Lecture ⁶ Wed Feb/07/2024 Last time
bGeneral Poisson Convergence b Continuation 1 Continuation of the proof Conditional Expectation I Properties Regular conditional I probability Existence : Consider two cases : Consider two cases:
Consider two cases:
Cose 1: X 20. Then, we can define DCT $v(A) = \int \chi dP$ $\forall A \in G$ f Exercise: Show that U is a measure on (C_n, G) L_j ust like PI . Now we would like (s. G) Ljust like P]. Now we would like
to find a g-measurable function f such that $\nu(A)$ = $\int f dP$.) + (
A Densing. Chrestion: When do such densities exist? We use a hammer from measure Theory :

Theorem (Radon-Nikodym) Let u and V
be σ -finite measures on (Λ, \mathcal{X}) . If $\nu \ll \mu$ i.e., $\mu(A) = 0 \implies \gamma(A) = 0$ for AEG, then, there exists a measurable function f such that HAEG $\nu(A) = \int f d\mu.$ The function & is often venoted du. This result is inmediate for XZO, E[x16] $= dV/dP$ Case 2. Decompose $X = X^+ - X$. Let $Y^t = E[Y^t | G]$ and $Y^- = E[X^t | G]$. Then, $y = y^* - y^-$ is measurable and for AEG $\int X dP = \int x^+ dP - \int x^+ dP$ $= \int_{\Lambda} y^* d\mathbb{P} - \int y^* d\mathbb{P}$ $=\int Y dR.$

Properties In order to work with conditional Expectations is important to have
a list of "valid operations".
Theorem: Let X, X2, ... be r.v. with $E[Y_{t}] < \infty$. Let G and H be sub- σ -alge roras of J. Then a) $E[E[X|G]] = E[X].$ b) If X is g-measurable => $X = E[X|G]$ as. c) (Linearity) Let α , $a_2 \in \mathbb{R}$, then $E[a, X, +a_2X_2|G] = a_1E[x_1|G] + a_2E[x_2|G].$ almost surely.
d) (Positivity) if $X \ge 0$ => $E[X | G] \ge 0$. e) (C. Montone) If $0 < x_n \uparrow x$, then ELX, $\lg\left(\frac{1}{2}\right)$ F[x|g] a.s. f) (C. Fatou) If $\lambda_n \ge 0$ then lower sensionts $E[\text{Cimin}]{x_1[y_2] \leq \text{Cimin}]{x_2[y_2]}$ $g(x)$ (c. Dominated) if $M_n < V$ V_n and $IE IV I < 00$ and $X_n \rightarrow X$ a.s. Then,

 $E[X_n|G] \rightarrow E[Y|G]$ a.s. h) (C. Jensen) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be conver. Then, $f(E[X|G]) \le E[f(X)|G]$ a.s. Useful corollary: $N \times N_p \geq NE[X|G]\nparallel_p \quad \forall p \geq 1$. i) (Toner Law) If H is a sub-algebra of g, then ELE Lx 19] \mathcal{H}] = $E[X|\mathcal{H}]$ a.s. What happing the swap these two here? i) (Taking out what is known) If Z is G measurable and bounded $E [X \mid G] = Z E [X | G]$ as. k) (Independence) If $\sigma(x)$ is ind. of G \Rightarrow ELXIGJ = ELXJ. $\overline{}$ $Proof:$ a) It's a consequence of i) with $H = \{ \phi, \Omega \}$. b) Proved in Example 3 of previous lecture. C) We prove that a E[x, 1 g] +a E [x, 1 g] substices 1) and 2), G-measurable functions form a linear subsperce => 1) holds. On the other hand, HEG

$$
\int_{A} a_{1} \mathbb{E}[X | \mathcal{G}] + a_{2} \mathbb{E}[X_{2} | \mathcal{G}] dP
$$
\n
$$
= a_{1} \int_{A} \mathbb{E}[X_{1} | \mathcal{G}] dP + a_{2} \int_{A} \mathbb{E}[X_{2} | \mathcal{G}] dP
$$
\n
$$
= a_{1} \int_{A} X dP + a_{2} \int_{X_{2}} X_{1} dP
$$
\n
$$
= \int_{A} a_{1} X_{1} + a_{2} X_{2} dP
$$
\n
$$
d) \text{Consider the sets } A_{n} = \{-\mathbb{E}[X | \mathcal{G}] \} \cap \{-1\}
$$
\nThen, $n^{-1} P(\mathbb{E}[X | \mathcal{G}] \le -n^{-1}) \le \int_{A_{n}} -\mathbb{E}[X | \mathcal{G}] dP$
\n
$$
= \int_{A_{n}} X dP + o
$$
\nThus, $P(A_{n}) = o \quad \forall n.$
\ne) $|e| + Y_{n} = \mathbb{E}[X_{n} | \mathcal{G}] \cdot \mathbb{B}g$

 $0 \le Y_n$ 1.

Define $Y = lim$ sup Y_n , which is G -meet

surable. Then

 $\int_{A} Y_{n} dP = \int_{A} x_{n} dP \Rightarrow \int_{A} Y dP = \int_{A} X dP$ VAEG.

(A Monotore convergence Thm.

 f + g) Left as an exercise.

h) Any come function can be written as
$$
\Psi(x) = \sup_{(a,b)} \{ \alpha x + b \}
$$
 where $\Delta = \{ (a,b) \} (a,b \in \mathbb{R}, a \times b \in \mathbb{V} \}$. Then, for any (a,b) we have a $\mathbb{E}[X|G] + b \leq \mathbb{P}(\mathbb{E}[X|G])$.
\nTaking any over Δ functions, the proof. The corollary follows by taking $\Psi(x) = |x|$, and using a α .
\ni) Let $A \in \mathcal{H}$, thus $A \in G$ as well.
\nii) Let $A \in \mathcal{H}$, thus $A \in G$ as well.
\niii) Let $A \in \mathcal{H}$, thus $A \in G$ as well.
\niv) Let $A \in \mathcal{H}$, thus $A \in G$ as well.
\niv) If $\mathbb{E}[X|G] | \mathcal{H} \} \oplus \mathbb{E}[X|G] \text{ all } P = \int_{A} X \text{ all } G$.
\nii) A object that $Z \in L^{\infty}[G]$ is G -reasurable.
\nThus, $T \text{ which is a G -reasurable. $Z = Z^* - Z^-$. First, we prove it for induction $X = 1$ with $B \in G$.
\nii) $A \oplus E(X|G) \text{ all } P = \int_{A \oplus B} E[X|G] \text{ all } P = \int_{A \oplus B} X \text{ all } P = \int_{A \oplus B} X \text{ all } P = \int_{A \oplus B} X \text{ all } P = \int_{A \oplus B} X \text{ all } P = \int_{A \oplus B} X \text{ all } P = \int_{A \oplus B} X \text{ all } P = \int_{A \oplus B} X \text{ all } P = \int_{A \oplus B} X \text{ all } P = \int_{A \oplus B} X \text{ all } P = \int_{A \oplus B} X \text{ all } P = \$$

Then we extend it to simple X using C).
\nFinally we extend it to general X Using C.
\nX, TX and applying MCT.
\nK) Recall that
$$
\sigma(X)
$$
 and G are P-ind if
\nIf P(AXEBY\cap A) = P(xEB) P(A).
\nClearly B EXJ is G' measurable. Let A EG.
\n
$$
\int_{A} X dP = \int X \, \mu_A dP = E[X] P(A)
$$
\n
$$
= \int_{A} E[X] dP.
$$

Regular Conditional Probabilities Question: Can we always use the condition nal expectation to define well-defined corditional probability wa $P(A|Y) = E[1|A|Y]$?
Not always, but it is often the case. Def: let (s2, 2, 1P) be a prob. space.
Let g be a sub-o-algebra of 2.

Given $X:(\Omega,\mathcal{F})\rightarrow(\chi,\mathcal{B})$ a r.v. A function $\mu : \Omega \times \mathcal{B} \to [0, 1]$ is called a requier conditional probability for X given G a) For BEB, the function $w \rightarrow \mu(w, B)$ \int a version of $\mu(B|S)$. b) For any fixed w, $M(w,-)$ is a
probability weaver on (χ,\mathcal{B}) . The reason that we like reg cond. prob. is that they allow us to compute cond.
expectations for all functions of X. Theorem: Let μ be a r.c.p. for X given
 C_3 . If $f: \chi \to \pi$ has E $|f(x)| < \infty$, then, $E[\text{fix}] \times J = \int f(x) \mu(w, dx).$