Weak convergence We use $\mathcal{P}(\mathbb{R})$ to denote probability measures on \mathbb{R} , and $C_b(\mathbb{R})$ to denote bounded continuous functions on \mathbb{R} . functions on IR. Def: Consider a sequence $(\mu_n)_n \subseteq \mathcal{P}(\mathbb{R})$ and $\mu \in \mathcal{P}(\mathbb{R})$. We say that μ_n converges weakly to μ iff $\int f(x)d\mu_n(x) \longrightarrow \int f(x)d\mu(x) \quad \forall f \in C_p(\mathbb{R}).$ This is often written as min my M. Remarck. We identify a with its probability $F(X) = \mu(-\infty, X]$, and a random distribution

& Skorokhod Representation Theorem varrable X ~ M. Thus, ne also write $F_n \xrightarrow{\omega} F$ and $\chi_n \xrightarrow{\omega} \chi$. A more practical characterization is: Lemma: Let (Fn) a securce of distribution functions then Fn > F iff $\lim_{x \to \infty} F_n(x) = F(X)$ for all point of continuity x of F. Exercise: Proof this Lemma (it follows by a limbugery argument). Remark: Continuity is important. Consider $\chi_n = \frac{1}{n}$ and $\chi = 0$. Then $\lim \mu_{\chi}(f) = \lim f(f) = f(0) = \mu_{\chi}(f).$ bot $F_{x_n}(0) \rightarrow 0$ while $F_x(0) = 1$. Theorem (Helly's selection principle) For every sequence of distributions (Fn), there is a subequence (Fn.); and a right semiconti wous function F such Flat $\lim_{x \to \infty} F_{n_i}(x) = F(x)$

for all point of continuity
$$x$$
 of F .
Proof: We construct F via a diagonalization.
Let $dq_1, q_2, \dots g = 0.51R$ be a countable dense set.
For each K , $F_m(q_K) \in [0, 1]$ $\forall m$. Thus, there
exists a subsequence $m_1(i)$ such that
 $F_{m_2(i)}(q_1) \rightarrow H(q_1)$. Some value
We can then table a subsequence of $(m_1(i))$
named $(m_2(i))_i$ such that
 $F_{m_2(i)}(q_2) \rightarrow H(q_2)$. For
 $F_{m_2(i)}(q_2) \rightarrow H(q_2)$.
 $F_{m_2(i)}(q_2) \rightarrow H(q_2)$.
The sequence of $F_{m(K)} = F_{m_K(K)}$ converges
for any $q \in (a, ic. F_{m_K}) \rightarrow H(q_2)$.
Extend H to a function via
 $F(x) := \inf \{H(q) : q \in (a, q > x)\}$.
This is a right continuous function (Why?).
To finish, let x be a continuity point of F .
Pick $a, b, c \in (a) \in F(b) \leq F(x) \leq F(c) < F(x) + \epsilon$.
Since $F_{n(K)}(b) \rightarrow F(b) \geq F(a)$ and $F_{m_{K}}(c) \rightarrow F(c)$.

we have thet for large K

$$F(x) - \varepsilon < F_{n(x)}(b) \leq F_{n(x)}(x) \leq F_{n(x)}(c) < F(x) + \varepsilon.$$

since ε is arbitrary, the result follows.
But is it true that F is a distribution?
Not always.
Def: A sequence of dist. f. (F_n) is tight
if for all ε , there exists a $K_{\varepsilon} = 0$ upon tails.
s.t.
 $1 + F_n(-K_{\varepsilon}) - F_n(K_{\varepsilon}) \leq \varepsilon$ Vn.

Theorem: A subsequential limit is a distribution function if, and only if, the sequence (Fn) is tight. Proof: Suppose $F_{n(K)} \xrightarrow{w} F$ and (F_n) is tight. Let $a < K_E$ and $b > K_E$ be continuity points of F. Then $1 - F(a) - F(b) = \lim 1 - F_{n(K)}(a) + F_{n(K)}(b)$ $\leq E$. This implies that $\lim \sup 1 - F(x) + F(-x) \leq E$, which implies that F is a dist. f. $\dim W_N$?

To prove the converse, suppose Fn is not tight. Thus, ZE and a subsequence n(K) > 00 such that $1 - F_{n(K)}(K) + F_{n(K)}(K) \ge E$ YK. WLOG Fring = F. Let a < 0 < b be continuity points of F, then $1 + (b) + F(a) = \lim_{k \to \infty} 1 - F_{n(k)}(b) + F_{n(k)}(a)$ = $\lim_{k \to \infty} 1 - F_{n(k)}(k) + F_{n(k)}(k)$ = ε . Taking $b \rightarrow bo$ and $a \rightarrow -b0$, we have that $\lim_{x \rightarrow \infty} F(x) \neq 1$ or $\lim_{x \rightarrow -\infty} F(-x) \neq 0$. Л Lévy's Convergence Theorem Theorem: Let (Fn) be a seguence of dens. f. and let In be the ch. f. of Fn. Suppose that g(d):= lim Un(d) exists YOER, and that g is cont at o. Then $g = \Psi_E$ for some distribution E and

Fr SF.

Proof We start by noticing that the converse is true: If Fn 3 F, then by $\Psi_{E^{(0)}} \rightarrow \Psi_{E^{(0)}}$. Integral of bounded cont function. def. Now, let's assume for a moment that Fn is tight. Then, Helly's selection Theorem tell is 3 (Frick) and a dist f. such that Frick) ->> F. Then, we would have $\Psi_{n_k}(\theta) \rightarrow \Psi_F(\theta)$ th. Thus, $g = \psi_F$. Searching contradiction, assume Fn does not converge to F. Thus Ix a cont point of F and a subsequence (Fmiki) st. IFm(x) - F(x) | ZN YK. (ご) (Fmilk is tight so But $F_{m(k)} \xrightarrow{w} \breve{F}$. $\Psi_{Fm} \rightarrow \Psi_F$ so $\Psi_{F} = \Psi_F$. But, then

Since there is a 1-1 correspondance between V_F and \tilde{F} , we have $\tilde{F} = F$, which contradicty (:) g Claim: (Fn) is tight. Proof of the Claim: Let E>O. Since $\Psi_n(\sigma) + \Psi_n(-\theta) = 2\int \cos(\theta x) dF_n(x)$ is real \Rightarrow $g(\theta) - g(\theta)$ is real. Since g is continuous at B, 38>0 11-g())<12 4101<3. Thus $0 \le 5^{-1} \int_{0}^{8} (2 - g(0) - g(-0)) d\theta$ く122. the BCT ensures Since $g = \lim_{n \to \infty} \psi_n$, $\exists n_0 \quad \text{s.t.} \quad \forall n > n_0$ $\delta' \int_0^{\delta} (2 - \psi_n(\theta) - \psi_n(-\theta)) d\theta \leq \varepsilon.$

Nonetheleros, by Fubini's

$$(\mathcal{P}) = S^{-1} \int_{-S}^{S} \int (1 - e^{i\Theta \cdot x}) dF_n(x) d\Theta$$

$$\int_{Sin(0)=0}^{Sin(0)=0} \int_{-S}^{S} (1 - e^{i\Theta \cdot x}) d\Theta dF_n(x)$$

$$= 2 \int (1 - \frac{\sin(\delta \cdot x)}{8 \cdot x}) dF_n(x)$$
Since $|\sin(x)| = |\int_{0}^{\infty} \cos(x) dx| \leq 1x|$

$$\Rightarrow 1 - \frac{\sin(\delta \cdot x)}{8 \cdot x} \geq 0 \quad \text{and by discarting } [\frac{2}{8}, \frac{2}{8}]$$

$$\stackrel{!}{\geq} 2 \int_{|x|>2/8} (1 - \frac{4}{18 \cdot x}) dF_n(x)$$

$$\stackrel{!}{=} \int dF_n(x)$$

$$= \int (E - 2S^{-1}, 2S^{-1}]^{C}),$$
Which establishes tightness.