Lecture 17 M_{on} $M_{ar}/25/2024$ Announcements · ^I will rebase a list of potential projects mouncement
I will release · You'll have a week to pick 1 and 3 weeks to prepare a presentatione^{1 hour} clast week of class) and ⁴ to b weeks to prepare a presensioner Last time
y Markov Property continued 0 Recap & Markov Property continued ¹ Recap ↳ strong Markov Property Recurrence and D Applications C | transience Recap Ipplications
Recap
From now on, we assume S is countable. Recall last time we close with Recall lost time we close
Let $T_y^o = 0$ and for $K \ge 1$, Let

 T_{y}^{ω} = inf {n > $T_{y}^{(k-1)}$: X_{n} =y}. k_{th} time we visit y. We let $T_{y} = T_{y}^{(1)}$ and $\rho_{xy} = \mathbb{P}(T_{y} < \infty)$

Theorem: Assume S is countable:
\n
$$
P_{k}(T_{j}^{k} < \omega) = P_{xy} P_{yy}^{k-1}
$$
\nToday we go back to understanding
\nsibles that we go back to.
\n
$$
\frac{\partial e!}{\partial t} \cdot A
$$
 value go back to.
\n
$$
\frac{\partial e!}{\partial s} \cdot A
$$
 value you prove that if
\n
$$
S_{n} = \sum_{k=1}^{n} S_{k}
$$
 with $P(S_{k-1}) = P(S_{k-1}) = \frac{1}{2}$, then
\n
$$
x = 0
$$
 is recurrent. When $P(S_{k-1}) > \frac{1}{2}$, then
\n
$$
x = 0
$$
 is trancient, when $P(S_{k-1}) > \frac{1}{2}$
\n
$$
x = 0
$$
 is trancient, can you prove t+7
\nLet N(g) = $\sum_{n=1}^{\infty} \frac{1}{n} \int_{X_{n}} \frac{V_{w_{n}}}{V_{w_{n}}} = \int_{Y_{w_{n}}} \frac{1}{\omega_{w_{n}}} = \int_{Y_{w_{n}}} \frac{1}{\omega_{w_{n}}} = \int_{Y_{w_{n}}} \frac{1}{\omega_{w_{n}}} = \int_{Y_{w_{n}}} \frac{1}{\omega_{w_{n}}} = \int_{Y_{w}} \frac{1}{\omega_{w}} = \frac{1}{$

$$
=\sum_{k=1}^{10} P_{k} (T_{b}^{k} < \infty)
$$
\n
$$
=\sum_{k=1}^{10} P_{k} p_{b0}^{k-1}
$$
\n
$$
= \frac{p_{x0}}{1-p_{b0}}
$$
\n
$$
= \frac{p_{x0}}{1-p_{b0}}
$$
\nThe next result shows that recurrence is condens.

\n
$$
= \frac{p_{x0}}{1-p_{b0}}
$$
\nThe next result should be used to find the product of the following:

\n
$$
= 1.
$$
\nIn addition

\n
$$
= 1.
$$
\nThus, a path to the point is a path to the point is $p_{x0} = 1$.

\nwhere a beroull is modeling if we go through the product of the point is $p_{x0} = 1$. Setting the context of the point is $p_{x0} = 1$.

\nContractation, assume $p_{x0} = 1$. Setting the function $p_{x0} = 1$ and $p_{x0} = 1$.

\n
$$
= \frac{p_{x0}}{1-p_{x0}} \int_{0}^{1} e^{p_{x0}^{k-1}} dp_{x0} dx
$$
\n
$$
= \frac{p_{x0}}{1-p_{x0}} \int_{0}^{1} e^{p_{x0}^{k-1}} dp_{x0} dx
$$
\nThus, $p_{x0} = 1$ and $p_{x0} = 1$.

There is a path
$$
x \rightarrow y_{i} \rightarrow \cdots \rightarrow y_{k-1} \rightarrow y
$$
 so
\nthat
\n $\rho(x, y_{i}) \rho(y_{i}, y_{i}) \cdots \rho(y_{k-1}, y_{i}) > 0$.
\nSince K is minimal $y_{i} \neq x \quad \forall i, \text{ then}$
\n $\rho_{x}(x_{k} = \infty) \geq \rho(x, y_{i}) \rho(y_{i}, y_{i}) \cdots \rho(y_{k-1}, y_{i})$
\n $(1 - \rho_{y}x)$
\n $\rightarrow 0$
\nThus, $\rho_{y} = 1$.
\nNow we prove that $y \rightarrow \text{recurrent}$.
\nSince $\rho^{y} = 1$, we have $3L$ s.t. $\rho^{(L)}(y, x)$
\n $\rightarrow 0$. Note that
\n $\rho^{(L+n+k)}(y, y) \geq \rho^{(L)}(y, x) \rho^{(n)}(x, x) \rho^{(k)}(x, y)$.
\nThen,
\n $\psi_{y} = \sum_{n=1}^{\infty} E_{n} 4 L_{x_{n}+y_{n}}$
\n $\Rightarrow \sum_{n=1}^{\infty} \rho^{(n)}(y, y)$
\n $\geq \rho^{(L)}(y, x) \rho^{(k)}(y, x) \sum_{n=1}^{\infty} \rho^{(n)}(x, x)$
\n $\geq \rho^{(L)}(y, x) \rho^{(k)}(y, x) \sum_{n=1}^{\infty} \rho^{(n)}(x, x)$

 $\bm \Pi$

 $\overline{}$

from Theorem M . We focus on the first claim . Suppose seeking contradiction that $Hy \in C$ $\begin{matrix} 0 \\ Pxy \end{matrix}$ of this implies $\frac{8}{5}$
 $\frac{8}{5}$
 $\frac{8}{5}$ $P_{\theta y} < 1$, but this implies
N(y) = $\sum_{y \in C} \sum_{h=1}^{\infty} \beta^{h} (x, y) = \sum_{n=1}^{\infty} \sum_{y \in C} \beta^{(n)} (x, y) = \sum_{n=1}^{\infty} 1$. $\int \mathcal{A} \epsilon C$ $rac{y}{y}$ $rac{y}{y}$ $rac{y}{y}$ $rac{y}{y}$ C is closed $Since$ $|C| < \infty$ and (B) . $\mathcal Y$ $\overline{\mathcal{L}}$

Theorem: Let $R = \{x : p_{xy} = 1\}$ be recurrent und (0).
<u>Neorem:</u> Let $R = \{x : \rho_{xx} = 1\}$.
He's of a Markov Chain T Theorem: Let $R = \{x : \rho_{xx} = 1\}$ be recurred
states of a Markov Chain. Then, $R = U R_i$ where the R_i are irreducible, closed, disjoint and $\overline{(e)}$.
Theorem: Let $R = \{x : \rho_{xx} = 1\}$ be recurrent
states of a Markov Chain. Then, $R = U R_i$
where the R_i are irreducible, closed, disjoint
sets.
Proof: For any vecurrent state x, dufine

 $R_{x} = 5y : p_{x}z \circ 5$. Consider the collection dR_{χ} }, we claim that this gives the desi red partition. For a given x , by
Theorem x , if ye Cy => ρ_{yx} =150. Closed: Let $we C_{\chi}$ and z s.t. ρ_{μ} >0 \Rightarrow ρ_{xz} $\geq \rho_{xw}$ ρ_{wz} \Rightarrow $z \in C_x$. $\begin{array}{lll} \Rightarrow \quad \rho_{xz} \geq \rho_{xw} \rho_{wz} > 0 \Rightarrow \quad z \in C_x. \end{array}$
Irreducible: Let $w, z \in C_x \Rightarrow \rho_{wz} \geq \rho_{wx} \rho_{zw} > 0$ |
|
|}

 $Disjoint: Assume z \in C_{x} \cap C_{y}$.
is irreducible z is convected Since Cx is irreducible z is connected to all is irreducible x is convected to all
 w in $C_\chi \Rightarrow y \to z \to w$, thus $C_\chi \subseteq C_g$ and similarly $C_{y} \subset C_{x}$. Thus either C_{χ} = C_{χ} or $C_{\chi} \cap C_{\chi}$. $\boldsymbol{\mathcal{A}}$

