Lecture 23

Today & Strong Markov Property & Consequences Last time D Markov Property D consequences Christian: Imagine we start $B_0 = 0$, then what is the less likely point $t \in [0, 1]$ to be the last point in [0, 1] $B_t = 0$? What's the distribution of L=supzt: Bz=of. The answer to the first question rs 1/2! Stopping times We say that a Filtration 17,4 is right continuous if $\bigcap \mathcal{F}_{s} = \mathcal{F}_{t}.$ The reason we like right continuous filtrations is that they make infenitesimals into the future negligable. Def: We say that a random variable

S in [0,00] is a stopping time w.r.t. a filtrations $d\mathcal{P}_{t}$ if $dS < t \leq E \mathcal{F}_{t}$ $\forall t$. This is the same as is=ty==, if 27,5 is r.c. Why? We need to understand what type of things are stopping times? Q: Say that $G \subseteq IR$ is an open set or a closed set. Is $T_G = \inf \{f \}$ is $B_g \in G$ a stopping time? Yes! Theorem: If G is an open set, then The is a stopping time. Proof: Since G is open and $t \rightarrow B_{+}$ is continuos, then $T < t = U T B \in G$ thus we conclude that $17 < EG \in F_t$. I Theorem: Suppose that The is a sequence of stopping times. If either

TALT or TATT. Then, T is a slopping time. Proof: It suffices to note that $\gamma = \sqrt{1} + \frac{1}{2} + \frac{1$ Theorem: if G is closed, then TG is a stopping time. proof: Let B(x,r)= dy: 1y-x1<ry, let Gn = U B(x, 1) and let Tn=inf{t20: BteGny. Since Gn is open => Tn is astopping time. Next we show that ThIT. Notice that by construction $T_n \leq T$ and The for some t < No. Since BTE $G_n \forall n \Rightarrow B_{T_n} \Rightarrow B_{t^*} \in G_{q}$ and so $t^* \ge T \Rightarrow \lim_{t \to 0} T_n = T.$ Strong Markov Property We develop an analogue of the SMP. We now define the random shift operator. Given a nonnegative rV S in IO, 00], define $(\Theta_{S}(w))(t) = \int w(S(w)+t) on (S<\infty)$ $(\Theta_{S}(w))(t) = \int \Delta on (S=\infty)$ $\sum Extra symbol.$

We also define the information known at time s: $F_s = \langle A : A \cap J S \le t Y \in F_t \text{ for all } t \ge 0 \}.$ Proposition: If SET are stopping times >> F8 G IT. Proposition: if The Tare stopping times $\Rightarrow \mathcal{F}_{T} = \cap \mathcal{F}_{T_{n}}.$ Exercise: Pour Mese two facts! Theorem (Strong Markov Property). Let (s,w) -> Ys(w) be bounded and RXI measurable. If S is a stopping time, then for all XEIR Ex[Ysods |Fs] = EBy Ys on AS<05. Function ((x,t) = ExY evaluated of x=Bs and t=S. The proof of this result is similar to the one we covered in Lecture 16 (albeit much more technical), see Theorem

7.3.9. in Durkett.
Reflection Principle
Let a>o and Taz inf
$$\{ t : b_{t} = a \}$$

Theorem:
Po(Ta
Proof: We shall see that
Po(Tab_{t} > a) = $\frac{1}{2}$ No(Ta
which right away implies:
P(Ta
Since $\{ Ta < t \} = \{ B_{t} > a \}$.
We focus on (D). We will use the SMP, define
 $Y_{5}(W) = \begin{cases} 1 & \text{if set, } W(t-s) > a, \\ 0 & \text{otherwise.} \end{cases}$
If we let $S = \inf \{ h \in \{ t : b_{t} = a \}$
 $Y_{5}(\Theta_{5}(W)) = \int 1 & \text{if set, } b_{t} > a \\ 0 & \text{otherwise.} \end{cases}$
If we let $S = \inf \{ h \in \{ t : b_{t} = a \}$
 $Y_{5}(\Theta_{5}(W)) = \int 1 & \text{if set, } b_{t} > a \\ 0 & \text{otherwise.} \end{cases}$
So SMP gives
 $P = \{ Ta < t \} = IE_{B_{5}}(Y_{5}) = IE_{a}(Y_{5})$
on $\{ J \leq co \} = 4 Ta < t \} = \frac{1}{2}$
 $= Gaussian centered
at a.$

Taking expectations

$$P_{0}(T_{a} \leq t, B_{t} \geq a) = E_{0} [(Y_{5} \circ \Theta_{5}) 1]_{45 < 004}]$$

 $= E_{0} [E_{0} [Y_{5} \circ \Theta_{5}] F_{5}] 1]_{45 < 004}]$
 $= \frac{1}{2} E_{0} [1]_{4} [T_{a} < t_{5}]$
 $= \frac{1}{2} P(T_{a} < t_{5})$
But this means that we have a closed
form for the dist. of T_{a} :
 $P_{0}(T_{a} \leq t) = 2 P_{0}(B_{t} \geq a) = \frac{2}{T2\pi E} \int_{a}^{\infty} e_{x} p(-x^{2}/2t) dx.$
Pecall we were interested in $L = \inf \{t \leq 1 : B_{e} \Rightarrow Then, f_{e}(T_{e} = t) = \int_{a}^{\infty} P_{0}(0, y) P_{y}(T_{o} \geq 1 - t) dy$
 $= 2 \int_{a}^{\infty} (2\pi t)^{1/2} e_{x} p(-x^{2}/2t) dx$
 $f_{1-5}^{\infty} (2\pi u)^{-1/2} e_{x} p(-x^{2}/2t) dx$
 $= \frac{1}{\pi} \int_{a}^{t} (S (1 - 5))^{1/2} ds = \frac{2}{\pi} \arcsin(\pi5)$

