Lecture 24
Last fime Today,
p Strong Markov Properly p Continuous artingales
p Roflection Principle p BM as a martingale
Continuous Martingales
Given a right-continuous filtration (
$$T_{ef}$$

we say that a process $1X_{effect}$ is
a martingale if
(1) $E 1X_{eff} < 00 \ \forall 6$.
(2) $X_{eff} \in M_{eff}$.
(3) $F s < 6 \Rightarrow E[X_{eff}] = X_{s}$.
Theorem (0): Assume X_{eff} is a right-continuous
martingale w.r.t. to a right-continuous
filtration, and T is a stopping time
s.t. $\exists C > 0 \ \text{with } P(T < C) = 1$. Then
 $F X_{T} = FEX_{0}$.
Proof: We only give a sketch of the proof:

- 1. Define stopping times TK s.t. TK takes values in a discrete set Δ_k and $T_k \downarrow T$. 2. Restricted to $\Delta_{\mathbf{k}}$, the process is a discrete-time martingale. Use Optional Stopping to conclude $E_{T_{K}} = E_{X_{0}}$ 3. Since X_{t} is right continuous $\Rightarrow X_{T_{k}} \rightarrow X_{T}$ a.s. 4. Use the fact that T is bounded to conclude that $4X_{T_{K}}Y_{K}$ is UI. Then, argue that $X_{T_{K}} \rightarrow X_{T}$ in \mathbb{Z}^{2} . If 10 M as a martingale Theorem (M): B_ is a martingale w.r.t. \mathcal{I}_{t}^{t} . Proof: We pocus on (8), the Markov freper ty implies Normality hes $E_{x} L B_{1} F_{5} J = E_{B_{5}} (B_{t-5}) = B_{5}.$ by implies コ Fact: For any ack, Ta=infd t>0: Bt=ay
 - < ∞ a.s. Theorem(::):If $a < x < b \Rightarrow P_{\chi}(T_{\Lambda} < T_{b}) =$

$$(b-\chi) / (b-a).$$
Proof: Let $T = Ta \land T_b, by the fact
 $T < \infty$ a.s. Using Theorems (9) and (10)
we derive $\chi = E_{\chi} b(T \land t)$. Letting $b \Rightarrow \infty$
and using bcT , we have
 $\chi = a \mathrel{P}_{\chi} (Ta < T_b) + b(1 - P_{\chi} \mathrel{P} (Ta < T_b)),$
He result follows by rearranging.
Theorem (73) $B_t^2 - t$ is a martingale.
Proof: We write $B_{L}^2 - (B_s + (B_t - B_s))^2$
 $E_{\chi} (B_k^2 | T_s) = E_{\chi} (B_s^2 + 2B_s (B_t - B_s) + (B_t - B_s)^2 | T_s)$
 $= B_s^2 + 2B_s \mathrel{E} (B_t - B_s | T_s)$
 $= B_s^2 + t - s.$
Theorem: Let $T = \inf \{t : B_t \notin (a, b)\}$ where
 $a < 0 < b.$ Then, $E_s T = -ab.$
Interpretion: BM grows on average like \sqrt{E} ,
since $T_{Te} = \inf \{s > 0: B_s \notin (-\sqrt{E}, \sqrt{E})\}$
 $E = T_{TE} = t.$$

Proof: By Theorems (D) and (G) we have

$$E_0(B^2(Tht)) = E_0(Tht)$$
. Taking $t Too$
and using MCT gives E_0T . Using BCT
and Theorem (=)
 $E_0 B^2(Tht) \rightarrow E_0 B_T^2 = a^2 + b^2 - \frac{-a}{b-a} = -ab$.
We can also get results for exponentials
Theorem (=) For any positive scalar $0 > 0$
 $exp(0B_1 - 0^2 t/2)$ is a martinegale.
Proof: Again we add and substract
 $E_x [exp(0B_1)]F_3] = exp(0B_3) E[exp(0(B_1-B_3))]$
 $IF_3]$
 $= exp(0B_3) exp(0^2(t-5)/2)]$
where the last equality follows since
 $exp(0(B_1-B_3))$ is independent of Bs and
 $B_1 - B_3 \sim N(0, t-5)$. Rearronging gives the
result.
Using this result we give a closed
form expression $E exp(-\lambda T_a)$ with

Theorem: For every $\lambda > 0$, we have $E_0 \exp(-\lambda T_a) = \exp(-\alpha \sqrt{2\lambda})$. Proof: By Theorems (B) and ((λ)), we have $1 = E_0 \exp(\Theta B_{TAL} - \Theta^2 T_a At/2)$, taking $\Theta = \sqrt{2\lambda}$ and letting $t T_{AD}$ via BCT gives $1 = \exp(\alpha \sqrt{2\lambda}) F_0 \exp(-\lambda T_0)$

 $1 = \exp(a\sqrt{2\lambda}) = \exp(-\lambda T_a),$ which is equivalent to the desired result. In turn, we can apply this recipe to polynomials satisfying the heat equation Theorem: if ult,x) is a polynomial in t and χ s.t.

$$\frac{\partial u}{\partial t} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} = 0$$

⇒ u(t, Bt) is a martingale. We refer the interested reader to Theorem 7.5.8 of Durrett. In summary this Theorem applies to all the martingales we