lecture 17 Mon Mar/25/2024 Announcements · I will release a list of potential projects this meek. · You'll have a meak to pick 1 and presentation «1 hour 3 weeks to prepare a (last week of class) and 4 to prepare a document. (Groups of 3!) Last time Today Markov Property continued
Strong Markov Property
Applications D Recap p Recurrence and transience Recap From vou on, we assume S is countable. Recall last time we close with Let $T_y = 0$ and for $K \ge 1$, let $T_{y}^{(k)} = \inf \{n > T_{k}^{(k-1)} : X_{n} = y \}.$

T kth time we visit y. We let $T_y = T_y^{(1)}$ and $p_{\chi y} = P(T_y < \infty)$

Theorem: Assume S is countable:

$$P_{X}(T_{y}^{*} < \omega) = P_{Xy} P_{yy}^{*-1}$$
 H
Today we go back to understanding
states that we go back to.
Def: A state x is recurrent if $P_{XX} = 1$.
A state x is transcient if $P_{XX} < 1$. H
Example: In HW2 you prove that if
 $S_{n} = \sum_{k=1}^{n} S_{k}$ with $P(S_{k} = 1) = P(S_{k} = -1) = \frac{1}{2}$, then
 $X = 0$ is recurrent. When $P(S_{k} = 1) > \frac{1}{2}$
 $X = 0$ is transcient, can you prove if?
Let's explore a frew properties of re-
current states.
Let $N(y) = \sum_{n=1}^{\infty} H_{X_{n}} = \frac{y}{2}$
Theorem: A stale is recurrent if,
and only if, $E_{N(X)} = \infty$.
 $Proof:$ The result follows from
 $E_{X} N(y) = \sum_{k=1}^{\infty} P_{X}(N(y) = k)$

$$= \sum_{k=1}^{\infty} P_{x}(T_{y}^{k} < \infty) \qquad (C)$$

$$= \sum_{n=1}^{\infty} P_{xy} P_{yy}^{n-1} \qquad (C)$$

$$= \frac{P_{xy}}{1 - P_{yy}} \qquad \Box$$
The next result shows that recurrence
is contagious.
Theorem M: If x is recurrent and $P_{xy} > o$
 \Rightarrow y is recurrent and $P_{yx} = 1$.
Intuition
X
If there is a path to from x to y, then we
have a bernoulli modeling if we go through
y before going back to x.
Proof: First we prove that $P_{yx} = 1$. Seeking
contradiction, assume $P_{yx} < 1$. Let
 $K = \inf_{x \to \infty} d K : p^{(x)}(x,y) > o y$

There is a path
$$x \rightarrow y_{1} \rightarrow \dots \rightarrow y_{K-1} \rightarrow y = 0$$

that
 $p(x, y_{1}) p(y_{1}, y_{2}) \cdots p(y_{K-1}, y_{1}) = 0$.
Since K is minimal $y_{i} \neq x \quad \forall i$, then
 $P(x = 0) \ge p(x, y_{1}) p(y_{1}, y_{2}) \cdots p(y_{K-1}, y_{1})$
 $(1 - p_{yx})$
 > 0
Thus, $p_{yx} = 1$.
Now we prove that y is recurrent.
Since $p^{yx} = 1$, we have $\exists L = s.t. p^{(L)}(y,x)$
 > 0 . Note that
 $p^{(L+n+K)}(x,y) \ge p^{(L)}(y,x) p^{(n)}(x,x) p^{(K)}(x,y)$.
Then,
 $E_{y} N(y) = \sum_{n=1}^{\infty} E_{y} 1L_{4x_{n}} = y_{1}$
 $= \sum_{n=1}^{\infty} p^{(L+n+K)}(y,y)$
 $\ge p^{(L)}(y,x) p^{(K)}(y,x) \sum_{n=1}^{\infty} p^{(n)}(x,x)$
 $\ge p^{(L)}(y,x) p^{(K)}(y,x) \sum_{n=1}^{\infty} p^{(n)}(x,x)$
 > 00 .

 \Box

from Theorem N. we focus on the first claim. Suppose seeking contradiction that $\forall y \in C$ $p_{yy} < 1$, but this implies $0 > \sum |E_x N(y)| = \sum \sum_{y \in C} p^{(n)}(x, y) = \sum_{n=1}^{\infty} \sum_{g \in C} p^{(n)}(x, g) = \sum_{n=1}^{\infty} 1.$ $f_{y \in C}$ $p_{y \in C} = \sum_{y \in C} p^{(n)}(x, g) = \sum_{n=1}^{\infty} 1.$ Since $|C| < \infty$ y

Theorem: Let $R = 4x : p_{XX} = 1$ be recurrent states of a Markov Chain. Then, $R = UR_i$ where the R_i are irreducible, closed, disjoint sets.

Proof: For any recurrent slate x, define $R_x = 5y: p_{xy} > of$. Consider the collection dR_x , we claim that this gives the desired partition. For a given x, by Theorem M, if $y \in C_y \Rightarrow p_{yx} = 1 > 0$. Closed: Let $w \in C_x$ and z = s.t. $p_{wz} > o$ $\Rightarrow P_{xz} \ge P_{xw} p_{wz} > o \Rightarrow z \in C_x$. Irreducible: Let $w, z \in C_x \Rightarrow p_{wz} \ge p_{wx} p_{xw} > 0$

Disjoint: Assume ZECXNCy. Since Cx is irreducible z is convected to all win Cx > y > z > w, thus Cx 5 Cg and similarly Cyc Cx. Thus either $C_{\chi} = C_{\chi}$ or $C \times \cap C$

