Lecture 22	Wed	Apr/10/2024
------------	-----	-------------

- Last time Today & Existence D' The Markov Property & Consequences
- The Markov Property Now that we are convinced of the existance of B_t, we can study its properties. We didn't cover it, but it is relatively easy to show that B_t is nowhere differentiable (Theorem 7.16 Durnett). Today, ve study the Markov Property, which intuitively reads: "For SZO B(S+t)-B(S) is a Brownian motion starting at B(s) and inel. of what happened in the post," We consider two slightly different filtrations: $\mathcal{F}_{t}^{0} = \sigma(\theta_{s}: ssty)$ $\mathcal{F}_{t}^{\dagger} = \bigcap_{u>t} \mathcal{F}_{u}^{0}$ (germ field)

Notice that for t < S, $\mathcal{I}_t^\circ \in \mathcal{I}_t^+ \in \mathcal{I}_s$. Indeed $\mathcal{I}_{t}^{\dagger}$ is right continuous, i.e. $\bigwedge_{s>t} \mathcal{F}_{s}^{*} = \bigwedge_{s>t} \bigwedge_{u>s} \mathcal{F}_{u}^{o} = \bigwedge_{u>t} \mathcal{F}_{u}^{*} = \mathcal{F}_{t}^{*}.$ 576 -Intuitively, 73 secs infinitesimally into the future. Example: The rondom variable Lim sup Bs-BE is measurable w.r.t. \mathcal{I}_{t}^{+} , but not w.r.t. \mathcal{I}_{t}^{0} We shall see that the distinction between the two is rather negligible. For any XER, we let Px be the prob. dist. of Brownian Motion with Bo=X. Recall that we constructed BM via $B_{\pm}(w) = w(t).$ Ouf: For any szo, define the shift opera for $\theta_s: \Omega \to \Omega$ by $\Theta_{s}(w)(t) = w(s+t).$ -+ Theorem (Markov property): If 520 is

bounded and F measurable, then for all $\gamma_{GR} \equiv (\gamma_{OOS} | F_s^{+}) = \equiv_{B_s} \gamma$ where the right-hand side is the function $\Psi(X) = \mathbb{E}_X Y$ evaluated at Bs. -The proof is very similar to our proof of the Markov Property in Lecture 15, where me established the result for simple functions and leveraged the T-X Theorem and the Monotone class Theorem to extend. We defer the interested student to theorem 7.2.1 in Burrett). Instead we focus on conseguences. Consequences First we show a couple of intermediate results. Theorem: If Z is measurable w.r.t. 2 and bounded then 45=0 and x61Rd $\mathbb{E}_{\chi}\left(\mathcal{Z}|\mathcal{F}_{s}^{+}\right) = \mathbb{E}_{\chi}\left(\mathcal{Z}|\mathcal{F}_{s}^{\circ}\right).$ Proof: Thanks to the Monotone Class Theorem it suffices to show this for

$$Z = \prod_{m=1}^{n} f_m(B_{tm})$$
with fn neasurable and $0 < t_1 < \dots < t_m$
Notice that we can split Z into
two: let $\Delta = d_{m \le n}: t_m \le s_1$
 $Z = (TT fm(B_{tm})) (TT fm(B_{tm}))$
further we can write $W = Y \circ \Theta_s$
(simply take $Y = TT fm(B_{tm}-s)$). Thus,
 $E[Z | T_s] = E[X(Y \circ \Theta_s) | T_s^+]$
 $= X E[Y \circ \Theta_s | T_s^+]$
Markov $\Rightarrow = X E_{\Theta_s} Y = (A)$
Furter notice that $E_{\Theta_s} Y \in T_s^\circ$.
Pecall that if $T \le G$ and $E[Q|G] \in mT$
 $\Rightarrow E[Q|G] = E[Q|T] (Lecture S)$
Thus
 $(A) = X E[Y \circ \Theta_s | T_s^\circ]$
 $= E[Z | T_s^\circ].$
This theorem implies that if $Z \le mT_s^+$, then

 $Z = \mathbb{E}_{\chi} [Z | \mathcal{F}_{\sigma}^{\circ}] \in \mathcal{F}_{\sigma}^{\circ}$, so \mathcal{F}_{σ}^{*} and $\mathcal{F}_{\sigma}^{\circ}$ are the same up to zero measure sets. This has beautiful consequences. Theorem (Blumenthal's 0-1 Iaw) bf AG \mathcal{F}_{σ}^{+} , then $\forall \chi \in \mathbb{R}$, $\mathbb{P}_{\chi}(A) \in \{0, 1\}$.

Proof: By the previous theorem $1_{A} = E_{x} [1_{A} | \mathcal{F}_{o}^{\dagger}] = E_{x} [1_{A} | \mathcal{F}_{o}^{\circ}] = P_{x} (A)$ almost surely. This is porticularly useful to undestand the behavior of BM locally. Corollary: Consider T₁= inf (t > 0: B₁>0), then $P_0(\tau_2=0)=1$. Proof: Since the normal doot is symmetric around 0 $P_{o}(\tau_{+} \leq t) \geq P_{o}(B_{b} > 0) = 1/2.$ Moreover, letting the $P_0(\tau_1=0) = \lim_{t \to 0} P(\tau_1 \le t) \ge 1/2.$ So by Blumenthal's 0-1 law, $P_o(I_{\pm}=0) = 1$.

Notice that the same conclusion holds for $T_{-} = \inf dt > 0$: $B_t < 0^{\circ}_{2}$. Further B_t is continuous so we can easily derive: Corollary: Consider $T_0 = \inf dt > 0$: $B_t = 0^{\circ}_{2}$, then $P_0(T_0 = 0) = 1$.

Burnenthal's 0-1 law allows us to understand greations as $t \Rightarrow 0$, but how about when $t \uparrow 00$? In turn, we can reverse BM and understand asymptopia via $t \downarrow 0$.

Theorem: If B_t is a BM starting at 0, then so is the process defined by $X_0 = 0$ and $X_{\pm} = \pm B_{1/2}$ as $t \rightarrow 00$. Next Class we will prove this result, but for now let us cover a relevant consequence. Let $T_t' = O(B_3: s>t)^t t$. $T = \bigcap_{t \ge 0} T_t' \leq Tail O-algebra.$ Theorem: Let $A \in J$, then either $IP_X(A) = 0 \forall x$ or $P_X(A) = 1 \forall x$.

TO BE CONTINUED.