.<e. (3.40)
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Figure 3.2: Scaled certificate error (3.42) for the three sequences defined in (3.2)
for four instances of the Netlib infeasible dataset [102]. Vertical dotted lines
denote the last observed active set change.

Similarly we say that a point x € R” is an e-approximate dual infeasibility cer-

tificate if it satisfies

c'x <0,

“llx = projc, (lle <&,  and [[Ax = projgn(Ax)|leo < €.

(3.41)

—cTx —cTx

These definitions parallel the criteria to detect infeasibility used by SCS [224], a

popular open-source solver.

Since all the instances in the Netlib infeasible data set are primal infeasible,
we will only plot information about the dual components of the candidate cer-

tificates (3.2). To illustrate how close is each candidate to being a certificate we
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will plot
I + ATVl

bTyk +ITrk —yTrk

(3.42)

We call this quantity the scaled certificate error. 1f the objective term, i.e., the
denominator, is negative at any iteration then we do not plot it for that iteration.
For almost all the problems we consider (3.42) remains positive for almost all

iterations.

Nondegeneracy in practice. Our first batch of experiments showcases the
tfaster convergence of the difference of iterates in practice. We found empiri-
cally that for a subset of instances in the dataset, the difference of iterates
detects infeasibility faster than the other two sequences. Based on the theory,
we expect that for these instances, the difference exhibits eventual faster con-
vergence. To test this claim, we run an experiment on four of these instances:

box1l,woodinfe, ex73a and ext72a.

Figure 3.2 displays the scaled certificate error against the number of
iterations for the four instances. For all of them, we can see a clear phase transi-
tion between a first stage of slow convergence and a second stage that displays
linear convergence. This transition is unequivocally marked by the last change
of the active set of the solution (also depicted in the figure). Notice, however,
that the iteration number at which the active set is fixed might be large; the
point at which this happens ranges among multiple orders of magnitude in our

experiments.

Normalized iterates can be faster. Even if eventual identifiability holds, this
might take a significant number of iterations. In these cases it might be benefi-
cial to check infeasibility using the normalized iterated and the normal-
ized average (3.2d). In this batch of experiments we run PDHG on bgdbgl and
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Figure 3.3: Scaled certificate error (3.42) for the three sequences defined in (3.2)
for two instances of the Netlib infeasible dataset [102].

chemcom, the results are displayed in Figure Just as before we plot the

scaled certificate error against the number of iterations.

The normalized average is consistently slower at converging than the nor-
malized iterates. This is most likely due to the fact that it retains a tail of initial
iterates, which are far away from the infimal displacement vector. For both
these problems, the difference takes at least twice the number of iterations than
the normalized iterates to obtain a highly accurate certificate, i.e., ¢ = 107%. This

suggests that solvers may benefit from checking infeasibility with both the nor-

malized iterates (3.2b)) and difference of iterates (3.2al).

3.7 Analysis

3.7.1 Proof of Proposition 3.2.3]

Proof. Assume that (Z**' — z¥) — v. Fix & > 0. Our goal is to show that for all k

large enough ||z*/k — v|| < . Due to convergence, there exist K; € N such that for
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all k > K, we have ||7"*! — z* — || < /3. Define

B := max ||t = ZF =,
k<K

let K, € N be such that for all k > K, we get K;B/k < &/3, and let K3 € N be such

that if k > K; then ||2°l/k < /3. Then, for any k > max{K, K,, K3} we have

k
2 < %(z"—zo)—v + I
k 1
Z =2 =+ I
LS L0
< g 2l =D e
k
N (G B e
=K1
2 1<
SRS PILEL

This proves the first statement.

Now, assume that % — v, and fix € > 0. Just as before define K; € N to be
such that for all ||z*/k — v|| < &/2, define the constant B = max;<, ||z*/k — V||, and
let K, be such that B(K; + 1)K, /((K, + 1)K;) < &/2. Then, we have that for any

k > max{Kl, Kz},

2 k
i_yl =
(k+1)k;Z Y

2 ; k(k+ 1)
Zz - v

(k+ Dk |4 2
2 ko
_ J _ 7
~ (k+ Dk 2 =)
=1
2 Sl
k+ Dk & |5~
(K; + DK, 2 Az
B L
ES AR 2 i




The counterexamples can be found in Section This concludes the proof.

O

3.7.2 Proof of Theorem [3.5.3

We start by making a few simplifying assumptions. First we assume D = [I. If
that is not the case, we can consider a submatrix of A where we trim out the
columns indexed by {i € n | D; = 0}. This has no effect in the end result since
for all these indices xf‘ = 0, and thus it does not affect the nonzero entries of x*
nor the entries of y*. Furthermore, without loss of generality we assume that A

is diagonal. This is because, otherwise, we can decompose the matrix Q as

v ooll1 = ||lvt o
0= (3.43)
0 U|lrZ I-2nZX7|| 0 UT

where A = UXVT is the SVD decomposition of A. Then we can change the pri-
mal and dual basis using V and U, which is equivalent to applying orthogonal
maps to the primal and dual variables; thus it does not alter the metric nor the
algorithm. Therefore, we can change the basis to enforce this assumption. No-
tice that the columns and rows of Q can be further permuted so that it becomes
a block diagonal matrix of the form

,B]
1 -no;

0= ' where B; = , (3.44)
Bmin{n,m} TO; 1- 2TT]0'12

1
where o is a the ith singular value of A. Note that when n > m (or n < m), we

might also have block corresponding to an identity of size n — m (resp. m — n),

64



the arguments below can be easily extended to cover the identity block (as it
follows from the rationale applied when o; = 0) and so we assume that n = m.
Thus, from now on Q has the form (3.44) with n = m and hence without the last

identity block.

Now, we can compute closed-form formulas for the three certificate candi-
dates (3.2a)-(3.2c). Let K be the smallest integer after which the PDHG iteration

can be written as (3.33). By recursively expanding, we obtain

Zk+1+K — sz+K —p
Q2 k—1+K Qp -p
(3.45)
k
k+1 K i
= Op.
If we take the difference between two consecutive iterates, this yields

KK =00 - D - 0'p =00 -DF-p). (3.46)

On the other hand, summing the first k iterates (3.45) gives

j-1

Zk:z"”( = Zkl /7" - Zk: Q'p. (3.47)

i=1 1=0

~
Il
—_
~.
Il
—_
~.
~

We will show that O converges to a matrix O*. We define the matrix O™ as a

block diagonal matrix

12 lf g; = 0
o~ = where B = , (3.48)

1

0 otherwise
By

where I, is the 2-by-2 identity matrix. Since each block is independent of each

other, we can analyze O* by studying Bf. A simple calculation reveals that the
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ith block has two eigenvalues of the form
1
X =(1-nro?) + i(nm'% (1 - 777'0'[-2))2 .

Taking the norm, we find p(B;) = |Af| = /1 —nro?. Then, we have that the
iterated product of the ith block Bf converges to B. To see this, consider two

cases:

2

Case 1. Assume that o; > 0. By assumption 0 < 1 — yro;7 < 1 hence

B¥ — 0 = B>. This follows since the spectral radius p(Bf) = (1-nro?)"? - 0

i

as k.

Case 2. Assume that o; = 0. Then B = B, = [ = BY".

The matrix O turns out to be the projection onto the kernel of Q — I (that is,

0*(Q —1) =0). We use A C [n] to denote the set of indices such that o; > 0.

Differences. We start by analyzing the differences (3.46). To prove the upper

bound, we expand

I — 2 vl = 10°(Q - D2 = p) = 0¥(Q = D" = Pl
< 10" = O™Ill(Q — DZ¥ ~ pllz
= max IB{121I(Q = DX = pll»
< @ NQ = DX = pllx ,
where the first equality comes from taking the limit k — oo of (3.46), the first
inequality used the fact that ||Wz||, < [[W]],|lzll, for any matrix W and vector z, and

the last inequality follows since p(B;) = lim ||Bf.‘||% and hence for any u € (o(B;), 1)

we have that ||BY|| < y* for all large enough k.
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Now we turn our attention to the lower bound. Given a vector z, we define
z; to be the vector with the two components that multiply the block B; in the

matrix-vector product Qz. Using the same expansion as above, we get

25— 2 = 10°(Q - D* = p) = V(@ - D - p)II3
= Z (B = B)((Q — DX = pills

i€[n]
= D, IB{(Q - D = p)ll
ieA
> > omn(BYIQ ~ D - p)ll

ieA

> min o pin(Bf)’ EA] 1@ = D - pil
1SS

min oin (BN = Q™)(Q = N2 = p)l;

(min 7ua(B) 160 ~ D2 + @ ~ Dl

where the second equality and the penultimate one use the block-diagonal
structure of the matrix Q to decompose the norm of the matrix-vector product
into orthogonal components, and the first inequality follows since B! is a rank

two matrix for any i € A.

Normalized iterates. We now turn our attention to the normalized iterates.
The upper bound follows almost immediately from Theorem if we con-
sider the PDHG algorithm started at zX. To show the bound with the theo-
rem, it suffices to note that 1) in this case v = —Q%p and so we might pick
¥ =(Q-D'I - Q”)p, where (I — Q) is the pseudo inverse of (I — Q); and 2) all
the norms in finite dimensional spaces are equivalent so we can upper bound

I - Iy < C|| - |l for some constant C > 0. To see the first point note that
Q7 —p-7"=-0"p &= (Q-D*=U-0)p

= 7=Q-D'U-0")p.
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Now we turn our attention to the lower bound. Just as before we analyze the
dynamics of Q% by studying the individual blocks Bf. We will use the following
identity for blocks satisfying p(B) < I:
k

> B =(-By'(U-B""). (3.49)

=0
Recall that A = {i | o; > 0}, which corresponds with blocks satisfying p(B;) <
1. Additionally, recall that p; is the vector with the two components of p that

multiply the block B; in the matrix-vector product Qp. Expanding we get

k
1 ; 1
0o _2 J o _ pk+l K
Bi pl+k - Bipz B; Zi

i€[n] =0 k !
= Y= By - B = B 4 3 B
ieA P
> 5 ) @l = B0 = B g~ (1~ BB

ieA
where for the last two equalities we used the fact that Q is block diagonal, and
the last inequality follows since / — B, is invertible for i € A. Then, taking the
minimum coefficient we get
1 _ 2
5 D Tl = B) 2| = B pi — (1 - BB
ieA

1 . B
> ﬁr?elAn {O'max(l - B)) 2}; ”(1_ Bf-‘“)pi (- Bl_)BfHZK”Z

Lo -2 k+1 el K12
= 1z min {oma(l = B) 2| - 0Hp - (1 - 902"
1. N o
> 5 min (ol =~ B) 2} I = )l
where the last equality uses the fact that the matrices we handle are block diag-

onal, and the last line follows since ||(I — Q*"")p — (I — Q)O*'ZK|| — |1 — Q™)pll,

and so the inequality holds for sufficiently large k > 0.

68



Normalized average. The upper bound follows from the exact same argu-

ment as the normalized iterates by using Theorem 3.3.1]

The lower bound for this case is sightly more intricate. We expand and apply

— B 2 ko] ) ) k L
_iE[n] lpl_k(k+1);lzo Bipi+k(k+1);BZ’
2 ko j-1 l ) k ]KZ
:feA k(k+1);;B’pl+k(k+l)z Z k(k+1)
4 k , 2
:WZ o [/Z‘(I ponr - Bkﬂ)z] +;‘ k(k+1);BI’Z,K

The second equality follows from the fact that Q and Q> are block diagonal.

Then, dropping the second sum and using the fact that

(T = B)™'2ll2 = Tmax(I = Byllzll
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for all zand i € A, we can lower bound

4 k .
Rk + 1) Z H(’ - By (ZU ~B)pi+ Bl - B?)zf]

=

2+Z

i¢A

k
k(k+1) ]Z:

2
)pt + B;(I - Bk)Z

_Wzgmax(l B)

! k kK
> m min {(Tmax(l B)™? ; ||kp, (I - B))"'Bi(I - BY)p; + B,(I - B)Z! ”
4— k ky, K
> kz(k T mm {O-max(l B)™* ; ||k(I B)p; — B,(I - B))p; + (I — B))B;(I - B))z; ”
4
= a1 i o = B [kt - Qp - 0 - @+ (1 - 000U - Y|
4 2
= @ i o= 807
2

> Ty min {o (7 = B) |7 - QpI?

where the last inequality follows for large enough & since

-0

1 1 2
H—;Q(l - QY+ 1 - QQU - OO

This completes the proof.

3.7.3 Counterexamples

Example 3.7.1 (Differences don’t converge, but normalized iterates do). Con-
sider the sequence () C R that alternates z* = (—1)*. For this example, the differences

k+1

of iterates 7' — Z* also alternate between —2 and 2, and, consequently, do not converge.

Nonetheless, since the iterates are bounded %z" — 0.

Example 3.7.2 (Normalized iterates diverge, but normalized averages con-
verge). Consider the sequence (z*) C R given by z* = (=1)*k> with k € N. Then, it

is clear that |7*|/k > Vk, and so the normalized iterates diverge. On the other hand,
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notice that

2 &, 2%k
T VL
k+1)° ;( Vi

and it is easy to show that this series converges using the Leibniz Test.

Example 3.7.3 (Nonexpansive operator with divergent z.). Let T : R — R given

by

exp(-z) +1 ifz>0, or
Tz)=z+ f(2) where f(@) = (3.50)

2 otherwise.

Since the derivative of T is bounded by 1, we get that T is a nonexpansive operator.

Furthermore, range(T — I) = range(f) = (1,2], and so v = 1. If we define z. to be a
1

point such that |v — (T — I)(z.)| < €, we see that z. > Q (log (§)2), and thus it diverges

as e — 0.
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4
OPTIMAL CONVERGENCE RATES FOR THE PROXIMAL BUNDLE
METHOD

“If you only read the books that everyone else is reading,

you can only think what everyone else is thinking.”

— Haruki Murakami, Norwegian Wood

4.1 Introduction

Convex optimization has played a fundamental role in recent developments
in high-dimensional statistics, signal processing, and data science. Large-scale
applications have motivated researchers to develop first-order methods with
computationally simple iterations. Although impressive in scope, these meth-
ods often require delicate parameter tunning involving geometrical information
about the objective function. Thus, imposing an obstacle for practitioners that

rarely have access to such information.

In this work, we develop efficiency guarantees for proximal bundle methods,

which date back to the 70s, that solve unconstrained convex problems

minimize f(x) (4.1)

xeRY
where f: RY - Ris a proper closed convex. Our core finding is that classic bun-
dle methods, without any modification, are adaptive, which means that they
speed up in the presence of smoothness or error bounds, with little to no tun-

ning.
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Proximal bundle methods were independently proposed in [143] and [242].
They are conceptually similar to model-based methods [66, 193, 185]. That is,
methods that update their iterates by applying a proximal step to an approxi-
mation of the function, known as the model f;:

. Pk 2
Xpr1 € argmin fi(x) + Ellx — xill°.
X

Unlike these schemes, bundle methods only update their iterates x; when the
decrease in objective value is at least a fraction of the decrease that the model
predicted. Moreover, bundle methods incorporate information from past iter-
ations into their models, allowing f; to capture more than the just objective’s

geometry near x;.

This seemingly subtle change has a rather surprising consequence: the iter-
ates generated by a bundle method, with any constant parameter configuration,
converge to a minimizer of f; see [129, Thm. 4.9], [118, Thm. XV.3.2.4], or [219),
Thm. 7.16] for different variations of this result. This stands in harsh contrast
to other first-order algorithms; for example, gradient descent and its acceler-
ated variants rely on selecting a stepsize inversely proportional to the level of
smoothness. Similarly, subgradient methods rely on carefully controlled de-
creasing stepsize sequences. These simpler algorithms may fail to converge
when the stepsizes are not carefully managed. Thus, providing a compelling

reason to consider bundle methods.

Although bundle methods are known to converge under a number of as-
sumptions [128}, 177,112,112, [166} 72} 181, 180] and have been successfully used
in applications [221) 220, 73], nonasympotic guarantees have remained mostly
evasive. The purpose of this chapter is to close this gap. We study convergence

rates for finding an e-minimizer, e.g., f(x)—inf f < g under a variety of different
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assumptions on f. We consider settings where the objective function is either

M-Lipschitz continuous
f) = fOI < Mllx—yl  forallx,y e R! (4.2)

or differentiable with an L-Lipschitz gradient, often referred to as L-smoothness,

IVA(x) = VFOI < Lilx -yl forallx,y e RY. (4.3)

In either setting, we investigate the method’s rate of convergence with and with-

out the presence of Holder growth
f(x) —inf f > p - dist(x, X*)?  forallxe R?, (4.4)

where X* = {x | f(x) = inf f} is the set of minimizersﬂ Particularly important
cases are when p = 1 and p = 2, which correspond to sharp growth (u-SG) [30]

and quadratic growth (u-QG), generalizing strong convexity, respectively.

4.1.1 Main contributions

Our first contribution is to establish convergence rates under every realiz-
able combination of continuity/smoothness or and growth assump-
tions (4.4), see Table Full theorem statements are given in Section 4.2] and
apply for any Holder growth exponent (rather than just the cases of p = 1 and
p = 2 shown in the table). Our analysis technique is fairly general as we apply
it seamlessly to every combination of assumptions as well as different stepsize
rules. We show rates for any constant stepsize p; = p, which tend to be sub-

optimal. Yet, they improve under amenable geometry. Tuning the constant p

'Here dist(x, S) = infyes [lx — ylI.
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to depend on a target accuracy € yields faster convergence rates. Further, we
propose nonconstant stepsize rules p;, with two clear advantages: they yield yet
faster convergence and their convergence does not slow down after reaching

the target accuracy.

Assumptions | Rate for generic p | Rate for tuned p | Rate for adaptive pi
M2 — x4 M2 — =2 M2 2
3 NoGrowth | oMo =xF) | (Mo = < o (Mlxo - X'l
'{:) p63 €2 €2
a 1‘42 M2 M2
§' mln{uz,p}e 2,“6 . ue
M M> [A M A
145G 0(—) o| =\ 0(_2 1Og(_f))
pe M € u €
< L3 — 12 L I L — 2
£ NoGrowth | 0 M) o (Lo =T o B0 =]
g 3 P € € €
P U € M € i €

Table 4.1: Convergence rates. We denote A := f(xo) — inf f. The first column
applies for any choice of the parameter p, showing progressively faster conver-
gence as more structure is introduced. The second column shows the rate after
optimizing the choice of p. The third column further improves these by allowing
nonconstant stepsizes p.

The existing convergence theory for the proximal bundle method applies to
settings comparable to the first two rows of our table. Kiwiel [131] derived a
O(e™?) convergence rate for Lipschitz problems, which agrees with our theory.
Du and Ruszczynski [88] and subsequently Liang and Monteiro [157] showed
a O(log(1/€)/€) convergence rate for Lipschitz, strongly convex problems, which
we improve on by removing the extra logarithmic term and thus achieve the
optimal convergence rate for this setting of O(1/¢). To our knowledge, the rest
of our convergence results apply to wholly new settings for the proximal bun-
dle method. In all of the M-Lipschitz settings considered, we show that using a
nonconstant stepsize the bundle method attains the optimal nonsmooth conver-

gence rate. In the L-smooth settings considered, the bundle method converges
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at the same rate as gradient descent. Although, unlike gradient descent, our

convergence theory applies to any configuration of its algorithmic parameters.

Our second contribution is proposing a parallelizable variant of the bundle
method that avoids the reliance on tuning a stepsize or sequence of stepsizes
based on potentially unrealistic knowledge of underlying problem constants.
This approach too seamlessly falls under the umbrella of our analysis. It attains
the optimal nonsmooth convergence rates for Lipschitz problems with any level
of Holder growth, up to the cost of running a logarithmic number of instances

of the bundle method in parallel.

4.1.2 Related work

In 2000, Kiwiel [131] gave the first convergence rate for the proximal bundle
method, showing that an e-minimizer x; is found with k < O(”““’;—fm More
recently, Du and Ruszczyniski [88] gave the first analysis of bundle methods
when applied to problems satisfying a quadratic growth bound. In this case, an
e-minimizer is found within O(log(1/€)/e€) iterations. Following this, Liang and
Monteiro [157] showed a variant of the proximal bundle method with proper

stepsize selection attains the optimal convergence rate for convex and strongly

convex optimization, up to logarithmic terms.

Despite historically having weaker convergence rate guarantees than sim-
ple alternatives like the subgradient method, bundle methods have persisted
as a method of choice for nonsmooth convex optimization. See [100, 144] for a
survey of much of the bundle method literature. In practice, bundle methods

have proven to be efficient methods for solving many nonsmooth problems,
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see [221), 220} 73] for further discussion. Extensions that apply to nonconvex
problems have been considered in in [128, 177, 12, 112} 166, [72}, 181}, 180] and
as well as an extension to problems where only an inexact first-order oracle is

available in [113, 74, [165].

Stronger convergence rates have been established for related level bundle
methods [145], which share many core elements with proximal bundle methods.
Variations of level bundle methods were studied in [130] and [137]. The results
of Lan [137] are particularly impressive as their proposed method has optimal
convergence rates for both smooth and nonsmooth problems while requiring

little input.

Outline of the chapter . Section |4.2|introduces the Proximal Bundle Method
and provides the formal convergence guarantees under different regularity as-
sumptions. This section also introduces simple stepsize rules that guarantee
optimal convergence rates for all nonsmooth settings. Practical implementa-
tions of these rules require access growth constants of the function. To bypass
this issue, in Section[4.3|we propose an adaptive parallel bundle method that ex-
hibits nearly the same convergence rates without knowledge of such constants.
We complement our findings with numerical experiments in Section Fi-
nally, Section 4.5 presents a broadly applicable proof technique to analyze bun-

dle methods and uses it to establish the theoretical results.
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Algorithm 2: Proximal Bundle Method

Data: 7o = xo € R", fo(2) = f(x0) + (80,2 — X0)
Step k: (k > 0)

Compute candidate iterate z;,, « argmin f;(z) + %llz — xll
zeX
If B(f(x0) = filzir)) < f () = f(2ke1) (Descent step)
set X1 ¢ Zis1,
Else (Null step)

set xp.1 <« Xi.
Update fi, and p, without violating Assumption [4.2.1]

4.2 Bundle methods

In this section, we formally define the family of proximal bundle methods that
our theory applies to. We present the convergence rates for the classic method
with constant stepsizes. Additionally, we introduce and analyze nonconstant

stepsize rules that guarantee faster convergence rates.

Proximal bundle methods work by maintaining a model function f;: R” — R
at each iteration k and a current iterate x;. The method computes a candidate

for the next iterate as

Pk

. k 2
Zgs1 = argmin fi(z) + > llz — xill°.

zeX
However, unlike other model-based algorithms, bundle methods do not neces-
sarily move their next iterate to zx,,. Instead, it first checks whether the candi-
date z;, has at least 8 € (0, 1) fraction of the decrease in objective value that our
model fi(-) predicts. If it does, it updates x;,1 = z+1 as the next iterate, this is
called a Descent Step. Otherwise the method keeps the iterate the same x;.; = x;

and updates the model function f., called a Null Step.

The proximal bundle method is stated fully in Algorithm 2 Our analysis

does not presume a particular parametrization or form of the models. We only
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assume that the models satisfy mild assumptions, typical of bundle methods in
the literature. To state the assumptions, note the first-order optimality condi-

tions define a subgradient
Ske1 = Pi(Zis1 — Xi) € Ofi(zis1) foreach k>0

where df(x) = {g | f(xX) > f(x) + (g, x — x) VX' € R? denotes the subdifferential

of f at x.

Assumption 4.2.1. Let { fi: R — R} and {py} be the sequence of models and stepsizes
used throughout the execution of a bundle method. Assume that for any iteration k > 0,

the next model fi. and stepsize py., satisfy the following:
1. Minorant.
finn(¥) < f(x)  forallxeR?. (4.5)
2. Subgradient lowerbound. There is a subgradient g\ € 0f (zx+1) such that
fer1(®) 2 f(ziar) +(gre1s X —zer1)  forall x e RY. (4.6)
3. Model subgradient lowerbound. After a null step k
fir1(®) = filzien) + (See1, X = Zge1)  forall x e R (4.7)
4. Constant stepsize between null steps. After a null step k
Pi+1 = Pk - (4.8)
The first two conditions are natural as they ensure that a new model incor-
porates first-order information from the objective at z;,;. The third condition is
mild and, intuitively, requires the new model to retain some of the approxima-

tion accuracy of the previous model. The last assumption is trivial to enforce

and guarantees the algorithm only changes its stepsize after it decides to move.
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4.2.1 Model function choices

Several methods for constructing model functions f; that satisfy (4.5)-(4.7) have
been considered. In practice, the main consideration lies in weighing the poten-
tially greater per iteration gains from having more complex models against the

lower iteration costs from having simpler models.

Full-memory proximal bundle method. The earliest proposed bundle meth-
ods [143, 242]] rely on using all of the past subgradient evaluations to construct

the models as
fin() = max {f(z)+ (@)= )] (49)

In this case, solving the quadratically regularized subproblem at each iteration

amounts to solving a quadratic programming problem.

Finite Memory Proximal Bundle Method. Using cut-aggregation[127, 129],
the collection of k + 1 lower bounds used by can be simplified down to
just two linear lower bounds. The only two necessary lower bounds are ex-
actly those required by and (#.7). Namely, one could construct the model

functions as

Sier1(x) = max { fi(zx+1) + Oc(@es1 = %), X = Zes1)s [(@rs1) + (8he1, X — Zir)} - (4.10)

Then the subproblem that needs to be solved at each iteration can be done in
closed form, see (4.17). Hence the iteration cost using this model is limited pri-

marily by the cost of one subgradient evaluation.
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Spectral bundle methods. Both of the above models rely on constructing
piecewise linear models of the objective. For more structure problems, richer
models can be constructed. For example, in eigenvalue optimization or more
broadly semidefinite programming, better spectral lower bounds can be con-
structed instead of using simple polyhedral bounds [117, [198]. Primal-dual
convergence rate guarantees for such spectral bundle methods were recently

developed by Ding and Grimmer [79].

4.2.2 Convergence rates from constant stepsize choice

We now formalize our convergence theory for the proximal bundle method us-
ing any constant choice of the stepsize parameter p;, = p and any g € (0, 1). These
guarantees match those claimed in the first column of Table After each the-
orem, we remark on the tuned choice of p that gives rise to the claimed rate in
the second column of Table We start by considering the setting where only

Lipschitz continuity is assumed.

Theorem 4.2.2 (Lipschitz). For any M-Lipschitz convex objective function f, con-
sider applying the bundle method using a constant stepsize p, = p. Then for any
0 < € < f(xo) — f(x*), the number of descent steps before an e-minimizer is found

is at most
2pD?
Be

and the number of null steps is at most

log (A-46%)
—log(1-5/2) |,

120M°D*  8M
B —pye Bl - p)yp*D?

where D* = sup; ||x; — x*||* < oo.

81



Remark 5. It follows from [219][(7.64)] that D* < |lxo — x*|* + % Alter-

natively, if the level sets of f are bounded, the fact that f(x;) is non-increasing ensures

D? < supfllx = 2P | £(x) < f(x0)}-

Remark 6. Selecting p = €/ D* gives an overall complexity bound of

o2

e2

and matches the optimal rate for nonsmooth, Lipschitz convex optimization.

If instead of Lipschitz continuity of the objective, we assume the objective
has Lipschitz gradient, the bundle method adapts to give the following faster

rate.

Theorem 4.2.3 (Smooth). For any L-smooth convex objective function f, consider
applying the bundle method using a constant stepsize p, = p. Then for any 0 < € <

f(x0) — f(x*), the number of descent steps before an e-minimizer is found is at most

f)-fx)
200° _ [log ("5 )}
.

Be

—log(l - 5/2)

and the number of null steps is at most

4L+ p)® {ZpD2

log (L1

pD

— )23 +1
(-pyp* | pe )

log(1 - 8/2)

where D* = sup, ||x; — x*||* < oo.

Remark 7. Selecting p = L gives an overall complexity bound of

16LD?
B -pre

This matches the standard convergence rate for gradient descent.
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Next, we reconsider the settings of Lipschitz continuity and smoothness
with additional structure in the form of a Holder growth bound. We find that
the convergence guarantees divide into three regions depending on the growth
exponent p, whether it is large, equal to, or smaller than 2. Here two is the
critical exponent value since the proximal subproblem is adding in quadratic

regularization. Regardless, as p decreases, the bundle method converges faster.

Theorem 4.2.4 (Lipschitz with Hoélder growth). For any M-Lipschitz objective
function f satisfying the Holder growth condition [.4), consider applying the bun-
dle method using a constant stepsize py = p. Then for any 0 < € < f(xp) — f(x*), the

number of descent steps before an e-minimizer is found is at most

2 log (75 or) fps
1
(1= 2/p)B2re2r * | “log(1 - B/2) P
.
[ log f(x0)—f(x*)
—log(1 — Bmin{u/2p, 1/2})

[ o/ 2/17)1/(|—2/p)
tog (27— L 20 o) = [ ifl<p<2
—log(1 - /2) (1 = 21-2/p)By2/p sp
and the number of null steps is at most
12pM? e ' ,
(1-=2/p)B(1 = B)2utlre3=4p * B(1 = B)*p(p/u2!P)l/(1-2/p) ifp>
2 ifp=2
B(1 = B> min{u/2p, 1/2}pe ifp=
4-M2 8M2 C ' 1 3 2
B —prpe * B —BYplp/pn) /02 ifl<p<

; _ (fx)= )P~ ; 1 S o)—f"
with C = max {(p/ﬂz/po)m/p—m/(l—z/m , 1} min { 1231 [10g2 ((p/ﬂwpo)l/(l—z/m )-I}

Remark 8. When p = 2, selecting p = u gives an optimal overall complexity bound
of O(M?/ue). Selecting p = O(€'~*'7) matches the optimal rate for Lipschitz optimiza-
tion with growth exponent p > 2. When p = 1, selecting p = O(1/ \€) minimizes
this bound, but the resulting sublinear O(1/ +fe) rate falls short of the best possible rate
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(linear convergence) for sharp, Lipschitz optimization. In the next section where we con-
sider nonconstant stepsizes, this disconnect will be remedied and a linear convergence

guarantee will follow.

Theorem 4.2.5 (Smooth with Holder growth). For any L-smooth objective function
f satisfying the Holder growth condition (4.4), consider applying the bundle method
using a constant stepsize p, = p. Then for any 0 < € < f(xo) — f(x*), the number of

descent steps before an e-minimizer is found is at most

fx0)—f(x")
2 log 2L =27 )
,D ((P//J P) ! )“ Zf—p > 2
+

(= 2/pBere=2r " | “log(1-p/2)

log (L&)
( - € ) Z:fp — 2
—log(1 — Bmin{u/2p, 1/2})
and the number of null steps is at most
AL+ p)? 2 | lee(@m)| —_—
(=2 | (L =2/p)pelre = ™ | = log(1 - B/2) P
- _ )C* +
4(L+p)3 log(f( o)ef( )) lf _,
(1-p?p* | —log(1 — Bmin{u/2p,1/2)) b=

Remark 9. Selecting p = L gives an overall complexity bound matching gradient de-

scent.

4.2.3 Convergence Rates from Improved Stepsize Choice

Picking p; to vary throughout the execution of the bundle method allows for
stronger convergence guarantees. These rates are formalized in the following
pair of theorems that consider settings with and without Holder growth. In the
latter case, we find that our stepsize choice removes the need for piecewise guar-
antees around growth exponent p = 2, which notably simplifies the statement

of our results.
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Intuitively, the stepsize choices aim to mimic the following idealistic (and

impractical) stepsize rule that naturally arises from our theory

x) — f(x*
o= L0 =S w1
[l = x|l
The proof techniques we develop could be extended to study other interest-
ing nonconstant stepsizes. For instance, stepsizes that shrink/grow polynomial

with the number of descent steps, mirroring those used for subgradient meth-

ods. The analysis of such schemes is beyond the scope of this work.

Theorem 4.2.6 (Lipschitz). For any M-Lipschitz objective function f, consider ap-

plying the bundle method using the stepsize policy

px = (f(x) = f(x)/D? (4.12)

with any choice of D* > sup{|lx—x*||* | f(x) < f(x0)}. Then forany 0 < € < f(xo)—f(x"),
the number of descent steps before an e-minimizer is found is at most
et
“log(1 - B/2)

and the number of null steps is at most

1 2M?*D?
1-(1-p/27) (A -pre
Theorem 4.2.7 (Lipschitz with Holder growth). For any M-Lipschitz objective
function f satisfying the Holder growth condition (4.4), consider applying the bundle

method using the stepsize policy

pr = 1P (f () = f(x)' 7P (4.13)

Then for any 0 < € < f(xo) — f(x*), the number of descent steps before an e-minimizer

is found is at most

—log(l - 8/2)

[ log (f(xo);f(X*)) ]
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and the number of null steps is at most

1 2M? . 1
T p2r | (L pranesr 1P
Sflxo)—f(x")
om?  |log|——— ,

(1 =By | —log(1 -B/2)

4.3 The parallel bundle method

We now give a practical scheme for applying the bundle method that attains
the same complexity as our optimally tuned nonconstant stepsizes without any
knowledge of the presence of smoothness or growth bounds. We do this by
employing a logarithmic number of instances of the bundle method with differ-
ent constant stepsizes in parallel that continually share their progress with each
other. By doing so, we recover our optimal rates, up to the cost of running a log-
arithmic number of algorithms which can be mitigated through parallelization.

This scheme is inspired by the ideas of [212].

The core observation behind our parallel method is that our nonconstant
stepsize rules (4.12) and (4.13) before an e-minimizer is found are always in the

following interval
pr |0, 0] .

As input, we only assume the following are given: a lower bound p and an

upper bound 2’5 on the range of stepsizes to consider. Provided our stepsize

rules (4.12) and (4.13) lie in this interval,
peelp.2’p

we are able to recover our optimal convergence rates. Notice that the interval

[,27p] can span the whole range of stepsizes needed for our Holder growth
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analysis by setting p = O(e) and J = O(log(1/€%)). Our resulting convergence
guarantees only depends logarithmically on the size of this interval (a cost
which can be mitigated through parallelization), so p and 2/p can bet set conser-

vatively at little cost.

Description of the algorithm. We propose running J copies of the bundle
method in parallel, which share their progress with each other as described be-
low. Each bundle method j € {0,...J — 1} uses a constant stepsize p" = 2/p.
Denote the iterates of bundle method j by x,((j) and its model objectives by k(j).
Each bundle method j proceeds as normal with the only modification being that
after it takes a descent step, the algorithm checks if any other bundle method ;'

)

o). If such an im-

has an iterate with an even lower objective value f (x,(cj,)) < f(x
provement exists, the bundle method instead descends to the best such iterate,
setting

) g
Xr1 <X

] ") 8) 9]
@ e« f) + g,z -V

and then proceeds.

For analysis sake, we will assume that each parallel instance of the bundle
method operates synchronously, with every instance completing one iteration
before any instance completes a second iteration. This process can be imple-
mented sequentially by cycling through the bundle method instances comput-
ing one iteration for each before repeating. An asynchronous variant of this
procedure could be analyzed as well, using similar techniques as those in [212].
However, this is beyond the focus of this work. Note the choice to use powers
of two here is arbitrary. In the following numerical section, we use powers of

10 and 100 demonstrating the effectiveness of this scheme even when using a
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sparse selection of sample stepsizes.

4.3.1 Convergence Rates for the Parallel Bundle Method

First, we remark that all of our previous convergence theory for constant step-

sizes (Theorems {4.2.2, 4.2.3, 4.2.4, and #4.2.5) immediately apply to the Parallel

Bundle Method fixing p = 2/p for any j € {0,...J — 1}. This follows as our
convergence theory on relies on a lemma ensuring sufficient decrease at each
descent step (Lemma and the new case of a bundle method restarting at
another method’s lower objective value iterate can only further improve on this

decrease. Hence any individual instance of the bundle method with p = 2/p in

our parallel scheme will converge at least as fast as Theorems 4.2.2, [4.2.3, 4.2.4}

and guarantee it would converge on its own.

Further and more importantly, when our nonconstant stepsize rules (4.12)

and (4.13) lie in the interval [p, 2/p], we find that their convergence theory (The-

orems 4.2.6/and [4.2.7) also extends to our parallel algorithm. This is formalized

as follows.

Theorem 4.3.1. For any M-Lipschitz objective function f that satisfies the Holder
growth condition (4.4), consider applying the Parallel Bundle Method with stepsizes
p=2pfor je{0,...,J —1}. Then for any 0 < € < f(xo) — f(x), if

p < —u*P min{e' 7, (f(xo) — f£(x*))' 727}

N

and
p*'P(max{e' 7, (f(xo) — f(x*)' 7/}
4

J > log,

)
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Figure 4.1: Objective gap against iteration count: using ideal stepsize (4.11)) (left)
and using the parallel bundle method, plotting each instance deployed with
stepsizes from 10°, ..., 10% (right).

then one of our J bundle methods will find an e-minimizer within its first

2 16M? log(Le-L")
(1 — —,8/2)2‘2/") (= pryre=i " ~| Zlog(1 - 52)

} ifp>1
2 log(LG0=f"
2( 16M 1){ og(F )}

(1 -2 ¥ —log(1 - B/2) yp=1

iterations.

4.4 Numerical experiments

In this section, we present two examples that illustrate numerically the
theory for the bundle method. These experiments were implemented
in Julia, see the github repository https://github.com/mateodd25/

proximal-bundle-method.

4.4.1 Sharp linear regression

The first experiment aims to exemplify the fast convergence of the bundle

method under sharp growth. We consider a simple linear regression problem of
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Figure 4.2: Stepsize against iteration count: using ideal stepsize (4.11)) (left) and
using the parallel bundle method (right).

the form

min f(x) := ||[Ax — b||
xeR4

where A € R™ is a matrix and b = Ax* for a fixed x*. This problem is equivalent
to the classic least-squares problem after taking squares. Yet, without the square
it is well known that for Gaussian matrices, (A);; ~ N(0, \/%7), this function is

sharp and Lipchitz continuous provided  is large enough.

We generate a random Gaussian matrix A € R!'%% and random solution
x* ~ N(0,1;). We run two algorithms: the proximal bundle method with the
“ideal” stepsize and the parallel bundle method described in Section
The ideal stepsize is impractical since it requires knowing the optimal solution.
However, the theoretical analysis shows that it gives optimal convergence rates.
In fact, the stepsizes proposed in our results and try to mimic its
behavior. Thus, the method with ideal stepsize serves as a point of compar-
ison. The parallel bundle method uses 9 parallel instances with stepsizes in

p €{1,10,...,10%). We let both methods run for 150 iterations.

Figure4.1|displays the objective gap f — min f against the iteration count for
both methods. On the other hand, Figure 4.2/ shows the stepsize used at each

iteration. For the parallel bundle method, we display the stepsize used by the
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last instance to reduce the best objective value seen.

As the theory predicts the convergence of both methods is linear. The bundle
method with ideal stepsize exhibits steady progress and reaches an objective
gap of 1.70 - 107"°, while the parallel version slows down around 100 iterations
and only achieves 5.87 - 107'2. This behavior is explained by the stepsize plots.
Figure 4.2/ plots how the parallel algorithm roughly emulates the ideal stepsize
until it exceeds the largest instance’s stepsize 10%. After which, the instance with

stepsize 10® consistently leads the method’s progress, albeit sublinearly.

4.4.2 Support Vector Machine

To illustrate the adaptive features of the parallel bundle method we consider the
standard Support Vector Machine (SVM) formulation: we are given datapoints

(x1,1)5 - - - (X, yo) With x; € R and y; € {1} and our goal is to solve
min + Z max {0, 1 — yw, x} + 2wl (4.14)
b yl b 1 2 .

where 4 € Ris a fixed constant. This problem is not smooth due to the first
term. For this experiment we compare against a subgradient method based on
Pegasos [222], a state-of-the art solver for SVM. Our vanilla implementation of
the parallel bundle method is not tuned for efficiency and does not aim to be
competitive with commercial solvers. Instead, we aim to show that an out-of-
the-box implementation is immediately comparable to a specialized first-order

method for this problem.

We generate SVM problems using three datasets from the LIBSVM Binary

Classification Database [1]. In particular, we use colon-cancer, duke, and
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Figure 4.3: Objective gap against coefficient A for the three problems, solved
by a subgradient method and by the parallel bundle method: colon-cancer
(left), duke (center), and leu (right).

Leuf]| We preprocess the data by deleting empty features, normalizing the fea-

tures, and adding an extracomponent x; = (x, 1) to allow for affine functions.

The implementation of the subgradient algorithm updates
Wiet e (L= mewe + 1 ) 1< yilwi, x)yi
i=1
where 1, = ﬁ and 1{-} is one if - holds true and zero otherwise. This is analogous
to Pegasos with the exception that it does full, instead of stochastic, subgradient

evaluations.

For the parallel bundle method, we use stepsizes 11 instances with constant
stepsizes

pe{lo’®.100|j=0,...,10}.

We run both methods for 2000 iterations and measure the objective gap f—min f.
To compute the minimum we use Gurobi with accuracy set to 107'°. Figure
plots the gap against while varying the regularizer coefficient within 4 €
{0.001,0.01,0.1,0.5, 1.5, 2.0}.

In this simple setting, the parallel bundle method out of the box performs
similarly to the tuned subgradient method while only requiring a constant

amount of extra work (that can be parallelized). We see that the parallel method

2We refer the reader to LIBSVM for the origin of each of these datasets.
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with the same parameter configuration can handle a wide range of parameters
A. While for small A the performance of the subgradient method tends to de-
teriorate, the performance of the bundle method improves (outperforming the

subgradient method by several orders of magnitude).

4.5 Analysis

In this section, we develop the proofs of the convergence rates. We start by
introducing the general strategy that we use to establish all of our results and

then specialize it to each scenario.

4.5.1 Analysis Overview and Proof Sketch

Each iteration of the bundle method can be viewed as an attempt to mimic the
proximal point method, using the model f; instead of the true objective function
f. At each iteration k, we denote the objective gap of the proximal subproblem,

called the proximal gap, by
. = P, 2
M= £ = () + Bllesr = P
where %1 = argmin, g {£(x) + £llx = xP).

Regardless of which continuity, smoothness and growth assumptions are
made, our analysis works by relating the proximal steps computed by the bun-
dle method on the models f; to proximal steps on f. The following pair of obser-
vations show that the behavior on both descent steps and null steps is controlled

by the proximal gap A.
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(i) Descent steps attain decrease proportional to the proximal gap.

Lemma 4.5.1. A descent step, at iteration k, has
Sas1) < f(x) — BA.

(ii) The number of consecutive null steps is bounded by the proximal gap.

Lemma 4.5.2. A descent step, at iteration k, followed by T consecutive null steps

has at most

2GI%H

T <
(1 = B)*ors1Ainr
where Gyyy = sup{llg.1ll | k < t < k + T}. This simplifies to

2M? o ) .
5 if f is M-Lipschitz, or
(1 = B)Pr+1Bk41
| 4L+ p)?
(—fkg if f is L-smooth .
(1 _ﬁ) Pr+1

With these two observations in hand, convergence guarantees for the bundle
method follow from specifying any choice of the parameter p;. Given a choice of
pr, bounding the proximal gap is a classic, well-understand problem, indepen-
dent from the details of the bundle method being used. Standard analysis [219]

of the proximal gap shows the following bound for any minimizer x*.

Lemma 4.5.3. For any x; € R", the proximal gap is lower bounded by

1 — )\
— (M) if (0 — £ < prllxe — x°I12

A >4 2ee\ =]
fOa) = f(x) = %lek —x*||>  otherwise.

(4.15)

Our ideal stepsize (4.11)) is chosen to balance the two cases of this classic bound.

All of our analysis follows directly from applying these core lemmas. We

bound the number of descent steps by combining Lemmas |4.5.1| and {4.5.3| to
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give a recurrence relation describing the decrease in the objective gap. Then

Lemmas [§.5.2] and {£.5.3] together allow us to bound the number of consecutive

null steps between each of these descent steps, which can then be summed up

to bound the total number of iterations required.

Proof of the Descent Step Lemma[4.5.1]

Let %y = argmin{f(-) + 2| - —x|[*}. From .5), we have

Pk
Se@re) < filxgr) + E”xkﬂ — Xl
_ Pk .,
< filTa) + Eknxm — xll?

< f(Xps1) + %”)_Ckﬂ — xll* .

Hence f(x) — fi(xi11) = Ax. Since we have assumed that iteration £ was a descent

step, this implies (f(xx) — f(xk+1))/B8 = Ax. Concluding the proof.

Proof of the Null Step Lemma[4.5.2]

Consider some descent step, at iteration k, followed by T consecutive null steps.
Denote the proximal subproblem gap at iteration k < t < k + T on the model f;
by

A= f(e) = (ft(ZtH) + %HZM - Xk+1||2)-
Note every such null step ¢ has the same stepsize p, = px.1 and the same prox-
imal center x;, = x4;. The core of this null step bound relies on the following
recurrence showing Z, decreases at each step

(1 = B2 pxs1 A2

2Gl%+l

Kt+1 < Kt - (4-16)
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Before deriving this inequality, we show how it completes the proof of this
lemma. After T consecutive null steps, the fact that fi.r < f ensures ZHT >
At = A1 Thus, to bound T it suffices to bound the minimum iteration at
which the reversed inequality hold. By solving the recurrence, see Lemma

with € = Ayy1, we conclude the number of consecutive null steps is at most

2Gi+ 1

T < .
(1 = B)?prs1Aisi

Now all that remains is to derive the recurrence (4.16). Consider some null step
k <t < k+T in the sequence of consecutive null steps. We will use the following

claim mulitiple times in the proof.

2

Claim 1. The following inequalities hold true sectll? < 2061, < G-

Proof of the Claim. Due to the py,-strongly convexity of the proximal subprob-

lem fi(z) + 2|z — x41|I* and the fact that z,; is its unique minimizer, we derive
2

Pk+1

2 Pk+1 2
|Zi+1 = X1l < filxrer) = | fi(zer1) + 1zes1 — Xl
2 2

IA
>l

l

>

1
< Apir < 2_||gk+1||2-
Pl

The last inequality follows by since

Jir1(@ir2) = f(Xir1) + {8kt Ts2 — Xkr1)

1 (llgrs1l?
> f(Xpe1) — 5 Bler!

2
+ Prrillzie2 = Xl ] -
Pk+1

Define the necessary lower bound on f;,; given by and (4.7) as

ﬁ+1(') = max {fi(zee1) + (i1 - = Ze1)s [(@a) 4G5 — 2D} < frn ()
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Denote the result of a proximal step on fiur by

.|z Pk
%ﬂ=a@nm{ﬁHo+ ;H«—mﬂw}.

A simple computation gives an explicit form for the minimizer of this problem

@H:mm%fmwﬂmo—ﬂ@n?

lgrs1 — St+l||2
1

Pk+1

Y2 = Xk+1 — (Brs18141 + (1 = 6r11)8011) - (4~17)

Hence the objective of the proximal subproblem at iteration ¢ + 1 is lower

bounded by

Ph+1 2
Jr1(Zis2) + T”Zzﬂ — X1l

rd Pi+1 2
> frr1(Vi+2) + T”)’HZ — Xpes1ll

> Op1 (F(Zee1) + {&oa15 Yie2 — Z+1))

Ple+1
2

2
IIsz — X1l

+ (1 = 0i1) (fizes1) + {Sex1, Yew2 — Z1) +

= fize1) + O (f @s1) = f1(2101))

Pi+1
+ Os18r41 + (1 = O1)Ses1, Yeu2 — Zes1) + T+||yz+2 — x|

= fi(zes1) + O (f(Zt+1) - ft(Zt+1))

2 2 Pi+1 2
+ 9;+1”gt+1 — Sl /pk+1 + T”Zzﬂ = Xe1ll” s

where the first inequality uses that f,; > fir1, the second inequality takes a
convex combination of the two affine functions defining fir1, and the second

equality uses the definition of y,,,. Thus we have

ZH] < Zt — 041 (f(ZHl) - ft(ZHI)) + 9;2+1||gt+1 - St+l||2/pk+l .
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The amount of decrease guaranteed above can be lower bounded as follows

0141 (f(Zt+1) - ﬁ(zt+l)) + 9;2+1||gt+1 - St+1||2/Pk+1

2 + 1+ - Jt\&Kt+ :
> min {f(ZtH)_fr(ZHl)a & IT((;(Z] l—)S ]10“(; > }

201(1 —ﬁ)zZ?}

lgrs1 — Sz+1||2

P (1 = B)A? }

> min {(1 —B)A,

lge1l* + [lisrll?

> min {2pk“(1 -BA? peal —,3)2&2}

2 ’ 2
Gk+1 2Gk+1

> min {(1 ~BA,,

J (1 =BPA?
2Gi+l

where the first inequality uses the definition of 6,,; and drops a norm squared

term, the second inequality uses the definition of a null step, and the fourth

inequality uses Claim and |lg;+1l* < G,,. This verifies (4.16) and completes the

proof of our general bound.

For any M-Lipschitz objective, our specialized result follows from observing
that G, < M as subgradients everywhere are uniformly bounded in norm by the
Lipschitz constant. For any L-smooth objective, the following three inequalities
hold for any null step ¢ in the sequence of consecutive null steps following a

descent step k < r:

lgr+1ll < llgk+ill + Lllze+1 — X ll (4.18)
1ze+1 = Xex1ll < Ngk+1ll/prs1 (4.19)
lgks1ll £ V2(L + prs1)Asar - (4.20)

Before proving these three inequalities, we note that combined they give the
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claimed bound as

Giv1 = supllgiill} < sup{llgrsill + Lllzer1r — X ll}
t t

< (I + L/pre)llgrs1l

< (1 + L/pi1) V2L + prs 1) Ais

and thus G,, < 2(L + pxr1)* Ak /p;,,- First (@.18) follows directly from the
gradient being L-Lipschitz continuous. Second (4.19) follows from Claim
Third (4.20) follows from the L-smoothness of f and considering the full proxi-

mal subproblem f(z) + &%z — Xy |I” since

Mo = ) = min {£@) + 2L = P
. L+
> f(Xpe1) — min {f(xk+1) + {8k+1>2 — Xps1) + 2Pk+1 llz — Xk+1||2}
_ ||gk+1||2
2(L + prs1) '

4.5.2 Proofs in Section
Proof of Theorem [4.2.2

For a constant stepsize p, = p, we can simplify the lower bound (4.15) to only

depend on x; through a simple threshold on f(x;) — f* as

£\ 2
X %(f(xk)_f ) lff(xk)_f* SpD2
=

D (4.21)
% (f(x) = 9 otherwise.
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Combining this with Lemma gives a recurrence relation describing the de-
crease in the objective gap 6, = f(xx) — f* on any descent step k of
BS;
Okr1 < " 2D
(1-p/2)5, if 6, > pD?.

if 0 < pD2

Our analysis of the bundle method then proceeds by considering these two
cases separately. In each case, solving the given recurrence relation bounds the
number of descent steps and applying Lemma bounds the number of null

steps.

Bounding steps with 6; > pD?. First we show that the number of descent steps

with 6; > pD? is bounded by

o (55 -
~log(1-B/2) |, |
and the number of null steps with 6; > pD? is at most
8M?
(4.23)

B(1 = Byp*D*

In this case, our recurrence relation simplifies to have geometric decrease at
each descent step 6.1 < (1 — B/2)0;. This immediately bounds the number of
descent steps by [#.22). Index the descent steps before a pD*-minimizer is found
by k; < --- < k, such that x, ., is the first iterate with objective value less than
pD?. Define ky = —1. Then foreachi =0...n—1, f(x;11) = f* = (1=B/2)""VpD? .
It follows from that Agy1 > (f(oe)—f5)/2 > (1 = 8/2)""D pD?/2. Plugging
this into Lemma upper bounds the number of consecutive null steps after
the descent step k; by

4M?

kit —ki—1<(1=pj2)r i ——
. (=2 s

100



Summing this over i = 0...n — 1 bounds the total number of null steps before a

pD?*-minimizer is found by {#.23) as

n—

—

4M? < 8M?
(L=pPoD’ = (= pypD? |

(1- /)

T
o

Bounding steps with pD* > 6, > e. Now we complete our proof of Theo-

rem [4.2.2]by bounding the number of descent steps with pD? > §; > € by

2
2pD (4.24)
Be
and the number of null steps with pD* > §, > € by
120D* M>
m . (4.25)

After the bundle method has passed objective value pD?, the recurrence re-

lation becomes
B6;
2pD?
Solving this recurrence with Lemma implies 6; > € holds for at most (4.24)

Or+1 < O —

descent stwhereeps. Then we can bound the number of null steps between
these descent steps by noting (4.21) implies Ay > (f(xx) — f*)*/20D* > €*/2pD*.
Then Lemma upper bounds the number of consecutive null steps by

4D*M?/(1 - B)*€*. Then multiplying this by our bound on the number of descent
steps gives (4.25) as

2pD? 4D*M? < 12pD* M?
Be (1-p)e ~ p(l-pye

Proof of Theorem

Our bound on the number of descent steps comes directly from Theorem [4.2.2]

Our claimed bound on the total number of null steps follows by multiply-
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ing this by the constant bound on the number of consecutive null steps from

Lemma

Proof of Theorem [4.2.4

Assuming Holder growth holds and fixing p; = p, the lower bound (4.15)

simplifies to only depend on a simple threshold with f(x;) — f* as

2/ _ £x\2-2/
H p(f(Xk; S if (Fox) = £\ < p e
Bz P | (4.26)
3 (f(x0) = f) otherwise .

From this, we arrive at a recurrence relation on the objective gap 6, = f(xx) — f*
decrease at each descent step k by plugging this lower bound into Lemma

of 2]
p§eeIpP
S — ’Bﬂ—k
01 < 2p
(1= B/2)8 if 6,727 > p/uPlr .

if 5,77 < p/ul?

Our analysis proceeds by considering the two cases of this recurrence and the
three cases of p > 2, p = 2, and 1 < p < 2 separately. In each case, solving
the given recurrence relation bounds the number of descent steps and applying

Lemma [4.5.2]bounds the number of null steps.

Given p > 2, bounding steps with &, > (o/u*?)!/(1=2/P)_ " First we show that the

number of descent steps with &; > (o/u*?)"/172/P) is bounded by

log ((p/lfz(/";o))l?({;/w) (4 27)
—log(1 - B8/2) . '
and the number of null steps with 6; > (o/u?/?)//1=/P) is at most
8 M?>
(4.28)

B~ BPplp/2In) 1020
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In this case, our recurrence relation simplifies to have geometric decrease
at each descent step 6;,1 < (1 — 8/2)6;. This immediately bounds the num-
ber of descent steps by [.27). Index the descent steps before a (o/u?/?)!/1-2/P)-
minimizer is found by k; < --- < k, such that x; ., is the first iterate with objec-

tive value less than (p/u??)!/(1=2/P) Define ky = —1. Then for eachi =0...n -1,

FCaar) = = (1 = B/2)7 " D(p/u? P2/ Tt follows from (4.15) that
Ars1 = (FOgsr) — /2 2 (1= B/2)7 "D (p/u?/P)/A=2P)

Plugging this into Lemma upper bounds the number of consecutive null

steps after the descent step k; by

4M?

. B (n—1)—i
kivy —ki—1<(1-p/2) (1 = Bp(p/p2lmia=2ip -

Summing this over i = 0...n — 1 bounds the total number of null steps before a

(o/p*'PY0=2/P-minimizer is found by (4.28) as

n—

4M> 8M?

(1-pB/2)" D (1 = Bp(p/ 2Py 10-2/p) < B(1 - B)o(p/p2/P)l/a=2/p) °

1
i=0

Given p > 2, bounding steps with (o/u*?)!/1=2/P) > 5, > ¢. Next we show that

the total number of descent steps with(o/u?*?)!/172/P) > 5, > € is bounded by

2p
4.29
(1 =2/p)pu*/re'=2/r (229
and the number of null steps with (o/u*?)/1=2/P) > 5, > € is at most
120M?
P (4.30)

(1= 2/p)B(1 = BPutlreir -

In this case, the recurrence relation on objective value decrease becomes

2/p §2-2/
puirs;

Ok+1 < O — %
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Applying Lemma gives our bound on the number of descent steps with
6 > € in (£29). Plugging the lower bound A, > p*P(f(xx) — f)*7/20 >
pPe?2I?7 [2p into Lemma the number of consecutive null steps after a de-

scent step is at most
4M?
(1= ppyive2in

Then multiplying our limit on consecutive null steps by the number of descent

steps between finding a (o/u??)"/'=2/P)-minimizer and finding an e-minimizer

gives the bound (4.30) as

( 2p aM? - 12pM?

(=2 ppra=r * | T prueren = T2/ pp(l - praviver

Given p = 2, bounding steps with 6, > €. Here both cases of our recurrence
relation have a similar form, and so we directly bound the total number of de-

scent steps with §; > € by

log (f(xoe)—f*)
- 4.31
“log(1 - Bmin{u/2p, 1/2}) #31)
and the number of null steps with §; > € by
2
M (4.32)

B(1 = B> min{u/2p, 1/2}pe

In this case, our recurrence relation simplifies to have geometric decrease at
each descent step ;.1 < (1 — Smin{u/2p, 1/2})6;. This immediately bounds the
number of descent steps by (4.31). Index the descent steps before an e-minimizer
is found by k; < --- < k, such that x; ., is the first iterate with objective value

less than €. Define k) = —1. Then foreachi=0...n -1,

FOga1) = fF= (1 = Bmin{u/2p, 1/2})"" Ve .
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It follows from (.15) that Ay, > (1 — Bmin{u/2p, 1/2})" "V €/2. Plugging this
into Lemma upper bounds the number of consecutive null steps after the

descent step k; by
2M?
(1-pBype’

Summing this overi = 0...n -1 bounds the total number of null steps before an

kit = k= 1< (1 - Bmin{u/2p, 1/2))" D

e-minimizer is found by
2M? < 2M?
(1-p)y’pe ~ minf{u/2p,1/2}B(1 - B)’pe -

n—1
D, (1= Bminiy/2p.1/2)"
i=0

Given | < p < 2, bounding steps with 6; > (o/u*?)!/1=2/P). Then we show that
the number of descent steps with 6; > (o/u?/?)!/(1=2/P) is bounded by

20(f(xo) = f*)*77!

A (4.33)
and the number of null steps with &, > (o/u*'?)"/172/7) is at most
8M?
(4.34)

B = BRptpl @y 02

: _ (fxo)—f)*P—3 . 1 Sfxo)—f~ :
with C = max {W, 1} min {m, ’VIng (W)-‘} Notice that

since p < 2, the power 1 —2/p of ¢ in the threshold condition of our recurrence
is negative. In this case, the recurrence relation on objective value decrease be-

comes
,8/12/[76]%_2/[]
2p ’
As an intermediate step, for any i > 0, we first bound the number of descent and

Ok+1 < O —

null steps with
2i+1(p/lu2/p)1/(1—2/p) > 5]( > 2i(p/M2/p)l/(1—2/P) .

Since descent steps decreases the objective gap by at least ,B,uz/f’cii_z/ P/2p, there

are at most
zp(zi(p/luZ/p)1/(1—2/p))2/p—1 22/p=1)i+l

pulr B
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descent steps in this interval. Further, noting that in this interval

2/ i 2/p\1/(1=-2/p)\2-2/
A, » HL@ /) T 221y 2IP)O=2p)

2p

we can bound the number of consecutive null steps following any of these de-

scent steps via Lemma Hence there are at most
2@4/p-3)i+3 12
B(L = B)*p(p/p*/P)t/(=2/p

null steps in this interval.

The bundle method halves its objective value at most N = [log,((f(xo) —
9/ (p/u?P)M1=2/P)] times before an (p/u??)"/1-2/P-minimizer is found. Then
summing up these bounds on the descent and null steps in each interval limits

the number of descent steps needed to find a (o/u*7)"/1=2/P-minimizer by (4.33)

as
N=1 5@/p-1)i+1 N-1 @/p-D(N=1)+1 _e2/p-l
Z 2 %22(2/17—1)1' <2 < 2p(f(x0) — f7)
~ B B4 T (1212 T (1= 22n)BuRle
and similarly, the number of null steps needed by (4.34) as

N-1 2(4/p-3)i+3 pp2

;ﬁ(l —/3)2/)('0/#2/17)1/(1_2/[,)
8M? N-1 |
= B = Brplp/ 2027 Z 24P
i=0
< SM?
= ,3(1 —ﬁ)zp(p/'uﬂp)l/(l_z/p)

J UG o K U (R N
(o/p2lmy@p-nia=2p [T T2

where the last inequality bounds the geometric sum regardless of the sign of the

exponent 4/p — 3.

Given 1 < p < 2, bounding steps with (o/u?/?)!/1=2/P > 5, > e. Finally, we

show that the number of descent steps with (o/u*?)"/1=2/P) > §; > ¢ is bounded
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log (‘D/MZ/P):/(I*Z/P)
( ) (4.35)
—log(1l - B/2)
and the number of null steps with (o/u?*?)!"/1=2/P) > §; > € is at most
4M?
- 436
B(1 - B)*pe (4.36)

In this case, our recurrence relation simplifies to have geometric decrease
at each descent step 6.1 < (1 — /2)6;. This immediately bounds the num-
ber of descent steps by (£.35). Index the descent steps after a (p/u?/?)"/1-2/P-
minimizer but before an e-minimizer is found by k; < --- < k, such that x; 4,
is the first iterate with objective value less than €. Then for eachi =0...n -1,
fxs) = f* = (1 =p/2)~"De, Tt follows from that Ag.y1 > (f(x1) — f5)/2 >
(1 -pB/2)"""" ¢/2. Plugging this into Lemma upper bounds the number of

consecutive null steps after the descent step k; by

2M?

kiy —ki—1<(1=p/2)" D" — |
| < (="

Summing this over i = 0...n — 1 bounds the additional number of null steps

before an e-minimizer is found by (4.36) as

n—

2M?_AM
(1 =pBype = B(1 - p)pe

(1-p/2)" 07

1
i=0
Proof of Theorem

Our bound on the number of descent steps comes directly from Theorem 4.2.4,
Our claimed bound on the total number of null steps follows by multiply-
ing this by the constant bound on the number of consecutive null steps from

Lemmal4.5.2]
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Proof of Theorem

Combining the lower bound A; > %( f(x) = f*) with Lemma shows linear

decrease in the objective every descent step

fean -5 < (1-5) e - )
Our bound on the number of descent steps follows immediately from this. Com-

bining the lower bound A; > %( f(x) — f*) with Lemma shows that at most

2M*D?
(1 =B(f(xer) = f*)?

null steps occur between each descent step. Denote the sequence of descent
steps taken by the bundle method by &, k», k3 ... and as a base case define k, =
—1. Let k, be the first descent step finding an e-minimizer, which must have
n < flog(l_ﬁm(m)h. From our linear decrease condition, we know for any
i=0,1,2,3,...n-1

fOua) = fF 21 =p/2)™" Ve

and from our null step bound, we know forany i=0,1,2,...n -1

2M?D? 2M>D?
kivi —ki—1< < 1=/ "D —— .
1 e o e o
Then summing up our null step bounds ensures
2M?D?
_ 2(i-1-(n-1)) _ ="~ —
ky —n < 2(1 B/2) T ae

Bounding this geometric series shows us that the bundle method finds an e-

minimizer with the number of null steps bounded by

1 2M?D?
(1 - —ﬁ/2)2) (1-pre
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Proof of Theorem

Our bound on the number of descent steps follows from Theorem Our
proof of the null step bound follows the same approach as Theorem with
only minor differences. Applying Lemma with our stepsize choice (4.13)

bounds the number of consecutive null steps after some descent step k by

2M?
(1 = B22/P(f (xgs1) — )32

Denote the descent steps —1 = k) < k; < k, < ... and suppose the x; ., is the first

e-minimizer. Then

2M?
(1= ppylre2ir

kig—ki—1<(1 _ﬁ/z)(Z—Z/p)(i—(n—l))

since f(xg+1) — f* > ( 1- 'g)i_(n_l) €. Summing this up gives

2M?
(L= pygelre e

k,—n < 2(1 _ B/2)C-2pNi=1=n=1)
i=1

When p > 1, this geometric series shows us that the bundle method finds an

e-minimizer with the number of null steps bounded by

1 2M?
T= (U= B2y | (U= prpirelr”

When p = 1, we have a constant upper bound on the number of null steps

following a descent step. Hence the number of null steps is bounded by

2M? 10g (f(xoe)—f*) }

(1 =By’

—log(l - B/2)
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4.5.3 Proofs in Section 4.3

Proof of Theorem

Let 6x = minjep,. j-nj{f (x,((j)) — f*} denote the lowest objective gap among all of our
J instances of the bundle method after they have taken k synchronous steps.
Then the core of our convergence proof is bounding the number of iterations

where this lowest objective gap is in the interval

(1-B/2)"e <6 < (1-p/2)""Pe.

= los(LB73) 1 Within this interval, we focus on the

for any integer 0 <n < N := [

instance

2/p((1 = B/2) ") 2P
el

This instance of the bundle method’s constant stepsize p" = 2/p approximates

the stepsize (4.13) as

1 N1
(A =B < pV < Syt (1 - B2

Then (4.26) bounds this method’s proximal gap before an (1 —3/2)"e-minimizer
is found by

A > —(f) = 2 =B/2)7"e/2 .

M| —

Letting 6,(3) = f(xij)) — f*, each descent step k improves method j’s objec-
tive gap according to the recurrence 5,(({2 , < min{(1 - g/ 2)5,(("), 0r} where the first
term in the minimum comes from Lemmal4.5.7]and the second term comes from
method j taking any further improvement from the other bundle methods. By

assumption, we have 6; < (1 —£/2)""*D¢, and so after one descent step k' > k we

must have 6"

o < (1= B/2)""De. Thus after a second descent step k” > k’, our

intermediate target accuracy is met as 04 < 5,({’) 4 <A =-B/2)"e
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Applying Lemma bounds the number of null steps between descent

steps by
2m® 16M?
(1-BRo0AY, ~ (1= BPu/r((1 = B[2)"e) 2l °

Hence the total number of steps before 6,((j) < 2"€ (and consequently 6; < 2"¢) is

at most

) 16 M? 1
((1 — RPN (1 - Bl2) e ) '

Summing over this bound completes our proof. When p > 1, this gives

st ) 16M? .
Z ((1—,3)2/12/”((1—ﬁ/Z)‘”E)H/”+ )

n=0

S 16M> log((f(x0) — f)/€)
_2;(1—,8)2/12“’((1—B/Z)‘”e)z‘z“’+4 —log(1-B/2) w
3 2 ) 16M° + o [los((f(x0) = /e
“\1T=a=p22r) (1 =ppudive2r —log(1-B/2) |-

When p = 1, the number of steps in each of our intervals is constant. Con-
sequently, the total number of iterations before an € minimizer is found is at

most

—_

N—

16M? 16M? log((f(x0) = f*)/€)
2| ——55 +1|=2 1
((l—ﬁ)zu2+ ) ((1_ﬁ)2#2+ N —log(1 - /2)

n=0

4.54 Auxiliary lemmas

Throughout our analysis, we frequently encounter recurrence relations of the
form 6.1 < 6 — a6} for some @ > 0 and g > 1. The follow lemma bounds the

number of steps of such a recurrence to reach a desired level of accuracy J; < e.

Lemma 4.5.4. For any € > 0, the recurrence 6x.1 < 6x — 6, has 6, < € satisfied by

somnie

1
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Proof. It suffices to show the following upper bound on J; as a function of k

1 1/(g-1)
o <|———— .
¢ ((q—l)ak)

First we show this bound holds with k = 1. This follows as

1/(g-1)
81 < 6o — ad] < max{d — ad’} < (—) )
0eR qa

Then we complete our proof by induction using the following weighted

arithmetic-geometric mean (AM-GM) inequality, which ensures for any a, a, b, > 0

we have a®bf < (2uBt “? This implies that for any k > 1, (k- (- DYHk+
a+f p y

V@D < k9D by taking a = k— (g - 1), @ =1,b=k+1,5 = 1/(g— 1). By

expanding the recurrence at k + 1 and applying this inequality we get

1 1/(g-1) 1 q/(g-1)
it <0 —ad? < |———— o —
kil = Ok T A0, = (q—l)a/k) “((q—nak)

1 1/(g-1) k 1
“\g-Da k4l@=D (g — 1)ka/(a=D
~ 1 1/(g-1) k— (q_ 1)—1
(q — 1)05 ka/(q—1)
1 1/(g-1)
ER 1))

IA

Proving the result. o
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5
COMPOSITE OPTIMIZATION FOR LOW-RANK MATRIX RECOVERY

“I wish there was a way to know you are in the good old days,

before you've actually left them.”

— “Andrew Bernard” in the finale of The Office

5.1 Introduction

Recovering a low-rank matrix from noisy linear measurements has become an
increasingly central task in data science. Important and well-studied examples
include phase retrieval [223,39,[167], blind deconvolution [8| 153,160} 233], ma-
trix completion [35] 64, 228], covariance matrix estimation [52, [155], and robust
principal component analysis [45,38]. Optimization-based approaches for low-
rank matrix recovery naturally lead to nonconvex formulations, which are NP
hard in general. To overcome this issue, in the last two decades researchers
have developed convex relaxations that succeed with high probability under
appropriate statistical assumptions. Convex techniques, however, have a well-
documented limitation: the parameter space describing the relaxations is usu-
ally much larger than that of the target problem. Consequently, standard al-
gorithms applied on convex relaxations may not scale well to the large prob-
lems. Consequently, there has been a renewed interest in directly optimizing
nonconvex formulations with iterative methods within the original parameter
space of the problem. Aside from a few notable exceptions on specific prob-

lems [106, 23, 103], most algorithms of this type proceed in two-stages. The first
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stage—initialization—yields a rough estimate of an optimal solution, often us-
ing spectral techniques. The second stage—/ocal refinement—uses a local search
algorithm that rapidly converges to an optimal solution, when initialized at the

output of the initialization stage.

This chapter focuses on developing provable low-rank matrix recovery al-
gorithms based on nonconvex problem formulations. We focus primarily on
local refinement and describe a set of unifying sufficient conditions leading to
rapid local convergence of iterative methods. In contrast to the current litera-
ture on the topic, which typically relies on smooth problem formulations and
gradient-based methods, our primary focus is on nonsmooth formulations that
exhibit sharp growth away from the solution set. Such formulations are well-
known in the nonlinear programming community to be amenable to rapidly
convergent local-search algorithms. Along the way, we will observe an appar-
ent benefit of nonsmooth formulations over their smooth counterparts. All non-
smooth formulations analyzed in this chapter are “well-conditioned,” resulting
in fast “out-of-the-box” convergence guarantees. In contrast, standard smooth
formulations for the same recovery tasks can be poorly conditioned, in the sense
that classical convergence guarantees of nonlinear programming are overly pes-
simistic. Overcoming the poor conditioning typically requires nuanced problem
and algorithmic specific analysis (e.g. [233} 51} (167, 184, 50]), which nonsmooth

formulations manage to avoid for the problems considered here.

Setting the stage, consider a rank r matrix My € R**" and a linear map
A: R1*%2 — R™ from the space of matrices to the space of measurements. The
goal of low-rank matrix recovery is to recover My from the image vector b =

A(My), possibly corrupted by noise. Typical nonconvex approaches proceed by
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choosing some penalty function /() with which to measure the residual A(M) —
b for a trial solution M. Then, in the case that My is symmetric and positive

semidefinite, one may focus on the formulation
micp f(X) := h(AXXT) - b) subject to X € D, (5.1)
XeR4xr

or when Mj is rectangular, one may instead use the formulation

min fX,Y) = h(AXY) - b) subject to (X, Y) € D. (5.2)

XeR¥*r, YeR™%
Here, D is a convex set that incorporates prior knowledge about My and is often
used to enforce favorable structure on the decision variables. The penalty £ is
chosen specifically to penalize measurement misfit and /or enforce structure on

the residual errors.

Algorithms and conditioning for smooth formulations

Most widely-used penalties () are smooth and convex. Indeed, the squared ¢,-
norm h(z) = %llzll% is ubiquitous in this context. With such penalties, problems
and are smooth and thus are amenable to gradient-based methods.
The linear rate of convergence of gradient descent is governed by the “local
condition number” of f. Indeed, if the estimate, ul < V?>f(X) < LI, holds for all
X in a neighborhood of the solution set, then gradient descent converges to the
solution set at the linear rate 1 — /L. It is known that for several widely-studied
problems including phase retrieval, blind deconvolution, and matrix comple-
tion, the ratio /L scales inversely with the problem dimension. Consequently,
generic nonlinear programming guarantees yield efficiency estimates that are
far too pessimistic. Instead, near-dimension independent guarantees can be ob-

tained by arguing that V2 f is well conditioned along the “relevant” directions or
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that V21 is well-conditioned within a restricted region of space that the iterates
never escape (e.g. [233] 167, 184]). Techniques of this type have been elegantly
and successfully used over the past few years to obtain algorithms with near-
optimal sample complexity. One byproduct of such techniques, however, is that
the underlying arguments are finely tailored to each particular problem and al-

gorithm at hand. We refer the reader to the recent surveys [54] for details.

Algorithms and conditioning for nonsmooth formulations
The goal of our work is to justify the following principle:

Statistical assumptions for common recovery problems guarantee
that (5.1) and (5.2) are well-conditioned when h is an appropriate non-

smooth convex penalty.

To explain what we mean by “good conditioning,” let us treat (5.1) and (5.2)

within the broader convex composite problem class:

min f(x) := h(F(x)), (5.3)

where F(-) is a smooth map on the space of matrices and X is a closed con-
vex set. Indeed, in the symmetric and positive semidefinite case, we identify
x with matrices X and define F(X) = AXX") — b, while in the asymmetric
case, we identify x with pairs of matrices (X, Y) and define F(X,Y) = A(XY) — b.
Though compositional problems have been well-studied in nonlinear pro-
gramming [28, 31} 98], their computational promise in data science has only be-
gun recently to emerge. For example, the papers [90, 166} 83] discuss stochastic

and inexact algorithms on composite problems, while the papers [89, [70], [47],
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and [154] investigate applications to phase retrieval, blind deconvolution, and

matrix sensing, respectively.

A number of algorithms are available for problems of the form (5.3), and
hence for (5.I) and (5.2). Two most notable ones are the projected subgradient
method [68],[109]

Xip1 = Projy(x, — av;) with v € 0f (x,),
and the prox-linear algorithm [28] 152, 82]

. B

X;41 = arg min h(F(x,) + VF(x)(x - xt)) + §||x - x,||§.
xeX

Notice that each iteration of the subgradient method is relatively cheap, requir-

ing access only to the subgradients of f and the nearest-point projection onto X.

The prox-linear method in contrast requires solving a strongly convex problem

in each iteration. That being said, the prox-linear method has much stronger

convergence guarantees than the subgradient method, as we will review shortly.

The local convergence guarantees of both methods are straightforward to
describe, and underlie what we mean by “good conditioning”. Define X* :=
argminy f, and for any x € X define the convex model f.(y) = h(F(x) + VF(x)(y —

x)). Suppose there exist constants p, u > 0 satisfying the two properties:

* (approximation) |f(y) — f:(»)| < &lly — x|l forall x,y € X,

¢ (sharpness) f(x) —inf f > u - dist(x, X*) for all x € X.

The approximation and sharpness properties have intuitive meanings. The for-
mer says that the nonconvex function f(y) is well approximated by the convex

model f.(y), with quality that degrades quadratically as y deviates from x. In
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particular, this property guarantees that the quadratically perturbed function
x - f(x)+ gllxllg is convex on X. Yet another consequence of the approxima-
tion property is that the epigraph of f admits a supporting concave quadratic
with amplitude p at each of its points. Sharpness, in turn, asserts that f must
grow at least linearly as x moves away from the solution set. In other words, the
function values should robustly distinguish between optimal and suboptimal
solutions. In statistical contexts, one can interpret sharpness as strong identifia-
bility of the statistical model. The three figures below illustrate the approxima-
tion and sharpness properties for idealized objectives in phase retrieval, blind

deconvolution, and robust PCA problems.

-1 0 1 2 2 1 0 1 0 1 2

(a) f(x) = El(a"x)? - (a"D?| (b) f(x,y) = lxy — 1] (©) f(x) = llex™ =117}y
(phase retrieval) (blind deconvolution) (robust PCA)

Approximation and sharpness, taken together, guarantee rapid convergence

of numerical methods when initialized within the tube:
_ NPT o o H
T = {x € X : dist(x, X*) < —}.
0

For common low-rank recovery problems, 7 has an intuitive interpretation: it

consists of those matrices that are within constant relative error of the solution.
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We note that standard spectral initialization techniques, in turn, can generate
such matrices with nearly optimal sample complexity. We will cover an exam-
ple of these techniques in Chapter [fl We also refer the interested reader to the

survey [54], and references therein, for details.

Guiding strategy. The following is the guiding algorithmic principle of this

work:

When initialized at xy € 7, the prox-linear algorithm converges
quadratically to the solution set X*; the subgradient method, in turn,
converges linearly with a rate governed by ratio £ € (0, 1), where L is

the Lipschitz constant of f on T[]

In light of this observation, our strategy can be succinctly summarized as fol-
lows. We will show that for a variety of low-rank recovery problems, the pa-
rameters u, L,p > 0 (or variants) are dimension independent under standard
statistical assumptions. Consequently, the formulations and are “well-
conditioned”, and subgradient and prox-linear methods converge rapidly when

initialized within constant relative error of the optimal solution.

Good conditioning via the Restricted Isometry Property

We begin verifying our thesis by showing that the composite problems,
and (5.2), are well-conditioned under the following Restricted Isometry Prop-

!Both the parameters o, and 8 must be properly chosen for these guarantees to take hold.
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erty (RIP): there exists a norm ||-|| and numerical constants «;, x, > 0 so that
ki[|Wllp < AW < kllW][F, (5.4)

for all matrices W € R¥*% of rank at most 2r. We argue that under RIP, the
nonsmooth norm h = ||-|| is a natural penalty function to use. Indeed, as we will
show, the composite loss h(F(x)) in the symmetric setting admits constants u, p, L

that depend only on the RIP parameters and the extremal singular values of Mj:

1 = 0.9k, \o . (My), 0 = K2, L = 0.9k; \Jo . (My) + 2K \Jo 1 (M}y).

In particular, the initialization ratio scales as %‘ = &40, (My) and the condi-

. o1(M,
tion number scales as 5 =14 [7M)

o \ 7 Consequently, the rapid local conver-

gence guarantees previously described immediately take-hold. The asymmet-
ric setting is slightly more nuanced since the objective function is sharp only
on bounded sets. Nonetheless, it can be analyzed in a similar way leading to
analogous rapid convergence guarantees. Incidentally, we show that the prox-
linear method converges rapidly without any modification; this is in contrast
to smooth methods, which typically require incorporating an auxiliary regu-
larization term into the objective (e.g. [233]). We note that similar results in
the symmetric setting were independently obtained in the complimentary work
[154], albeit with a looser estimate of L; the two treatments of the asymmetric

setting are distinct, howeverf]

After establishing basic properties of the composite loss, we turn our atten-
tion to verifying RIP in several concrete scenarios. We note that the seminal

works [209, 40] showed that if A(-) arises from a Gaussian ensemble, then in

2The authors of [154] provide a bound on L that scales with the Frobenius norm /||My]|r.

We instead derive a sharper bound that scales as +/||M;llop. As a byproduct, the linear rate of
convergence for the subgradient method scales only with the condition number o (My)/o(My)
instead of || Myl|r/o(My).
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the regime m > r(d; + d,) RIP holds with high probability for the scaled ¢, norm
llzll = m~'2||zll,. More generally when A is highly structured, RIP may be most
naturally measured in a non-Euclidean norm. For example, RIP with respect to
the scaled ¢, norm ||z]l = m™"|lz|l; holds for phase retrieval [94] 89], blind decon-
volution [47], and quadratic sensing [52]; in contrast, RIP relative to the scaled
¢, norm fails for all three problems. In particular, specializing our results to the
aforementioned recovery tasks yields solution methodologies with best known
sample and computational complexity guarantees. Notice that while one may
“smooth-out” the £, norm by squaring it, we argue that it may be more nat-
ural to optimize the ¢, norm directly as a nonsmooth penalty. Moreover, we
show that ¢, penalization enables exact recovery even if a constant fraction of

measurements is corrupted by outliers.

Beyond RIP: matrix completion and robust PCA

The RIP assumption provides a nice vantage point for analyzing the problem
parameters u,p, L > 0. There are, however, a number of important problems,
which do not satisfy RIP. Nonetheless, the general paradigm based on the inter-
play of sharpness and approximation is still powerful. We consider two such
settings, matrix completion and robust principal component analysis (PCA),

leveraging some intermediate results from [53].

The goal of the matrix completion problem [35] is to recover a low rank ma-

trix My from its partially observed entries. We focus on the formulation

argmin f(X) = [Ho(XX") — Ho(My)|l2,
XeX
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where I, is the projection onto the index set of observed entries Q and

vr|| M|,
X = {X € R - X oo < %}

is the set of incoherent matricesf] To analyze the conditioning of this formula-
tion, we assume that the indices in Q are chosen as i.i.d. Bernoulli with param-
eter p € (0, 1) and that all nonzero singular values of My are equal to one. Using
results of [53], we quickly deduce sharpness with high probability. The error in

approximation, however, takes the following nonstandard form. In the regime

loedy £or some constants ¢ > 0 and € € (0, 1), the estimate holds with

CV2r2
Pz o+

high probability:
FO) = A< NT+elY = XI5+ Vel X =Yl forall X, Y € X.
The following modification of the prox-linear method therefore arises naturally:
Xin = argmin fi, () + V1 + ellX = X, + VelX - Xil.

We show that subgradient methods and the prox-linear method, thus modified,
both converge at a dimension independent linear rate when initialized near the
solution. Namely, as long as € and dist(Xj, X*) are below some constant thresh-
olds, both the subgradient and the modified prox-linear methods converge lin-
early with high probability:

(1 - £)k/2 subgradient
dist(X;, X*) < .

27k prox-linear

Here ¢ > 0 is a numerical constant. Notice that the prox-linear method enjoys a

much faster rate of convergence that is independent of any unknown constants

3Incoherence is necessary for recovery, e.g, My = eje] cannot be recovered in nontrivial set-
tings [35]].
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or problem parameters—an observation fully supported by our numerical ex-

periments.

As the final example, we consider the problem of robust PCA [38,45], which
aims to decompose a given matrix W into a sum of a low-rank and a sparse

matrix. We consider two different problem formulations:

. _ T _
(Xgl)ler%)l F(X,8)=|XX"+S — W, (5.5)
and
. B T
min f(X) = IXX" = Wi, (5.6)

where D, and D, are appropriately defined convex regions. Under standard in-
coherence assumptions, we show that the formulation is well-conditioned,
and therefore subgradient and prox-linear methods are applicable. Still, for-
mulation has a major drawback in that one must know properties of the
optimal sparse matrix S in order to define the constraint set 9, in order to en-
sure good conditioning. Consequently, we analyze formulation as a more

practical alternative.

The analysis of (5.6)) is more challenging than that of (5.5). Indeed, it appears
that we must replace the Frobenius norm ||X||r in the approximation/sharpness
conditions with the sum of the row norms || X||, ;. With this set-up, we verify the

convex approximation property in general:
f) = NI <IIY = XI3,  forall X, ¥

and sharpness only when r = 1. We conjecture, however, that an analogous
sharpness bound holds for all r. It is easy to see that the quadratic convergence
guarantees for the prox-linear method do not rely on the Euclidean nature of

the norm, and the algorithm becomes applicable. To the best of our knowledge,
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it is not yet known how to adapt linearly convergent subgradient methods to

the non-Euclidean setting.

Robust recovery with sparse outliers and dense noise

The aforementioned guarantees lead to exact recovery of My under noiseless or
sparsely corrupted measurements b. A more realistic noise model allows for
further corruption by a dense noise vector e of small norm. Exact recovery is
no longer possible with such errors. Instead, we should only expect to recover
My up to a tolerance proportional to the size of e. Indeed, we show that appro-
priately modified subgradient and prox-linear algorithms converge linearly and
quadratically, respectively, up to the tolerance 6 = O(|le|l/) for an appropriate
norm ||-|l. Finally, we discuss in detail the case of recovering a low rank PSD
matrix My from the corrupted measurements A(My) + A + ¢, where A represents
sparse outliers and e represents small dense noise. To the best of our knowledge,
theoretical guarantees for this error model have not been previously established
in the nonconvex low-rank recovery literature. Surprisingly, we show it is possi-
ble to recover the matrix My up to a tolerance independent of the norm or location

of the outliers A.

Outline of the chapter. Section [5.2] informally discusses the sharpness and
approximation properties, and their impact on convergence of the subgradient
and prox-linear methods. Section |5.3|analyzes the parameters yu, p, L under RIP.
Section [5.4| rigorously discusses convergence guarantees of numerical methods
under regularity conditions. Section 5.5/ reviews examples of problems satisfy-

ing RIP and deduces convergence guarantees for subgradient and prox-linear
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algorithms. Sections |5.6/and |5.7|discuss the matrix completion and robust PCA
problems, respectively. Section[5.8|discusses robust recovery up to a noise toler-
ance. Section |5.9|illustrates the developed theory and algorithms with numeri-
cal experiments on quadratic/bi-linear sensing, matrix completion, and robust

PCA problems.

5.2 Regularity conditions and algorithms

As outlined in Section we consider the low-rank matrix recovery problem

within the framework of compositional optimization:

min f(x) := h(F(x)), (5.7)

where X c E is a closed convex set, h: Y — R is a finite convex function and
F:E - Y is a C'-smooth map. We depart from previous work on low-rank
matrix recovery by allowing h to be nonsmooth. We primary focus on those
algorithms for that converge rapidly (linearly or faster) when initialized

sufficiently close to the solution set.

Such rapid convergence guarantees rely on some regularity of the optimiza-
tion problem. In the compositional setting, regularity conditions take the fol-

lowing appealing form.

Assumption 5.2.1. Suppose that the following properties hold for the composite opti-

mization problem (5.7) for some real numbers u, p, L > 0.

1. (Approximation accuracy) The convex models f,(y) := h(F(x) + VF(x)(y — x))

satisfy the estimate

) - FOI < By —xE  Vxyed.
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2. (Sharpness) The set of minimizers X* := arg min f(x) is nonempty and we have
xeX

f(x)—ir/\l)ffz,u-dist(x,)(*) Yx e X.

3. (Subgradient bound) The bound, sup,y ., l{lla < L, holds for any x in the tube

T = {x € X : dist(x, X) < E}.
o

As pointed out in the introduction, these three properties are quite intuitive:
The approximation accuracy guarantees that the objective function f is well ap-
proximated by the convex model f;, up to a quadratic error relative to the base-
point x. Sharpness stipulates that the objective function should grow at least
linearly as one moves away from the solution set. The subgradient bound, in
turn, asserts that the subgradients of f are bounded in norm by L on the tube 7.

In particular, this property is implied by Lipschitz continuity on 7.

Lemma 5.2.2 (Subgradient bound and Lipschitz continuity [214, Theorem 9.13]).
Suppose a function f: E — R is L-Lipschitz on an open set U C E. Then the estimate

SUPsesrn 112 < L holds for all x e U.

The definition of the tube 7 might look unintuitive at first. Some thought,
however, shows that it arises naturally since it provably contains no extrane-
ous stationary points of the problem. In particular, 7 will serve as a basin of
attraction of numerical methods; see the forthcoming Section for details.
The following general principle has recently emerged [68) 189, 70, 47]. Under
Assumption basic numerical methods converge rapidly when initialized
within the tube 7". Let us consider three such procedures and briefly describe

their convergence properties. Detailed convergence guarantees are deferred to

Section 5.4
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Algorithm 2: Polyak Subgradient Method
Data: xj € R¢

Step k: (k > 0)

Choose ¢ € df(xp). If & = 0, then exit algorithm.
f(x;) — miny f
I3

Set xi+1 = projy (xk -

Algorithm 3: Subgradient method with decreasing stepsize
Data: Real 1 > 0 and ¢ € (0, 1).

Step k: (k> 0)
Choose i € dg(xy). If & = 0, then exit algorithm.
Set stepsize a; = 4 - ¢*.

Update iterate xi,; = projy (xk — @ II((Tkllz)

Algorithm 4: Prox-linear algorithm

Data: Initial point x, € R?, proximal parameter 8 > 0.
P P P

Step k: (k> 0)

Set xi, < arg min {h (F(xp) + VF(x)(x — xp)) + §||x -~ xk||§} :
xeX

Algorithm 2| is the so-called Polyak subgradient method. In each iteration
k, the method travels in the negative direction of a subgradient ¢, € df(xy), fol-
lowed by a nearest-point projection onto X. The step-length is governed by the
current functional gap f(x) — miny f. In particular, one must have the value
miny f explicitly available to implement the procedure. This value is some-
times known; case in point, the minimal value of the penalty formulations
and for low-rank recovery is zero when the linear measurements are ex-
act. When the minimal value miny f is not known, one can instead use Algo-
rithm (3| which replaces the step-length (f(x,) — miny f)/||{ill» with a preset geo-

metrically decaying sequence. Notice that the per iteration cost of both subgra-
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dient methods is dominated by a single subgradient evaluation and a projection
onto X. Under appropriate parameter settings, Assumption guarantees
that both methods converge at a linear rate governed by the ratio £, when initial-
ized within 7". The prox-linear algorithm (Algorithm [3), in contrast, converges
quadratically to the optimal solution, when initialized within 7". The caveat is
that each iteration of the prox-linear method requires solving a strongly convex
subproblem. Note that for low-rank recovery problems and (5.2), the size
of the subproblems is proportional to the size of the factors and not the size of

the matrices.

In the subsequent sections, we show that Assumption (or a close vari-
ant) holds with favorable parameters p,u, L > 0 for common low-rank matrix

recovery problems.

5.3 Regularity under RIP

In this section, we consider the low-rank recovery problems and (5.2), and
show that restricted isometry properties of the map A(-) naturally yield well-
conditioned compositional formulationsf| The arguments are short and ele-
mentary, and yet apply to such important problems as phase retrieval, blind

deconvolution, and covariance matrix estimation.

Setting the stage, consider a linear map A: R“"*%2 — R™, an arbitrary rank

“The guarantees we develop in the symmetric setting are similar to those in the recent
preprint [154], albeit we obtain a sharper bound on L; the two sets of results were obtained
independently. The guarantees for the asymmetric setting are different and are complemen-
tary to each other: we analyze the conditioning of the basic problem formulation (5.2), while
[154] introduces a regularization term [|[X7 X — YY || that improves the basin of attraction for the
subgradient method by a factor of the condition number of M;.
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r matrix My € R%*%, and a vector b € R” modeling a corrupted estimate of
the measurements A(My). Recall that the goal of low-rank matrix recovery is to
determine M; given A and b. By the term symmetric setting, we mean that M;
is symmetric and positive semidefinite, whereas by asymmetric setting we mean
that M; is an arbitrary rank r matrix. We will treat the two settings in parallel.
In the symmetric setting, we use X; to denote any fixed d x r matrix for which
the factorization My = XX holds. Similarly, in the asymmetric case, X; and Y}

denote any fixed d; x r and r X d, matrices, respectively, satisfying My = X;Y;.

We are interested in the set of all possible factorization of M;. Consequently,

we will often appeal to the following representations:

(X e R : XXT = My} = {X;R : R € O(r)}, (5.8)

{(X,Y) € R X R™™ : XY = My} = (XA, A7'Yy) : A € GL(r)). (5.9)

Throughout, we will let D*(My) refer to the set (5.8) in the symmetric case and

to (5.9) in the asymmetric setting.

Henceforth, fix an arbitrary norm ||| on R”. The following property, widely
used in the literature on low-rank recovery, will play a central role in this sec-

tion.

Assumption 5.3.1 (Restricted Isometry Property (RIP)). There exist constants
K1,ky > 0 such that for all matrices W € R4 of rank at most 2r the following bound
holds:

kilWllr < AW < kol Wi

Assumption is classical and is satisfied in various important problems
with the rescaled &,-norm ||-|| = ﬁll |, and ¢;-norm ||| = 1| - ||1 In Section

°In the latter case, RIP also goes by the name of Restricted Uniform Boundedness (RUB) [33].
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we discuss a number of such examples including matrix sensing under (sub-
)Gaussian design, phase retrieval, blind deconvolution, and quadratic/bilinear
sensing. We summarize the RIP properties for these examples in Table 5.1|and

refer the reader to Section 5.5 for the precise statements.

Problem Measurement A(M);,  (k1,k2) Regime
(sub-)Gaussian sensing (P;, M) (c,O) mxz m In(1 + #Pfaﬂ)
Quadratic sensing I p; Mp; (c.CNr) mx (l_fﬁ In(1 + 1_;/;fﬂil)
Quadratic sensing II p; Mp;—p! Mp; (c,C) mx ﬁ In (1 + 1—21pfai1
Bilinear sensing pj Mg; (c,C) mzx ﬁ In (1 + #pfm)

Table 5.1: Common problems satisfying ¢;/¢, RIP in Assumption[5.3.1] The table
summarizes the ¢;/¢, RIP for (sub-)Gaussian sensing, quadratic sensing (e.g.,
phase retrieval), and bilinear sensing (e.g., blind deconvolution) under standard
(sub-)Gaussian assumptions on the data generating mechanism. In all cases, we
set |-l = %II -|l; and assume for simplicity d; = d, = d. The symbols ¢ and C refer
to numerical constants, pr,; refers to the proportion of corrupted measurements,
k3 is a constant multiple of (1 — 2pg). See Section for details.

In light of Assumption it it natural to take the norm ||-|| as the penalty
h(-) in and . Then the symmetric problem becomes

min f(X) := \AXX") - bll, (5.10)
XeRdxr
while the asymmetric formulation (5.2) becomes

SOV = RAKY) = b (5.11)

Our immediate goal is to show that under Assumption the prob-
lems and are well-conditioned in the sense of Assumption
We note that the asymmetric setting is more nuanced that its symmetric coun-
terpart because Assumption can only be guaranteed to hold on bounded
sets. Nonetheless, as we discuss in Section a localized version of Assump-

tion suffices to guarantee rapid local convergence of subgradient and prox-
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linear methods. In particular, our analysis of the local sharpness in the asym-
metric setting is new and illuminating; it shows that the regularization tech-
nique suggested in [154] is not needed at all for the prox-linear method. This
conclusion contrasts with known techniques in the smooth setting, where regu-

larization is often used.

5.3.1 Approximation and Lipschitz continuity

We begin with the following elementary proposition, which estimates the sub-
gradient bound L and the approximation modulus p in the symmetric setting.

In what follows, we will use the expressions

x(2) = AXXT +X(Z - X)" +(Z - X)XT) - bll,

JounX, Y) = JAXY + XY = Y) + (X - X)Y) - b].

Proposition 5.3.2 (Approximation accuracy and Lipschitz continuity (symmet-
ric)).

Suppose Assumption holds. Then for all X,Z € R™" the following estimates hold:

1f(2) - x(2)| < KlIZ - XII%,

IfX) = f(D < allX + ZllopllX = Z]| .
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Proof. To see the first estimate, observe that

f(2) = (D)) = IAZZT) - bl - IAXXT + X(Z - X)" +(Z - X)X") - bl
<WAZZ" -XX" -X(Z-X)" - (Z-XX"|| (5.12)
= IAWZ - X)Z - )"l
<k||Zz-xzZ-X7|, (5.13)

2
< kllZ = X,

where (5.12) follows from the reverse triangle inequality and (5.13)) uses As-

sumption Next, for any X, Z € X we successively compute:

1fX) = fD)] = IAXXT) - bll - |AZZT) - bl)|
<|lAaxx™ - zzm)|| (5.14)
< lIXXT - ZZ7||F (5.15)
= ZIX + DX -2 + (X=X +2)Ils
< kll(X + 2)(X - D)l

< kllX + ZllopllX = ZllF,
where (5.14) follows from the reverse triangle inequality and (5.15) uses As-
sumption The proof is complete. o
The estimates of L and p in the asymmetric setting are completely analogous;

we record them in the following proposition.

Proposition 5.3.3 (Approximation accuracy and Lipschitz continuity (asymmet-
ric)).

Suppose Assumption holds. Then for all X,X € R and Y,Y € R™® the follow-
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ing estimates hold:

—_ —_ K —_
IﬂXJﬁ—ﬁm%KYNSf~MKY%%KYm?

2 max{||X+Xllop, I+ ¥llop)

V2

If(X,Y) - fX,Y)| < NIX, Y) = XDl

Proof. To see the first estimate, observe that

fET) = fixn®, Dl = IAKY) - bll - IAXY + XT = ¥) + X = X)) - bl
< JAXY = XY = XY - ¥) - (X = X)V)|
= lA(X = X)(Y = D)l
<o [l = Xy - ?)HF
< 2 (IX = X+ 1Y - ¥Ii).

where the last estimate follows from Young’s inequality 2ab < a* + b*. Next, we

successively compute:

If(X,Y) = fX,Y)| < IAXY = XY)|| < &l XY - XY]|x
=§WX+%W—%THX—EW+%WF

<mmﬂmX+ﬂmmY+ﬁ@}

< > (1Y = Yllr + 11X = X]|).

The result follows by noting that a + b < /2(a?> + b?) for all a,b € R.

5.3.2 Sharpness

We next move on to estimates of the sharpness constant . We first deal with
the noiseless setting b = A(My) in Section and then move on to the general

case when the measurements are corrupted by outliers in Section[5.3.2]
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Sharpness in the noiseless regime

We begin with with the symmetric setting in the noiseless case b = A(M;). By
Assumption we have the estimate

OO = IAXXT) = bll = IAXXT = X, XDl > xiIXXT = XX |IF- (5.16)

It follows that the set of minimizers arg miny _gs f(X) coincides with the set of

minimizers of the function X — || XX — XﬁX; ||, namely
D" (My) := {X;R : R € O(r)}.

Thus to argue sharpness of f it suffices to estimate the sharpness constant of the
function X — || XX — XﬁXﬁT |lr. Fortunately, this calculation was already done in

[233, Lemma 5.4].

Proposition 5.3.4 ([233|, Lemma 5.4]). For any matrices X,Z € R™", we have the

bound

IXXT = ZZ7|lr 2 N2(V2 = Do n(2) - ngloig) 1X = ZR||r.

Consequently if Assumption holds in the noiseless setting b = A(My), then the
bound holds:

X)) > Ky \/2( V2 - Do (My) - dist(X, D*(My)) ~ for all X € R,

We next consider the asymmetric case. By exactly the same reasoning as
before, the set of minimizers of f(X,Y) coincides with the set of minimizers of

the function (X, Y) — |IXY — XyYillr, namely

D (My) = {(X3A,A7'Yy) : A € GL(r)).
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Thus to argue sharpness of f it suffices to estimate the sharpness constant of the

function (X,Y) — [IXY — Xy Yyllr.

Notice that in contrast to the symmetric setting, the sharpness estimate is
only valid on bounded sets. Indeed, this is unavoidable even in the setting
di = d, = 2. To see this, define My = e,e; and for any & > 0 set x = @e; and
w = Le,. Itis routine to compute

low™ = Myllp 2
dist((x, w), D*(My)) >+ al + ﬁ

Therefore letting @ tend to zero (or infinity) the quotient tends to zero.

The following theorem is a nonsymmetric variant of Proposition

Theorem 5.3.5 (Sharpness (asymmetric and noiseless)). Fix a constant v > 0 and
define Xy := U VA and Yy = VAV, where My = UAVT is any compact singular value

decomposition of My. Then for all X € R and Y € R™® satisfying

max{||X — Xyllr, 1Y — Yyllp} < v+Jo(My)
NEXAIEE (5.17)

1+2(1+ V2w

dist((X, Y), D" (My)) <

the estimate holds:

Vo (M)

2+4(1+ V2)

IXY — Myl > - dist((X, V), D" (My).

Proof. Define ¢ := and consider a pair of matrices X and Y satisfying

1
1+2(1+ V2)v
(5.17). Let A € GL(r) be an invertible matrix satisfying

A € argmin {|IX - X,All} + 1Y - A"V} (5.18)
AeGL(r)
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As a first step, we successively compute
IXY — X3 Yyl
= I(X = X3A)A'Y) + X, AY — A7) + (X = XA) Y — A7'Y)llr
> [I(X - XzA)AT'Yy) + XA - A7 Yy)llr — I(X = X,A) (Y — A7 Yllr
> [I(X - XpA)AT'Yy) + XA — A7 Yyllr — IX = XAllp - 1|Y — A Yyl (5.19)
> [I(X - XzA)A™'Yy) + KA - A7 Y)lp - %(IIX - XAl + 1Y - A7)

1
= ||(X - XnA)(A_lYﬁ) + XyA(Y — A_IYﬂ)”F - Edistz((X, Y), D (My))

> [|(X - XﬂA)(A_IYﬁ) + XyA(Y - A_lYﬁ)llF - @ -dist((X, Y), D*(My)).
We next aim to lower bound the first term on the right. To this end, observe
I(X = X;A)A™'Yy) + XA(Y — A7 Y)lI7
= IX = X;A)A™ YplIE + IXAY — A7 Yl (5.20)
+ 2Tr((X = Xz A)AT'Y)(Y — A7) (XGA)T).
We claim that the cross-term is non-negative. To see this, observe that first order
optimality conditions in directly imply that A satisfies the equality
ATX] (X = X3A) = (Y - AT VY AT
Thus we obtain
Tr((X - X;A)A™ Y)Y =A™ Y)T(XGA)T) = Tr(ATX] (X = X;A) AT V(Y —A7'Yy)T)
=Tr((Y - A7 YpYJ AT ATy — A7)
= [IA™" Y (¥ = A Yl
Therefore, returning to we conclude that

X = X,A)A ™' Yy) + X,A(Y — A7 Yl

2 \/II(X — XA IR + IXGAY - AT YR (5.21)

> o, (My) - min{o (A7), o7, (A)} - dist((X, Y), D" (My)).
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Combining (5.19) and (5.21)), we obtain

0
IXY = Myllp > o, () - (minfer, (A7), 0, (A)) = ) - dist((X, 1), D' (M)~ (5.22)
Finally, we estimate min{o,(A™"), o,(A)}. To this end, first note that

1X; — XeAllr + 1Yy = A Yyllp < 11X = Xl + 1Y = Ylir + V2 - dist((X, ¥), D*(My))

< 2vJo,(My) - (1 + V2).
(5.23)

We now aim to lower bound the left-hand-side in terms of min{o(A™"), o,(A)}.

Observe
11X — X3Allr > 11X; — X4Allop = o, (My) - I = Allop = o, (My) - (01(A) = 1).
Similarly, we have
1Vs = A" Yyllp 2 11V = A7 Yillop > o (Mp) - I = A [lop 2> Ao, (My) - (1 (A™") = 1).
Hence using (5.23), we obtain the estimate
min{e, (A7), 0, (A)) = (1+2v-(1+ VD)) =6,

Using this estimate in (5.22) completes the proof. o

Sharpness in presence of outliers

The most important example of the norm ||-|| for us is the scaled ¢;-norm ||| =
%II - |l;. Indeed, all the examples in the forthcoming Section will satisfy RIP
relative to this norm. In this section, we will show that the £;-norm has an added
advantage. Under reasonable RIP-type conditions, sharpness will hold even if

up to a half of the measurements are grossly corrupted.
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Henceforth, for any set 7, define the restricted map A; := (AX));c;. We in-
terpret the set I as corresponding to (arbitrarily) outlying measurements, while
its complement corresponds to exact measurements. Motivated by the work

[89] on robust phase retrieval, we make the following assumption.

Assumption 5.3.6 (7-outlier bounds). There exists a set I c {1,...,m} and a con-

stant k3 > 0 such that the following hold.

(C1) Equality holds b; = A(Mjy); forall i ¢ 1.

(C2) For all matrices W of rank at most 2r, we have

1 1
&lWllr < =lIAr(W)lli = = A (W) (5.24)
m m

The assumption is simple to interpret. To elucidate the bound (5.24), let us
suppose that the restricted maps A; and A satisfy Assumption (RIP)
with constants £}, £, and «j, «,, respectively. Then for any rank 2r matrix X we

immediately deduce the estimate

1 1 A
EllﬂI"(W)Hl - a”ﬂI(W)”l > ((1 = prai)k1 — praitka) [|WllF,

where pg; = % denotes the corruption frequency. In particular, the right-hand

side is positive as long as the corruption frequency is below the threshold py,;; <
K1

K1 +I('\2 .

Combining Assumption with Proposition quickly yields sharp-

ness of the objective even in the noisy setting.

Proposition 5.3.7 (Sharpness with outliers (symmetric)). Suppose that Assump-

tion5.3.6l holds. Then
FOO = £(Xy) > K3 ( V2(V2 - 1)ar(xﬂ)) dist(X, D*(My))  for all X € R
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Proof. Defining A := A(XyX,') — b, we have the following bound:

m- (f(X) = f(Xp) = A (XXT = X,X] ) + Ally — 1Al

= A7 (XXT = X XDl + ) (1 (AXXT = X:X))) + Al = |A)
iel

2 [ Ar(XXT = Xg XDl = IMAXXT = XXl
> ml|I XX~ X,X] |l > ksm ( V2(V2 - 1)ar(Xﬁ)) dist(X, D" (My)),

where the first inequality follows by the reverse triangle inequality, the second
inequality follows by Assumption [(C2), and the final inequality follows from
Proposition The proof is complete. o

The argument in the asymmetric setting is completely analogous.

Proposition 5.3.8 (Sharpness with outliers (asymmetric)). Suppose that Assump-
tion holds. Fix a constant v > 0 and define Xy := U VA and Y; = VAV, where
My = UAVT is any compact singular value decomposition of My. Then for all X € R4
and Y € R™% satisfying

max{[|X — Xyllr, 1Y = Yyllr} < v /o, (My)

dist(X, ¥, D" (My) < — YT M
1+2(1+ V2)v

The estimate holds:

K3 +Jo (My)

2+4(1+ V2

JXY) = f(X, Yy) 2 - dist((X, Y), D"(My)).

5.4 Guarantees for subgradient & prox-linear methods

In this section, we formally develop convergence guarantees for Algorithms

and [ under Assumption and deduce performance guarantees in the
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RIP setting. To this end, it will be useful to first consider a broader class than
the compositional problems (5.7). Recall that a function f: E — R U {+0c0} is p-
weakly convex if the perturbed function x — f (x)+§||x||§ is convex. In particular,

a composite function f = h o F satisfying the approximation guarantee

L0 = fol<Ely=xi vy
is automatically p-weakly convex [83, Lemma 4.2].

Setting the stage, we introduce the following assumption.

Assumption 5.4.1. Consider the optimization problem,

min f(x). (5.25)

xeX

Suppose that the following properties hold for some real numbers u, p > 0.

1. (Weak convexity) The set X is closed and convex, while the function f: E - R

is p-weakly convex.

2. (Sharpness) The set of minimizers X* := arg min f(x) is nonempty and the fol-
xeX

lowing inequality holds:

f(x)—i%ff2u~dist(x,X*) Vxe X.

In particular, notice that Assumption implies Assumption Taken
together, weak convexity and sharpness provide an appealing framework for
deriving local rapid convergence guarantees for numerical methods. In this sec-
tion, we specifically focus on two such procedures: the subgradient and prox-
linear algorithms. We aim to estimate both the radius of rapid converge around

the solution set and the rate of convergence. Note that both of the algorithms,
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when initialized at a stationary point could stay there for all subsequent itera-
tions. Since we are interested in finding global minima, we therefore estimate
the neighborhood of the solution set that has no extraneous stationary points.

This is the content of the following simple lemma.

Lemma 5.4.2 ([68, Lemma 3.1]). Suppose that Assumption holds. Then the
problem (5.25)) has no stationary points x satisfying

2
0 < dist(x: X*) < 2.
Je

It is worthwhile to note that the estimate 2?” of the radius in Lemma 5.4.2|is

tight [47, Section 3]. Hence, let us define for any y > 0 the tube
T, = {z € X: dist(z, X*) <y - g} (5.26)

Thus we would like to search for algorithms whose basin of attraction is a tube
T, for some numerical constant y > 0. Such a basin of attraction is in essence

optimal.

The rate of convergence of the subgradient methods (Algorithms [2| and

relies on the subgradient bound and the condition measure:
Lo=supllidlh: £ €df(x),xeT;) and  7:= ’z‘

A straightforward argument [68, Lemma 3.2] shows 7 € [0, 1]. The following
theorem appears as [68, Theorem 4.1], while its application to phase retrieval

was investigated in [70].

Theorem 5.4.3 (Polyak subgradient method). Suppose that Assumption holds
and fix a real number y € (0,1). Then Algorithm 2| initialized at any point xo € T,

produces iterates that converge Q-linearly to X*, that is
dist* (a1, X°) < (1= (1 = 9)7?) disC(x, X Yk 2 0.
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The following theorem appears as [68, Theorem 6.1]. The convex version of

the result dates back to Goffin [109].

Theorem 5.4.4 (Geometrically decaying subgradient method). Suppose that As-

sumption |5.4.1| holds, fix a real number y € (0,1), and suppose T < ,/21—7 Set

A= yp—”Lz and q = {1 -1 -yt in Algorithm Then the iterates x; generated by
Algorithm 3} initialized at any point x, € T, satisfy:

2,,2
distrsX) < TE(1-a-p)  vk=o0.
Je

Let us now specialize to the composite setting under Assumption[5.2.1] Since
Assumption implies Assumption5.4.1} both subgradient Algorithms[2land
will enjoy a linear rate of convergence when initialized sufficiently close the
solution set. The following theorem, on the other hand, shows that the prox-
linear method will enjoy a quadratic rate of convergence (at the price of a higher
per-iteration cost). Guarantees of this type have appeared, for example, in [89,

31} 182].

Theorem 5.4.5 (Prox-linear algorithm). Suppose Assumption holds. Choose
any B > p in Algorithm @ and set y := p/B. Then Algorithm [4initialized at any point

xo € T, converges quadratically:

dist(xps1, X¥) < § - dist? (x, X*) Yk > 0.

We now apply the results above to the low-rank matrix factorization problem
under RIP, whose regularity properties were verified in Section In particu-
lar, we have the following efficiency guarantees of the subgradient and prox-

linear methods applied to this problem.

Corollary 5.4.6 (Convergence guarantees under RIP (symmetric)). Suppose As-

sumptions [5.3.1| and |5.3.6| are valid with ||| = 1| - |l and consider the optimization
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problem

) 1
min f(X) = —[AXX") - bl|;.
XeR&r m

Choose any matrix X, satisfying

dist(Xo, D" (My)) <02 K3

vV O-r(Mﬂ) K2

Define the condition number y := o1(My)/o(My). Then the following are true.

1. (Polyak subgradient) Algorithm 2|initialized at X, produces iterates that con-

verge linearly to O*(My), that is

k

dist*(X;, D*(M 0.2 2
(kM( ”))S 1 - = .1082 Yk > 0.
o (My) 1+ % I
2. (geometric subgradient) Algorithm with 1 = 02'2(’;33:/22(\17;)), g =
- =2 4231 2 and initialized at X, converges linearly:
) k
dist“ (X, D* (M, 0.2 K2
LA - : Vk > 0.

o (My) {4 80| 10063

3. (prox-linear) Algorithm {4 with B = p and initialized at X, converges quadrati-

cally:
dlSt(Xk,Z)*(Mﬁ))) < 2_2k ) 0.45k5

\/O'r(Mﬁ) K>

Vk > 0.

5.4.1 Guarantees under local regularity

As explained in Section Assumptions [5.2.1] and 5.4.1| are reasonable in the

symmetric setting under RIP. The asymmetric setting is more nuanced. Indeed,
the solution set is unbounded, while uniform bounds on the sharpness and sub-

gradient norms are only valid on bounded sets. One remedy, discussed in [154],
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is to modify the optimization formulation by introducing a form of regulariza-
tion:
min [AXY) -yl + AXTX =YYl

In this section, we take a different approach that requires no modification to the
optimization problem nor the algorithms. The key idea is to show that if the
problem is well-conditioned only on a neighborhood of a particular solution,
then the iterates will remain in the neighborhood provided the initial point is
sufficiently close to the solution. In fact, we will see that the iterates themselves
must converge. The proofs of the results in this section (Theorems
and are deferred to Section[5.10.1

We begin with the following localized version of Assumption[5.4.1]
Assumption 5.4.7. Consider the optimization problem,

min f(x). (5.27)

Fix an arbitrary point X € X* and suppose that the following properties hold for some

real numbers €, u,p > 0.

1. (Local weak convexity) The set X is closed and convex, and the bound holds:
fO = f0)+@y-x-Elly=xl}  VxyeXnB®.L € af.
2. (Local sharpness) The inequality holds:

f(x) - ir}ff > u - dist (x, X*) Yx € XN B(X).

The following two theorems establish convergence guarantees of the two
subgradient methods under Assumption Abusing notation slightly, we

define the local quantities:

L:= sup {|l{]h: x€e XN BA(X)} and 7:= 'L—l.
Ledf(x) L
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Theorem 5.4.8 (Polyak subgradient method (local regularity)). Suppose Assump-
tion[5.4.7)holds and fix an arbitrary point xo € Bes(X) satisfying

3 2
dist(xo, X*) < min {%, 2“—p}

Then Algorithm 2| initialized at x, produces iterates x; that always lie in B.(X) and

satisfy
dist*(xea1, X°) < (1 - 37%) disC(x, X7),  forall k> 0. (5.28)

Moreover the iterates converge to some point x. € X* at the R-linear rate

forall k > 0.

15 = Xooll2 <

161 - dist(xo, X*) o
313 ' (1 — a7 )

Theorem 5.4.9 (Geometrically decaying subgradient method (local regularity)).

Suppose that Assumption |5.4.7| holds and that T < L. Define y = -2, A = e

- V2 4L+ep” p_L’
and q = /1 — (1 —y)t2. Then Algorithm 3|initialized at any point xy € Bejs(X) N T,

generates iterates x; that always lie in B.(X) and satisfy

2.2
dist(xc X < (1= (1 =) forall k=0, (5.29)
Je

Moreover,