Aperiodicity Last class on MC.

 Wed Apr/3/2024 Today [↑] Brownian Motion D Existance

Brownian Motion So far in this class we have study several general objects that exilibit So far in this class we have study
several general objects that exitib
convergence under mild assumptions (Martingales and Markov Chains). under ander mild assump.
and Markov Chains). For the remainder of this class We will focus on a single Stochas tie process that does not converge but it is in a certain sense universal and so it is central in multiple areas ous it is in a certain serve universal
and so it is central in multiple areas ^A bit of historyg B Robert Brown 1827 (Described the physical Phenomenon for pollen suspended in water)

Recommedation Veritasium video. E B Louis Bachelier 1900 (Described the stocha<u>s</u> **Cheseribed** the stock Founder of Math Finance PhD thesis in finance) Albert Einstein 1905 (Models the movement Jo (produce) the n
of pollen as
the result of the result of it اب
م Evidence for the existence hit by individual being
of atoms Jean Derrin ¹⁹⁰⁸ (Experimentally veci - Jean Perrin 1908 (Experimentally veri
1926 Nobel Prize > Jel) Einstein's ma in Physics . The formal construction Unlike all the processes we have seen the Brownian Motion is indexed by \mathbb{R}_+ : \mathbb{B}_+ with $t\geq0$ is a collection of random variables defined on a prob. space $(\Lambda, \mathcal{F}, \mathbb{P})$ s. t: rian Motrov
with t20
m variables
space *(D* defined on
, 2, P) s. t: 1) If $t_{0} < t_{1} < ... < t_{n}$ then $B(t_0)$, $B(t_1) - B(t_0)$, ..., $B(t_n) - B(t_{n-1})$ are independent. $2)$ If $t > s$, B(t) - $B(s) \sim N(0, t-s)$ 3) With probability one, $t \rightarrow B_t$ is con $\frac{20}{10}$

 $t \mapsto B_t(\omega)$ for almost all $t \mapsto B_t(\omega)$ for almost all
tinuous. $t \mapsto B_t(\omega)$ for almost all ^A couple of important facts : Fact $1:$ $\left\{B_{t}-B_{0}\right\}$, $b \ge 0$ $\}$ is independent of couple of important facts.
 $e + 1:$ $\begin{cases} 16 - 86 \\ 1 \end{cases}$ $\begin{cases} 620 \\ 1 \end{cases}$ is independent of Bo and has the same distribution as the BM w_1 th $B_0 \ge 0$. + Fact 2: If $B_6 = 0$, then for any $t > 0$ $\frac{1}{\alpha}$ 2: If $B_{s=0}$ then for any $t>0$
 $A B_{s} \ge 0$ $\frac{d}{s=0}$ $A + \frac{1}{2} B_{s}$ $\frac{1}{2}$ Formally this just means that V_0 $s_1 < ... < s_n$ (g) this just means that \forall oks, $\left(\begin{matrix} B_{s,t} & \cdots & B_{snt} \end{matrix}\right) \stackrel{d}{=} t^{\frac{1}{2}} (B_{s,t}, \cdots, B_{snt}).$ $(B_{s,t},...,B_{snt}) \stackrel{d}{=} t^{1/2} (B_{s_1},...,B_{s_n}).$
Exercise: Prove there two facts formally. Existence Thanks to the two facts we can focus on proving existence of B_t for
 $t \in [0,1]$ ¹ and $B_0 = 0$. t E $[0, 1]$ ² and $B_0 = 0$. Intritively we would like to have γ = C an only $\mathcal{L} = \sigma(\sqrt{\omega: \omega \operatorname{lt}_i) \epsilon A_i}$ for $\left(\int \sigma \operatorname{er}_i \mathcal{L}_i \right)$ $\frac{1}{2}$ $\frac{1}{2}$

points

Unfortunately the event $\{w_i\}$ continuously is not measurable. So we need to take a bit of a detour and consider $Q_2 =$ d m 2⁻¹: $n \in N$, m s 2ⁿ y of measurable. So we
oit of a detour an
 $Q_2 =$ d m 2⁻ⁿ: n EM
 $Q_2 =$ d Functions w: Q .
2 ->RY \mathcal{F}_{q} = $\sigma(\gamma_{w} : w(t_i) e A_i$ for 1565mg) Note that if ^w continuous then there is a that if w continuours then there is
unique extension $\overline{\omega}: I \rightarrow \mathbb{R}$ of w that is continuous ($\overline{\omega}$ ($\overline{\omega}(t) = \gamma(\omega(t) + \omega(t))$) Note that if w continuous then there
a unique extension $\overline{\omega}: \mathbb{L} \rightarrow \mathbb{R}$ of ι
that is continuous $(\overline{\omega}(t)=\gamma(\omega)t)$. Lim we
Thus, if we enotow $(\Omega_q, \mathcal{F}_q)$ with a
prob. measure μ satisfying (1) , (2) , prob. measure μ satisfying (1) , (2) , prob. measure μ satisfying (1) , (2) , and

(b) (restricted to (1) , then there is

a natural pass from $(2-q, \mathcal{F}_q, \mu)$ to
 $(1, \mathcal{F}_r | P)$ via γ with (a) (restricted to (a_2) then there is a natural pass from $(24, 74, \mu)$ to (Ω , \mathcal{F} , \mathbb{P}) via γ with
 \mathbb{P} = μ o γ^{-1} $IP = \mu \circ \gamma$ Thus, we focus on the construction of μ on (Ω q, γ g). We define μ by first considering its marginals into

Similarly many times. For any
$$
t_1
$$
 and t_2 and t_3 and t_4 and t_5 are $M_{t_1...t_n}(A_1,...,A_n) = \int_{A_1} dx_1 ... \int_{A_n} dx_n \prod_{m} f_{t_m}(\mathbf{x}_m \mathbf{x}_m)$.

\n(a) $\begin{pmatrix} \frac{a_1}{a_1}, \frac{a_2}{a_2}, \frac{a_3}{a_3}, \frac{a_4}{a_4}, \frac{a_5}{a_4}, \frac{a_6}{a_5}, \frac{a_7}{a_6}, \frac{a_8}{a_7}, \frac{a_9}{a_8}, \frac{a_9}{a_9}, \frac{a_9$

that $t \mapsto b_t$ is a.s. continuous. that $t \mapsto b_t$ is a.s. continue
Theorem ω : μ assigns probability
to paths $w: \alpha \rightarrow \mathbb{R}$ that are one thee t $t \mapsto b_t$
Theorem (0): μ of
to paths w: Q $rac{1}{2}$ ins a.s. continuous,
signs probability one
 $\longrightarrow R$ that are uniform μ continuous in a_2 . The proof of this result follows easily from:
Theorem (.): Suppose that $E[Y_s - X_e]^{\frac{1}{2}}$
 $\le K|t-s|^{1+\alpha}$ where $\alpha, \beta > 0$. Then
 α^{β} a $\le \alpha / \alpha$ then with probability Theorem $(c \cdot)$: Suppose that $E[Y_{5} - X_{\epsilon}]^{\beta}$ \leq KIE-SI^{1-tol} where α, β >0. Then uss defined on
not EIX -
> 0. Then if y $\overline{\mathbf{C}}$ α/β then with probability one 3 C(w) so that $m:$

From (.): Suppose the
 $K[t-S]^{1+\alpha}$ where α, β
 $\gamma < \alpha / \beta$ then with
 $2 \alpha \leq K \leq \beta$ then with
 $2 \alpha \leq K \leq \beta$ and
 $2 \alpha \leq K \leq \beta$ and
 $2 \alpha \leq K \leq \beta$ and
 $2 \alpha \leq K \leq \beta$ and $|9-r|^{8}$ $|9-r|^{8}$ $|9, 660$ $\frac{1}{\sqrt{2}}$ Proof of Theorem (0): Notice that by our construction $EIB_{t}-B_{s}l^{4}$ = $EIB_{t-s}l^{4}$ = $E1(t-s)^{1/2}B.1^{4}$ $=$ $(t - 5)^2$ E B⁴ = 3 (b-s)².
 $=$ (t -s)² E B⁴ = 3 (b-s)². Thus involting Theorem (.) yields a.s. -5.6 Gd. $|B_t-B_s| \leq C |t-s|^{1/2}$ $\forall t_s s \in [Q_s]$

which immediately implies uniform continuity by:
\nProof of Theorem (1):
\nNote that if subjects to show that
\n
$$
|x_4 - x_1| \le A |q-r|
$$
 $|y_4, r \in \mathbb{Q}_2$ s.t.
\n(100)
\n $|p(\omega)$ holds from $|x_1|$, $|z_6|$
\nwe can find $s = s_0$ and s_1 s_2
\n $|s_0 - s_{1-1}| \le S$ and
\n $|x_0 - x_k| \le |x_0 - x_0| + |x_{s_2} - x_{s_1}| + ... + |x_{s_{n-1}} - x_{s_n}|$
\n $\le A (s - s_1)^3 + ... + |x_{s_{n-1}} - s_n|^8$
\n $\le A (s - s_1)^3 + ... + |x_{s_{n-1}} - s_n|^8$
\n $\le A (s - s_1)^3 + ... + |x_{s_{n-1}} - s_n|^8$
\n $\le A (s - s_1)^3 + ... + |x_{s_{n-1}} - s_n|^8$
\n $\le A (s - s_1)^3 + ... + |x_{s_{n-1}} - s_n|^8$
\n $\le A (s - s_1)^3 + ... + |x_{s_{n-1}} - s_n|^8$
\n $\le A (s - s_1)^3 + ... + |s - s_n|^8$
\n $\le A (s - s_1)^3 + ... + |s - s_n|^8$
\n $\le A (s - s_1)^3 + ... + |s - s_n|^8$
\nThus, we focus on the
\n*not* in \mathbb{R}

$$
6n = \begin{cases} 1 \times (m/2^{n}) - \times (m-1/2^{n}) < 2^{-\gamma n} \\ \text{for all } 1 \leq m \leq 2^{n} \end{cases}
$$

By Markov's ineg:
\n
$$
\mathbb{P}[\mathbb{I}(\mathbb{I}^{m}/2^{n})-X(\mathbb{I}^{m}-\frac{1}{2^{n}})] \geq 2^{3n} \leq \left[\mathbb{E}|\mathbb{I}^{m}|^{2}\right] 2^{3n}B
$$
\nThus, taking union bound
\n
$$
\mathbb{P}(G_{n}^{c}) \leq 2^{n} K 2^{-n(1+\alpha-3\beta)} = K 2^{-n(\alpha-3\beta)}
$$
\nThe proof follows from the following
\nLemma:
\nLemma:
\nLemma:
\n
$$
\mathbb{E}(\mathbb{I}^{m}) \leq \mathbb{I}^{n} \leq \mathbb{I}^{n} \quad \text{for } \mathbb{I}^{n} \leq \mathbb{I}^{n} \quad \text{for } \mathbb{I}^{n} \leq \
$$

NEXT CLASS WE WILL GO BACK TO THE PROOF OF LEMMA (2) .