

- Last time
 P Existence $\begin{array}{|l|} \hline \end{array}$ $\begin{array}{|l|} \hline \end{array}$ The Markov Property B Existence [↑] Consequences
- The Markov Property Now that we are convinced of the exis-The Markov Property
Now that we are convinced of the exis-
tence of B_t, we can study its properties. We didn't cover it e can study its propert
t, but it is relatively easy to show that B_t is nowhere easy to show that B_t is nowhere
differentiable (Theorem 7.16 Durrott). Today, show that B_t is nowhere
able (Theorem 7.16 Durrett).
we study the Markov Property, which intuitively reads: "For sz 0 $B(s+t)$ - $B(s)$ is a Brownian motion starting af BCs) and ind of what happened in the post." ิง
ง We consider two slightly different filtrations: $F_{t}^{0} = \sigma(\beta_{s}: s_{s+t})$ $\mathcal{F}^{\dagger}_{t} = \bigcap_{u \in L} \mathcal{F}^{\dagger}_{u}$ (germ field)

Notice that for $6 < s$, $\mathcal{F}_t^s \in \mathcal{F}_t^t \in \mathcal{F}_s$. S Notice that for $6 < s$, $\mathcal{F}_{t}^{\circ} \in \mathcal{F}_{t}^{+} \in \mathcal{F}_{t}$
Indeed \mathcal{F}_{t}° is right continuous, i.e. $\bigcap_{s=1}^{n}$ = for $6 < s$, $\frac{9}{t^{2}}$

is right continuous
 $\bigcap_{s>1} \bigcap_{u>s} \mathcal{F}_{u}^{o} = \bigcap_{u>t} \mathcal{F}_{u}^{o} =$
 \mathcal{F}_{s}^{t} secs infinitesimal $\bigcap_{s>t} \mathcal{F}_{s}^{+} = \bigcap_{s>t} \bigcap_{u>s} \mathcal{F}_{u}^{0} = \bigcap_{u>t} \mathcal{F}_{u}^{-} = \mathcal{F}_{t}^{-}$ $\begin{array}{ccc} \n\cdot & \cdot & \cdot & \cdot \rightarrow & \text{size} \ \n\text{Inluhilbidey,} & \text{if} & \text{sees} & \text{inflinitesimplemally} & \text{inlo} & \text{size} &$ A F's =
S>b
Inturtively,
the future. Intuitivel
the futu
Example the future.
Example: The random variable lm sup $B_s - B_6$ us infin
 $-$
andom
 $B_s - B_6$
 $+$
 $+$
 $+$
 $+$
 $+$ S_t if $S - t$ is measurable w. $r \cdot t$. $\overline{r_{t}^{t}}$ but not w.r.t. \mathcal{F}_{t}^{o} $\begin{array}{c} 1 \times \sigma \\ \hline \epsilon \\ -1 \end{array}$ We shall see that the distinction between the two is rather negligible. For any $x \in \mathbb{R}$, we let \mathbb{P}_x be the prob. cl ist. of Brownian Motion with $B_0 = X$. Recall that we constructed BM via $B_{\mu}(\omega) = \omega(k)$. Def: For any s20, define the shift opera $B_t(\omega) = \omega(t)$.
 $\theta e f$: For any 520, deformed by for $\theta_5 : \Omega \to \Omega$ by
 $\theta_5(\omega)$ (t) = ω (s+t). $\overline{}$ Theorem (Markov property): If S20 is

bounded and I measurable , then for all $P \in \mathbb{R}$ $E_{\chi}(\gamma \circ \theta_{s} | \mathcal{F}_{s}^{+}) = E_{\theta_{s}} \gamma$ where the right-hand side is the function
 $\Psi(x) = E_x \gamma$ evaluated at B_s . The proof is very similar to our proof of the Markov Property in Lecture 15, where we established the result for simple functions and leveraged the $T-\lambda$ Theorem cirrel the Monotone class Theorem to externel. We defer the interested student to theorem 7. 2. 1 in Durrett). Instead we focus on consequences.
Consequences Consequences First we show a couple of intermediate results. $revuts.$
Theorem : $\lvert \lvert z \rvert$ is measurable w.r.t. \mathcal{D} and bounded then $Vs_{\geq 0}$ and $\gamma \in \mathbb{R}^d$ omined then $\sigma_{5,0}$ and
 E_{λ} ($Z(T_6^+)$ = E_{λ} ($Z(T_6^{\circ})$. Proof: Thanks to the Monofore Class Theorem it suffices to show this for

$$
z = \prod_{m=1}^{n} fm (B_{tm})
$$
\nwith \int_{mn} measurable and $0 < t, \times \cdot \cdot \cdot t_m$
\nNotice that we can split z into
\ntwo: let $\Delta z dmsn : t_m \leq s_{\ell}$
\n
$$
z = (TT_{\ell} fm(B_{tm})) (TT_{\ell} fm(B_{tm}))
$$
\n\nFurther we can write $W = \sqrt{0.0s}$
\n(simplify the $\gamma = TT_{\ell} fm(B_{tm-s})$). Thus,
\n
$$
E[z | Y_s^*] = E[X(\gamma \circ \theta_s) | Y_s^*]
$$
\n
$$
= X E[Y \circ \theta_s | Y_s^*]
$$
\n
$$
Varkov = X E_{\theta} Y = (x) \text{ For } x \in \mathbb{Z}
$$
\n
$$
Furler notice that E_{\theta} Y \in Y_s^*.
$$
\n
$$
Recall that if Z \leq G \text{ and } E[Q|Q] \in m\mathbb{Z}
$$
\n
$$
= E[Q|Q] = E[Q|\mathcal{F}] (Ledue \mathcal{F})
$$
\nThus $(x) = X E[Y \circ \theta_s | Y_s^*]$
\n
$$
= E[Z | X_s^*].
$$
\nThus theorem implies that if $z \in mY_s^*$, then

 $Z = E_{\lambda}[Z|Y_{s}^{\circ}] \in T_{s}^{\circ}$ so F_s and F_s $Z = \mathbb{E}_{\lambda}[Z | \mathcal{F}_{s}^{\circ}] \in \mathcal{F}_{s}^{\circ}$, so $\mathcal{F}_{s}^{\dagger}$ and $\mathcal{F}_{s}^{\dagger}$
are the same up to zero measure sets.
This has beautiful correquences. This v
Theorem
H v E D mas beautiful corsequences.

2 (Blumenthal's 0-1 law) If $A \in \mathcal{F}_o^+$, then
 R , $P_x(A) \in \{0,1\}$. \forall X \in R $,$

Proof: By the previous theorem $\mathbf{L}_{\mathbf{A}} = \mathbf{B}_{\mathbf{A}}$ the previous E_{λ} $[$ μ _A $|\mathcal{F}_{o}^{o}]$ = P_{λ} (A) almost surely. This is particularly useful to undestand lmost surely.
This is particularly usef
the behavior of BM locally. $Tmis$ is particularly useful
This is particularly useful
the behavior of BM locally.
Corollary: Consider τ_+ = inf Consider $\tau_{+} = \inf_{\{t \geq 0 : t \geq 0\}} (t > 0 : \theta_{t} > 0)$ then P_0 ($\tau = 0$) = 1. Proof: since the normal drot is symmetric around O P. $(1, 0)$
 $(t \neq t) \geq P_0(B_b > 0) = 1/2$.

wer. letting $t \downarrow 0$ Moreover, letting t [↓]^O $P_{o}(\tau_{+}=0) = \lim_{\epsilon \downarrow 0} P(\tau_{+} \leq \epsilon) \geq 1/2$. $P_o(\tau_{+}=0) = \lim_{t\downarrow 0} \Psi(\tau_{+} \leq t) \geq 1/2.$
So by Blumenthal's 0-1 law, $P_o(\tau_{+}$ $= 0$) = 1. $\overline{\mathsf{d}}$

Notice that the same conclusion holds for τ_{-} = inf λ t> 0 : B_t<0}. Further B_t is continuous so we can easily derive: E_t is continuous so we can easily
Corollary: Consider τ_o = inf d t > 0 : B_t $= 0 \, \frac{1}{3}$ then $P_{o}(\tau_{o}=0)=1$. $\overline{}$

Blumenthal's 0-1 law allows US to understand questions as $t\rightarrow0$, but how about when EY? In toon, we can reverse BM and understand asymp topia via ^t ²⁰.

topia
Theorem
3. then : If By is ^a BM starting at ^O , then so is the process defined by $X_0 = 0$ and $X_6 = t \mathbf{B} y$ as $t \rightarrow \infty$. **barti**
2fi ne
-> 00. $X_0 = 0$ and $X_t = t B_1$ as $t \rightarrow \infty$.
Next Cluss we will prove this result, but for now let us cover a relevant consequence . Let The future of $F_t' = \sigma(B_3 : s>t)$ $\begin{matrix} 1 \\ 6 \end{matrix}$ **ր**
6. $T=\bigcap_{t\geq0}\mathcal{F}^{\perp}_t$ \leftarrow tail σ -algebra.

Theorem: Let $A \in \mathcal{T}$, then either $P_{x}(A) = 0$ then or $\overline{P_{\lambda}}(A) = 1 \forall \lambda$.

 \overline{a}

TO BE CONTINUED...