Leture 18

\nLabel the **Aclose**

\nDecap

\nBecause and **Decomence**

\nthe **Decomence**

\nLet **S** be the **side**

\nwhich can be done in the **Exercise**

\nLet
$$
S_n
$$
 be an MC with **conclude**

\nwhere AC with CA with <math display="</p>

Example (Asymmetric random walk): Let $S_n = \sum_{k=1}^{n} S_k$ with $P(S_{nk} = 1) = p = 1 - P(S_{nk} = 1)$ $S_{n} = \sum_{k=1}^{n} S_{k}$
Let $\rho > q := 1-p$. Then $\mu(x)$ = $(\frac{\rho}{4})$ x is a $S_{N} = \sum_{k=1}^{N} S_{k}$ with $H C_{5k}$
Let $P > q := 1-p$. Then $\mu(x)$
stationary measure. Note that $\sum_{x \in S} \left(\frac{p}{q}\right)^x$ $p(x,y) = \mu(y+1) p(y+1, y) + \mu(y-1) p(y-1, y)$ = $(\frac{p}{4})^{\frac{1}{6}+1}q + (\frac{p}{4})^{\frac{1}{6}-1}$ p = $(P_{9})^{4} (p + q)$ $=(P/q)^3$. = $(P_{q})^{\phi} (p + q)$

= $(P_{q})^{\delta}$.

However, μ is not a dist. since $\sum_{\mu} \mu(x) = \infty$. Example (Lack of uniqueness): Consider $\frac{1}{2}$ G_{\bullet} \hat{G} Both μ , $(\alpha) = 11$ S_1 S_2 and $M_2(x) = 1$ $\lambda_{x=S_2}$ ample (Lack of uniqueness): Consider
 $\begin{array}{ccc} 1 & 1 & 1 \ 1 & 1 & 1 \ 2 & 3 & 5 \end{array}$ Both $\mu_1(x) = 11 \ \mu_2(x) = 11 \ \mu_3 = 51$
are stationary distributions. Example (Lack of existence): Consider are stationary distributions. $\frac{p!p!e (Lack of existence)}{1}$ \rightarrow ... $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ Assume M is a nonzero stationary measure, then $\exists y$ s.t $\mu(y) > 0$, induction ↓ $\frac{1}{2}y$
 $\frac{1}{2}y$ M is a nontero stationary measure, then
s.t $M(y) > 0$, induction
 $M(x) P(x, y) = M(y-1) P(y-1,y) = \prod_{k=0}^{k} P(x, x, y, u(x))$ $\mu(y-1) p(y-1, y) = \prod_{x=0}^{y} p(x, x+1)$

But also, $\mu(\circ) = \sum \mu(x) \rho(x, \circ) = 0$ $\mathcal{L}_{\mathcal{A}}$ Existence

Theorem Let X_n be a MC with countable state space. Assume that Ex buntable state space. Assume the
recurrent. Let $T_x = \inf \{ nz1 : X_n = x \}$, then * $M \times (y) =$ Let $\vec{\tau}_x = inf \{ x \ge \hat{x}_n = x \}$
 $E_x\left(\sum_{n=0}^{T_x} \mathcal{L}_{\{X_n = y\}} \right) = \sum_{n=0}^{\infty} P(x_n^2)$ $y, T_x > n$ recurrent. Let $\vec{\tau}_x = \inf \{ n z 1 : \chi_n = x \}$, then
 $M \chi(\psi) = \mathbb{E}_{\chi} \left(\sum_{n=0}^{T_x} \mathbb{1}_{\{\chi_{n}=y\}} \right) = \sum_{n=0}^{\infty} \mathbb{P}(\chi_{n=0}, T_x > n)$
defines a stationary (measure) $u_{\chi}(y) = \mathbb{E}_{\chi} \left(\sum_{n=0}^{T_{\chi}} \mathcal{L}_{\chi_{n}=y} \right) = \sum_{n=0}^{\infty} \mathbb{P}(\chi_{n}=y),$ efines a stationary (measure). Remark: When all states are transcient, a stationary measure may or may not a stationary measure may
exist (see examples above). $Proof:$ Oefive $\overline{p}_n(x,y) = \mathbb{P}_x(X_n =$ $2x + 1$ (see examples above). Fubini's $\sum_{y \in S} \mu(y) \rho(y, z) = \sum_{y \in S} \sum_{n=0}^{\infty} \bar{\rho}_n(x, y) \rho(y, z)$ yes λ YES = $\sum_{y \in S} \sum_{n=0}^{\infty} \overline{p}_n(x)$
= $\sum_{n=0}^{\infty} \sum_{y \in S} \overline{p}_n(x)$ $y)$ $g(y,z) = \circledast$. $n = 0$ yes We want to show that $x \rightarrow \infty$ = $\mu_{\chi}(z)$. Consider two cases

Case 1: E #Y

 $\sum_{n} p_{n}(x, y) \rho(y, z) = \sum_{n} P_{x}(X_{n} = y, X_{n+1} = z, T_{x} > n)$ $y = 0$ $y = 0$ $z = 1$ $z = 2$ and we are nlx, y) ply.
Since T>n $I = \sum R_x (X_n = y, X_{n+1} = z, T_x;$
 $\overrightarrow{B_x} = \overrightarrow{R_x} (X_{n+1} = z, T_x > n+1)$ \sum_{summing} $\overline{P_{x}$ ($\overline{X_{n_{t_1}}}$ = $\overline{E_{1}}$, τ_{x} > n_{+1}) every possibility.co Were possibility of $\overline{p}_{n+1}(x, z) = \sum_{n=0}^{\infty} \overline{p}_n(x, z)$ [↑] nzo = $\mu_{\chi}(z)$ $\qquad \bar{p}_{\text{o}}(x,z) = 0$ since χ (2) γ $\chi \neq \epsilon$.

 $Case 2: z=x$ $\sum_{\alpha} P_{n}(x, y) P(y, x) =$ Σ P_{x} $(X_{n} = y, T_{x} > n, X_{n+1} = x)$ = $P(T_{x} = n+1)$. Then $n=0$
1 = $M_{X}(x)$ ($\sum_{n=0}^{\infty} P(T_{x} = n)$ $\sum_{k=0}^{8} P(T_{x} = n)$
 $P(T_{x} = 0) = 0.$ $\overline{\mathbf{u}}$

Uniqueness We saw an example where we had two different stationary measures,
it is easy to see that their

comic hull would also be stationary. Exercise (0) : Assume that μ , and μ_2 are $\frac{1}{\omega}$ Assume that u, and uz are
=> for any α , $\beta \in \mathbb{R}$ we have that v = α μ , $+$ β μ 2 is stationary provided that $V(x) = 0$ $V(x)$ and $3x$ $V(x) > 0$ $\overline{}$ Broadly speaking, uniqueness fails because of two reasons: · ag genering, onifocales paris sesses
two reasons:
Multiple irreducible classes (? ?). · Lack of recurrance (in the asymmetric Multiple irreducible closses ($\frac{2}{3}$).
Lack of recurrance (In the asymmetr
walk example $\mu(x) = 1$ is stationary). walk example $\mu(x) = 1$ is stationary).
The following Theorem formalizes this claim. Theorem : If a MC is irreducible and Theorem: If a MC is irreducible and
recurrent (all states are recurrent), then, there is a unique stationary measure Theorem: If a M
recurrent Call state
there is a unique
up to constants. $Proof: Fix \times eS, let$ P to constants.
 $\begin{array}{ccc} \text{rod}: & \text{Fix } \times \text{ES}, & \text{let } \text{in} \ \text{for} & \text{in} \times \text{E} & \text{use } & \text{shell} \end{array}$ be a statio navy measure, we shall prove that $\mu = \mu_{\lambda}$ (up to corstants). WLOG set $\mu(x) = 1$

Let
$$
y \neq x
$$
, by assumption
\n
$$
\mu(y) = \sum_{z_0 \in S} \mu(z_0) p(z_0, y)
$$
\n
$$
= p(x, y) + \sum_{z_0 \neq x} \mu(z_0) p(z_0, y)
$$
\n
$$
\mu(x) = 1 = \mathbb{P}_x(x_1 = y, \tau_x > 1) + \sum_{z_0 \neq x} \mu(z_0) p(z_0, y)
$$
\n
$$
\text{Repeating the argument } T_1
$$
\n
$$
T_1 = \sum_{z_0 \neq x} \left(\sum_{z_i \in S} \mu(z_i) p(z_i, z_j) p(z_0, y) \right)
$$
\n
$$
= \sum_{z_0 \neq x} p(x_2 = y) p(z_0, y)
$$
\n
$$
+ \sum_{z_0 \neq x \neq x} \mu(z_i) p(z_i, z_0) p(z_0, y)
$$
\n
$$
= \mathbb{P}_x(x_2 = y, \tau_z) + \sum_{z_0 \neq x \neq x} \mu(z_i) p(z_i, z_0) p(z_0, y)
$$
\n
$$
\text{Induchively, we obtain}
$$
\n
$$
\mu(y) \geq \sum_{m=1}^{\infty} P[X_n = y, \tau_x > n] + \mu_x(y)
$$
\n
$$
\text{Seaveking} \text{contraduction} \text{ assume that}
$$
\n
$$
\mu(y) = \mu_x(y) > 0 \text{ for some } y.
$$

Then by Exercise (B) we get that $\sqrt{2}$ Then by Exercise (B) we get
 $M - \mu_X$ is stationary. Further since μ $(x) =$ erse (0) we get
stationary Further
 $M_X(x) = 1$, $V(x) = 0$. nce M_X is switching rowing.

Let $M(x) = M_X(x) = 1$, $V(x) = 0$.

Let K be such that $p^{(K)}(y, x) > 0$. Then n, $0 = \nu(x) = \sum y(z) p^{(k)} (z, x) = \nu(y) p^{(k)}(y, x)$ z ES So μ = μ_{χ} . $\stackrel{\sim}{\mathscr{C}}_{\square}$