fecture 13	Mon	Mar/04/2024
Last time	Today	4
> Optional stopping via UI	0 Three	examples
> Backwards martinga	o Summar	~y.
les		
The setting		
Suppose ve cons	ider the	setting
with (R,B) an	d set	
$\Delta \mathcal{L} = \mathcal{L}(\omega_{1}, \mathcal{L})$	$(\mathcal{W}_{2}, \dots) \mid ($	D ₆ EKJ
$\chi_n(\omega) = \omega_n$	Yn.	
Let En be the	sub-o-alge	ebra genera
ted by events t	hat are i	nvariant -
under permutations	that f	ix the
tail N+1, N+2,	and let	$\mathcal{E} = \bigcap_{n} \mathcal{E}_{n}.$
be the exchagea	ble o-alg	ebra.
Example 1: Ball	lot Theor	em
Consider two ca	andiclates	B and T

$$S_{i} = \begin{pmatrix} 0 & \text{if the ith vote goes to B} \\ 2 & \text{otherwise.} \\ assume P(S_{i} = 0) = P(S_{i} = 2) = \frac{1}{2}. \\ \text{Let } S_{n} = \sum_{i=1}^{n} S_{i} , X_{-i} = S_{i}/j, \text{ and} \\ \end{cases}$$

$$\mathcal{F}_{-j} = \sigma(S_j, \dots, S_n).$$

Notice that

$$G = \mathcal{O} \mathcal{B} \text{ leads T throughout counting }$$

$$= \left\{ \begin{array}{l} S_{j} < j \\ \text{ for } 1 \leq j \leq n \end{array} \right\}. \begin{array}{c} 2 \mathcal{T}_{j} < \mathcal{B}_{j} + \mathcal{T}_{j} \\ \text{ (B) } 0 < \mathcal{B}_{j} - \mathcal{T}_{j} \\ \text{ and so what we want to prove is equiv. b} \\ \mathcal{P}(G|S_{n}) \stackrel{(\texttt{L})}{=} \left(1 - \frac{S_{n}}{n}\right)^{+} = \left(1 - \frac{2\mathcal{T}}{\mathcal{B} + \mathcal{T}}\right)^{+} = \left(\frac{\mathcal{B} - \mathcal{T}}{\mathcal{B} + \mathcal{T}}\right)^{+}$$

Let us show (1). Note that if $S_n \ge n$ the result is trivially true. Assume Sn < n. Let us show that that X-j is a backwards martingale. because of symmetry $E[S_{j+1}|\mathcal{F}_{(j+1)}] = \frac{1}{j+1} \sum_{k=1}^{\infty} E[S_k|\mathcal{F}_{(j+1)}]$ $= \frac{1}{j+1} \mathbb{E} \left[S_{j+1} \mid \mathcal{F}_{-(j+1)} \right]$ $= \underbrace{S_{j+1}}_{j+1}.$ Since X_j = (Sj+1 - 3j+1)/j ve have that $\mathbb{E}[X_{-j}|\mathcal{F}_{(j+1)}] = \frac{1}{j} \left[\mathbb{E}[S_{j+1}|\mathcal{F}_{(j+1)}] - \mathbb{E}[S_{j+1}|\mathcal{F}_{(j+1)}] \right]$ $= \frac{1}{j} \left[S_{j+1} - \frac{S_{j+1}}{j+1} \right]$ (★) $= \underbrace{S_{j+1}}_{i+1} = \chi_{-(j+1)}.$ $N = \inf \{ K \mid K \in \{-1, ..., -n\}, X_{k} \ge 1 \}$ Let

and set N=-1 if the set is empty. N is the first point where T leads. Note that on the event GC 3 N+1 is such that $S_{N+1} < N+1 \Rightarrow S_N \le S_{N+1} \le N$ $\Rightarrow S_N \le 1$ and by def $X_N = 1$. On the other hand, on the event G we have N=-1, then $\chi_N = \chi_{-1} = \frac{S_1}{4} < 1 \implies \chi_N = 0.$ Thus, we have $X_N = 1_{G_0}$. Therefor $\mathbb{P}(\mathcal{G}^{c}|X_{-n}) = \mathbb{E}[X_{N}|X_{-n}]$ Follows from optional Y = X - nstopping why? $= \frac{S_n}{n}$

Example 2: Strong law of large numbers Let 31, 32,... id r.v's with Etzil < 00. Let $S_n = \sum_{i=1}^n S_{i,j} X_{-n} = S_n/n$, and $\mathcal{F}_{-n} = \sigma(S_n, S_{n+1}, \dots).$ Our goal is to show that $\frac{S_n}{n} \rightarrow \mathbb{E}_{3}$, a.s. The same computation as in (A) we obtain that X-n is a backwards martingeles. Fact (Hewitt-Savage) If X1, X2,... are iid ⇒ VAEE IP(A)E ło, 13. By the convergence Thm for backwards martingales $\lim_{n} \frac{S_{n}}{n} \rightarrow \mathbb{E}[X_{-1}|\mathcal{F}_{\infty}]$ Since $F_{-n} \subseteq E_n \Rightarrow F_{-\infty} \subseteq E$ and by Hewith-Savage the sets in $F_{-\infty}$ are trivial,

so we have $\mathbb{E}[X_{-1}|\mathcal{F}_{-\infty}] = \mathbb{E}[X_{-1}] = \mathbb{E}[X_{-1}]$ Remark: One can use backwards martinger les to prove Hewitt-Sourage (See Exam ple 4.7.6. in Durrett). Example 3: de Finetti's Theorem A requence X1, X2, ... is said to de exchangeable if for every permutation π of $d_1, ..., n_y$ ue have $(X_1, ..., X_n) \stackrel{d}{=} (X_{\pi(i)}, ..., X_{\pi(n)}).$ Equality in distribution This generalize iid sequences, but these are more general as we can have a const. $eguence (X_1, X_1, X_2, ...).$ Theorem: If X1, X2,... are exchangeable. Then, ELX, [E], ECX2[E],... are id. This result is one of the pillars of Bayesian Statistics. This will be

one of the potential topics for the firal projects.

Summary In the last lectures we covered & Conditional Expectation Mortingales Stopping times Optional stopping V Almost sure convergence. 7 1° convergence \triangleright Uniform Integrability & 2' convergence. Þ Backwards martingoles. D Next we will tackle Markov Chains.