Lecture 23

Last time Today Last time
D Markov Property | D Strong Markov Property
D Consequences | D Consequences ↳ consequences Consequences Chrestion: Imagime we start $B_0 = 0$, then what is the less likely point $t \in [0,1]$ to be the last point in $[0, 1]$ $B_2=0$? What's the distribution of $L=sup\{t: B_t=0\}$? The answer to the first question $15 \frac{1}{2}$ Stopping times Stopping times
We say that a Filtration $\{f_t\}$ is right
continuous if M_{s} = \mathcal{F}_{t} . |
S>と The reason we like right continuous filtrations is that they make infenitesimals sot s
filtrations is that they m
into the future negligable. into the future negligable.
Def: We say that a random variable

Sin ¹⁰, 0] is ^a stopping time wr.t. a in $[0,99]$ is a stopping time u $Ht.$ This is the same or $\frac{1}{1}$ is the same or $\frac{1}{1}$ This is the same as $\{s \in t\} \in \mathcal{F}_t$ his is the same α is $\{s \in t\}$.
if $2\frac{c}{b}$ is r.c. Why? We need to understand What tijpe of things are stopping times? things are stopping times?
Q: Say that GCR is an open set or a closed set . IR is an open set
Is T_{G} = inf $1 + B_{g}665$ a stopping time? Yes! Theorem: If G is an open set, then or a closed set. Is T_G=
c stopping time? Yeo!
Theorem: If G is an oper
TG is a stopping time.
Proof: Since G is open $Proof:$ Since G is open and $t \rightarrow B$, is continuos , then $2T$ c t $y = y$ (189) $69)$, q ct r-
g E B thes we conclude that $\{\tau < \epsilon\} \in \mathcal{F}_t$. $\overline{\mathcal{L}}$ Theorem : $\frac{60}{17}$
Suppose that $\frac{17}{11}$ is a sequent
of stopping times. If either Cl of stopping times. If either

 $T_{n}LT$ or $T_{n}TT$. Then, T is a slopping time. -1 $\begin{array}{lll} \text{Then,} & \text{if} & \text{if} & \text{if} \\ \text{Proof:} & \text{If} & \text{self} \text{ces} \\ & \text{if} & \text{self} \text{ces} \end{array}$ to note that $37565 = 217565$ and $17665 =$ 04 T_{n} \leq t_{1}^{6} Theorem : If ^G is closed , then police
and international
abopt TG is a stopping time. $Proof:$ Let BCx, r = $\{y: |y-x| < r\}$, let Theorem: \iint_{G} is closed, then T_{G}
a stopping time.
Proof: Let $B(x,r) = \{y: |y-x| < r\}$, $G_n = \bigcup_{x \in k} B(x, \frac{1}{n})$ and let $T_n = \inf_{x \in S} \{ \epsilon_2 \circ x$ $\mathop{\mathsf{ve}}\limits$ K B_{ϵ} e Gng? Since B_n is open \Rightarrow Tn is a stopping Proof: Let B(x, r) = $\{y: |y-x| \le r\}$,
Gn = U B(x, 4) and let $T_n = inf$
B_t = Gn's since Gn is open $\Rightarrow T_n$ is a
time. Next we show that $T_n \uparrow T$. time. Next we show that $T_n \uparrow T$. Notice that by construction $T_n \leq T$ and T_{n} T_{n} t^{p} for some t^{p} < 10. Since $B_{T_{n}}e$ Tn M t \overline{G}_n $\forall n \Rightarrow B_{\tau_n} \rightarrow B_{\epsilon^n} \in G$ and so strong Markov Property We develop an analogue of the SMP. We now define the random shift we develop an andergue of the
SMP. We now define the random shift
operator. Given a nonnegative r V S in LO, WI, define .
alo
M] $(\theta_{s}(w))$ (t) = $\begin{cases} 0 & \text{if } s \neq 0 \\ 0 & \text{if } s = 0 \end{cases}$ $w(S(w)+t)$ on $\{S<\infty\}$ On
Extra symbol.

We also define the information known at time S : $F_s = \{A:$ $A \cap \{s \leq t\} \in \mathcal{F}_t$ for all $t \geq 0$ *f*. Proposition : If ^S& ^T are stopping times Proposition: If 351 are stopping times Proposition: if T_n \downarrow T are stopping times ی
ا $\Rightarrow \gamma_{\tau} = \bigcap_{\tau_{n}} \gamma_{\tau_{n}}$ Exercise: Prove these two facts! $\begin{aligned} \Rightarrow \quad & \mathcal{T}_T = \bigcap \mathcal{T}_{T_n}. \\ & \text{Exercise: } \quad \text{Prove Hese} \quad \text{two } \quad \text{Poets!} \\ & \text{Theorem } \quad \text{Chong Markov } \quad \text{Property).} \quad \text{Let} \end{aligned}$ reorem l otrong Markov Property). Let
Y_s(w) be bourded and $R \times \Omega$ Theorem (Strong Markov Property). Let
(s, w) -> Y_s (w) be bounded and A
measurable. If S is a stopping time Exercise: Pove Hese two facts!
Theorem (Strong Markov Property). Let
(s,w) - Y_s(w) be bounded and A x
measurable. If S is a stopping time,
then for all xElk E_{x} $\left[\right. V_{s}^{v}$ \circ θ_{s} $\left[\right. \mathcal{F}_{s}$ $\right]$ = R_{B_5} V_5 on $15 < \infty$). $\frac{10}{7}B_5$ ¹S $\frac{10 - v^2}{1}$ Function $\eta(\mathbf{x},t) = \mathbb{E}_{\mathbf{x}} \mathbf{Y}_{\mathbf{z}}$ evaluated of $x = B_5$ and $t = S$. The proof of this result is similar to the one We covered in Lecture ¹⁶ Calbeit much more technical), see Theorem

7.3.9. In Durch.
\nReflection Principle
\nLet 000 and Ta= inf {e: B₁ = a}
\nTheorem:
\n
$$
P_o(T_a < b) = 2 P_o (B_2 \ge a)
$$
.
\nProof: We shall see that
\n $P_0(T_a < b, B_b > a) = \frac{1}{2} P_0(T_a < b)$. (b)
\nwhich right away implies:
\n $P_0(T_a < b) = 2 P_0 (B_a \ge a)$
\nWe focus on (b), we will use the SMP, define
\n $Y_3(\omega) = \begin{cases} 1 & \text{if } s=t, \omega(t-s) > a, \\ 0 & \text{otherwise.} \end{cases}$
\nIf we let S=inf A be² b = a { with inf B
\n P_0 (b₃(w)) = $\begin{cases} 1 & \text{if } s=t, B_b > a \\ 0 & \text{otherwise.} \end{cases}$
\nSo SMP gives
\n $P_b(S_0(w)) = \begin{cases} 1 & \text{if } s=t, B_b > a \\ 0 & \text{otherwise.} \end{cases}$
\nSo SMP gives
\n $P_b(Y_3 \cup B_3) = E_{B_3}(Y_3) = E_{A}(Y_3)$
\nOn A5 $W_3 = \frac{1}{2} \begin{cases} 1 & \text{if } s=t, B_b > a \\ 0 & \text{otherwise.} \end{cases}$

Taking expectations
\n
$$
P_{\ell}T_{a}2 + B_{\ell}Z_{a} = E_{\ell}(Y_{0} \circ B_{0}) 11_{1500}1
$$

\n $= E_{\ell} [E_{\ell}Y_{0} \circ B_{0} | Y_{0} 1 11_{1500}]$
\n $= \frac{1}{2}E_{\ell} [11 + T_{a}1]$
\n $= \frac{1}{2}E_{\ell} [11 + T_{a}1]$
\n $= \frac{1}{2}P(T_{a}1 + S_{0})$
\

