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Intro to Markov chains
A Markov Chain is a random

process (XnIn taking valves in
some state space s . Let's start with
the simpler case where 8 is counta-

ble . In which case
, the "Markov

property" reads : # :o , "I ... , in-1s Je
1

S we have

(Xn+
= j/Xn = [ , Xny =On ... Xo=0

- P(Xn
+,
=J X + = i).

We call this the transition probabi-
City p(icj) = PCXn + = j) Xn = 1) .
Q : Why should we care?
Many random process are Markov



Chains
,
and this simp Le property

leads to a rich and useful theory.
Examples
Random walks
Let 5 .. 32 ... ERd be ind with
distribution M and let I

Xn = Xo + 8+... In for constant Xo.

Then
,In is a Markov Chain (why?

with transition probability
p(i>j) = M(4j - i)) .

↳ Branching Process

Let S = 20, 1 , 2, ... I and Si 32s ...
be ind nonnegative integer-valued
r.V. Then the branching process
we cover in Lecture q defines
a Markov Chain via

Pli / j) = I ( & 3 = 1).



Ehrenfest Chain

Assume we have i particles in two
chambers connected by a small
hole

.

At any moment
in

time a random

# particle jumps from
D

one chamber I the

other. This process yields a May
Kov Chain with S = 40, ..., UY
and

EC-if/
ifj = <+1

P(i , j) =:/ ifj = =-1

Y
matrix.

O otherwise.
rxr

What happens in the long run ?
D Wright - Fisher model
Assume we have a constant-size

Population (say size N)s and there

are two allele types A and a. Assume
that at each generation we draw



N new individuals by sampling with
replacement and we will like to
understand the dynamics of
X n = "Number of A alleles af

generation n
.

"

This is a Markov Chain with
S = 40, 1 , ..., NG and

p(x) = (b)()(1 -N
-j

Note that the state O and N

are absorbing ,
i

.e .. Pli , i) = 1 .



Formal construction
We want to talk about conditio

-

nal probabilities and We saw

that in full generality they can

be tricky. So we will restrict

ourselves to nice spaces.

Def : We say that a
measurable

-

space (s,3) is nice if these a 1-1

map 4 : S -> R so that 4 and p
are measurable. -

Fact (Theorem 2 . 1
.22) If S is a Be-

rel subset of a complete separable
metric space, and 3 is the collection

of Borel subsets of 5
,
then 15

,
3)

is nice . t

I .C
,
most spaces we encounter are

nice.

Fact (Theorem 4 .1 . 17) If (S, 3) is
nice then regular conditional probabl



lities exist. t
I.2
.,
we can take PCAIE) = ECH11F).

With this it makes sense to define
Def : A function p : Se3

-> is said[0
,1]

-

to be a transition probability if :
i) For each WES

,
A + p(w, A)

is a probability measure on (s,3).

ii) For each At 3
, w
+ P(w,A) is

a measurable function.
We say that Xn is a Markov Chain

with respect to a filtration Fr
if

·

P(Xn+, E Bl En) = p(Xn B) .
t

Given a distribution a for No
,
we

can define

P(XjEBj , 0 < j < n) =

JM(dX0) ( PCXo ,&X1) ... ) P(Xn-y d.iBo

This defines a probability distribution



for a finite Hope (Xo)Y ... Xn) . Can
we extend it to a distribution

of (Xo
, ... ) that matches the

marginals of any finite tople?
When CS , 3) is nice, this is

exactly what Kolmogorov's extension

Theorem (Thm 2.1 .21 Durreft) get Us . We
can define a probability measure

P on the sequence spaceM
G2o , Ed = (s'

,
BN) .

TO BE CONTINUED...


