Aperiodicity Our goal today is to understand the asymptotic distribution of Xn, $\lim_{n \to \infty} P_{\chi}(\chi_n = y)$ If this yields a probability dist, we can run Markov Chains for a while to sample! Notice that if y is transcrent => this limit is zero. A natural guestion is when is that the limit exists? Example: Consider the chain Then, $s_{1} = P(X_{2n} = s_{1}) \neq P(X_{2n+1} = s_{1}) = 0$.

We shall see that this periodic behavior is the only thing preventing convergence. Def: For any recurrent XES, the period of x, called d_x , is the greatest common divisor of $I_x = \langle n \ge 1 : p^{(n)}(x, x) > 0 \rangle$. The previous example has a period of two. Example: Consider so S_{-2} S_{-2} SThere are two cycles including So: $S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_0$ $S_0 \rightarrow S_{-1} \rightarrow S_{-2} \rightarrow S_0$ therefore $d_{s_0} = 1$. Thus, Is, = 1 3n, 4n, We say that a chain is aperidic aperiodicity if $d_{\chi} = 1 \forall x$. In turn,

Holds for everyone in an irreducible class. is a "class property." Lemma (M): If $p_{xy} > 0 \implies dy = d_{\chi}$. Left as exercise. Lemma (3): if $d_x = 1$, then, $p^{(m)}(x, x) > 0$ for m z mo. Proof: We will use two claims. > Claim: If In s.t. MEIx, m+1 EIx, then the result follows. Fact: If $gcd(I_x) = 1$, then $\exists i_1, ..., i_k \in I_k$ (and $C_{1,...,C_{k}} \in \mathbb{Z}$ s.t. $\sum_{i=1}^{k} C_{i}i_{i} = 1$. Fact from number theory that we will not prove. Let's show that these two imply the result. Let $a_e = c_e^+$ and $b_e = c_e^{-1}$ maxford then $a_1 \dot{i}_1 + ... + a_k \dot{i}_k = b_1 \dot{i}_1 + ... + b_k \dot{i}_k + 1.$ Then, the result follows by the claim.

Convergence Theorem
We are now ready to prove the main
result today
Theorem: Suppose that a MC with
transition prob. p is irreducible and
aperiodic, and has a stationary
distribution T. Then, for any

$$\chi \in S$$

 $f_{\chi}(\chi_n = \cdot) \stackrel{W}{\longrightarrow} T$.
Proof: Let $S^2 = S \times S$ and define the
chain given by
 $p((\chi_1, \chi_1), (\chi_2, \chi_2)) = p(\chi_1, \chi_2) p(\chi_1, \chi_2)$.
P First, we note that \overline{p} is irreducible.
To see this, role that \overline{p} is irreducible.
To see this, role that \overline{p} is irreducible.
To see this, role that \overline{p} is irreducible.
 To see this, role that \overline{p} is irreducible.
 $\overline{f} (\chi_1, \chi_2) > 0$. By Lemma (\overline{f}), \overline{f} .
 S the p($Limm$) (χ_2, χ_2) > 0 and $p^{(L)}(\chi_1, \chi_2)$ and $p^{(L+M)}(\chi_2, \chi_2) > 0$.
 $\Rightarrow \overline{p}^{(K+L+M)}(\chi_1, \chi_1), (\chi_2, \chi_2)) \ge p^{(K)}(\chi_1, \chi_2) p^{(L+M)}(\chi_2, \chi_3)$
 $> 0.$

>

 $races Second, we note that <math>\overline{TT}((a,b)) = \overline{TI}(a)TT(b)$ defines a stationary distribution (since both components are ind.) and moreover p makes all states 52 recorrent. This follows from the following Lemma: If there is a stationary dis tribution, then all states y s.t. T(y)>0 are recurrent. Proof of Lemma: Note that $\mathcal{D} = \sum_{n=1}^{\infty} \pi(y) \stackrel{*}{=} \sum_{n=1}^{\infty} \sum_{x} \pi(x) p^{(n)}(x,y)$ Fubini's = $\mathbb{Z} \pi(x) \stackrel{\infty}{=} p^{(n)}(x,y)$ Formula for $E_{\chi} N(y)$ $\stackrel{?}{=} \stackrel{r}{\underset{\chi}{=}} TT(\chi) \stackrel{P_{\chi y}}{\underset{\chi}{=}} \frac{1}{1 - P_{\chi y}}$ TT is a dist $\stackrel{\varsigma}{=} \frac{1}{1 - P_{\chi y}}$ So me conclude that $P_{yy} = 1.$ \Box p Let $(X_n, Y_n) \sim \overline{p}$, let $T = \inf \left\{ n \ge 1 \right\} X_n = Y_n$ Note that for any fixed x me herve

$$T_{x} = \inf \{ 1 n \ge 1 \mid X_{n} = Y_{n} = xy < \omega \text{ a.s. since } (x, x)$$
is recurrent.
Claim: On $dT \le nj$, X_{n} and Y_{n} have
the same distribution.
Proof of the claim:
 $\mathbb{P}(X_{n} = y, T \le n) = \sum_{n \ge 1}^{\infty} \mathbb{P}(T = m, X_{m} = x, X_{n} = y)$
 $\mathbb{P}(X_{n} = y, T \le n) = \sum_{n \ge 1}^{\infty} \mathbb{P}(T = m, X_{m} = x) \mathbb{P}(X_{n} = y \mid X_{m} = x)$
 $= \sum_{n \ge 1}^{\infty} \mathbb{P}(T = m, Y_{m} = x) \mathbb{P}(X_{n} = y \mid X_{m} = x)$
 $= \mathbb{P}(Y_{n} = y, T \le n).$
 \mathbb{I}
Observe that
 $\mathbb{P}(X_{n} = y) = \mathbb{P}(Y_{n} = y, T \le n) + \mathbb{P}(X_{n} = y, T > n)$
 $\leq \mathbb{P}(Y_{n} = y) + \mathbb{P}(X_{n} = y, T > n)$
 $\ln \operatorname{verting}$ the role of X_{n} and Y_{n} gives
 $\mathbb{I}\mathbb{P}(X_{n} = y) - \mathbb{P}(Y_{n} = y) \mathbb{I} \le \mathbb{P}(T = n).$
Summing over y we get
 $\mathbb{P}(Y_{n} = y) \mathbb{I} = \mathbb{P}(Y_{n} = y) \mathbb{I} \le \mathbb{P}(T = n).$

This holds regardless of how we initial
lize
$$X_0$$
 and Y_0 . Assume $X_0 = x$ and
 $Y_0 \sim TT$. Then, (P) gives
 $\| P_x(x_n = \cdot) - TT(\cdot) \|_{TV} = P(T>n) \rightarrow 0.$
 $\| P_x(x_n = \cdot) - TT(\cdot) \|_{TV} \sim Pecall the TV-dist$
from Lecture 4
Then, the result follow from the Lemma
in pege 4 of Lecture 4.