Lecture 5 Mon Feb /05/2029 Last time Today Poisson Distribution ^I [↑] General Poisson Convergence ^D Law of rare events i Conditional Expectation

Generalization Poisson convergence
\nTheorem 20 For each n, let
$$
X_{n,m} \notin \mathbb{N}
$$
 Hence
\nbe ind. r.v.'s such that
\n $X_{n,m} = \begin{cases} 1 & \text{with prob } p_{n,m} \\ 0 & \text{with prob } p_{n,m} \\ \text{le 2} & \text{with prob } q_{n,m} \end{cases}$
\nMoreover, suppose that
\n1) $\sum_{m=1}^{\infty} p_{n,m} \rightarrow \lambda \in (0, \infty)$,
\n2) may $p_{n,m} \rightarrow 0$ as $n \rightarrow \infty$.
\n3) $\sum_{m=1}^{m+1} \ell_{n,m} \rightarrow 0$ as $n \rightarrow \infty$.
\nLet $S_n = \sum_{k=1}^{n} X_{nk}$, then,
\n $S_n \xrightarrow{\omega} Z$ with $Z \sim Poisson(\lambda)$.
\nSee proof in lecture 4 nodes.

Conditional Expectation
\nMotion
\nLet
$$
(\Omega, \mathcal{F}, \mathbb{P})
$$
 be a prob. space and X and
\nbe discrete r.v. taking values in
\n $\chi = \{x_1, ..., x_m\}$.
\nThe elementary conditional prob.
\n $P(\chi = x_i | z = z_i) = P(\chi = x_i; z = z_i)$
\nThe elementary conditional expectation:
\n π the elementary conditional expectation:
\n π the elementary conditional expectation:
\n π the determinant of $\mathbb{P}(z = z_i)$ and so
\n π the identity function of your
\n($\mathbb{P}(x | z = z_i) = \sum_{i} x_i P(\chi = x_i | z = z_i)$.
\nare likely from bar to you.
\nQuestion: How do we extend this definition
\nfor more general measures?
\nLet us nature of (π) as a random
\n $\forall x = \mathbb{E}[X | z_i] \text{ random}$
\n $\forall x \in \mathbb{P}(X = x_i)$
\n $\exists x \in \mathbb{P}(X$

Let's consider
$$
G = \sigma(z)
$$
 the σ -alge-
bra generated by Z. Notice that
Z can take n values, thus we
can partition Ω
 Ω $z = z_1$ $z = z_2$ \dots $z = z_n$
 z_0 constant
 z_0 at z_0 and
 z_0 at z_0 at z_0
 $z_$

$$
x \in L^{2}
$$
 a c.v. Let $G \in X$ be a sub- σ -algebra.
Then, there exists a r.v. Y s.t.
\n0) $Y \in L^{2}$.
\n1) Y is G-measurable.
\n2) For all GEG
\n $\int YdP = \int_{G} \chi dP$
\nMoreover, Y is a.s. unique.
\n $W\rightarrow G$ if $K \in L^{2}(GZ)$,
\nand ELX12,...) for ELX1 $\sigma(Z_{1},...)$.
\nBefore we prove this let's see a couple
\nof example 1: Barete variables
\nExample 2: Conlimuous density with joint
\ndensity $f(X, Y)$. Then,

$$
E[X|Y] = \frac{\int x f(x,y) dx}{\int f(x,y) dx}
$$
\n1) Since z is a measurable function of y , z is of (y) -measurable from q .\n2) Let $A \in \sigma(y)$
\n
$$
\int_{A} \frac{\int x f(x,y) dx}{\int f(x,y) dx} \Big|_{y=y(w)} dy = \int_{B} \frac{\int x f(x,y) dx}{\int g(x,y) dx}
$$
\n
$$
= \int_{B} \int_{B} x f(x,y) dx dy = \int_{(x,y)} x dP(w).
$$
\n
$$
A = \int_{W} x \Big|_{(w) \in B} \Big|_{y=y(w)} \Big|_{y
$$

Example 3: If X is measurable vr.t. J \Rightarrow E [X| F] = X. To see this note that 1) follows trivailly,
and $\int_A x dP = \int_A x dP$ trivially $\forall A \in \mathcal{F}$

Trivial σ -algebra Example 4: If $G = \{ \phi, \Omega \}$, then $\Rightarrow E[X|G] = E[X].$ Since constants are measurable w.r.t. G. 1) follows.

Moreover

$$
\int_{\Omega} E[X] dP = E[X] = \int_{\Omega} \lambda dP \Rightarrow 2.
$$

Proof of Theorem:
\n1) and 2)
$$
\Rightarrow
$$
 0) Assume 4 satisfies 1) and
\n2). Then, for A = { $4>0$,
\n
$$
\int_{A} 4 dP = \int_{A} x dP \le \int_{A} |x| dP
$$
\n
$$
\int_{A} -4 dP = \int_{A} -x dP \le \int_{A} 1 x dP
$$
\n
$$
\Rightarrow \int_{A} 14dP = \int_{A} 4 dP + \int_{A} -4 dP \le \int_{A} 1 x dP < \infty.
$$

Uniqueness: Suppose that there exists
avother y satisfying 0), 1), 2)
Then for all GEG $E[(Y-9)16] = 0$ Searching contradiction assume that $P(Y>Y)>0$. Since \overline{A} $\{y>\tilde{y}+n^{-1}\}\left\{\{\sqrt{\gamma^2+y^2}\}\right\}$
A, $\in A_2 \in ... \subseteq A$ and $A = \cup A_n$ We see that for large enough n, IPCAn)20. Notice that such an event $u_n \in G$, so
 $0=E(Y-T)1_{A_n} = n^{-1}D(A_n) > 0$

TO BE CONTIVUED ...