

assume $P(S_i = 0) = P(S_i = 2) = 1/2$. Let $S_n = \hat{Z}_1 S_{n-1}$, $X_{ni} = S_{i}/i$, and

$$
\mathcal{L}_{ij} = \sigma(s_{j}, ..., s_{n})
$$

Notice that $G = \oint B$ leads T throughout counting \int = $\int S_j < j$ for $1 \le j \le n$; $\frac{2\tau_j < \beta_j + \tau_j}{\Theta}$
and so what we want to prove is equiv to
 $P(G|S_n) \stackrel{(y)}{=} (1 - \frac{S_n}{n})^+ = (1 - \frac{2\tau}{\beta + \tau})^+ = (\frac{\beta - \tau}{\beta + \tau})^+$

Let us show (t) . Note that if $S_n \ge n$ the result is trivially true . Assume $S_n < n$. Let us snow that that Let us show (b). Note that if
the result is trivially true. Assi
Sn < n. Let us snow that the
X-j is a backwards martingale.
Because of symmetry
FF 6 12: 1-1 st EF $E \left[S_{j+1} | X_{-(j+1)} \right] = \frac{1}{j+1} \sum_{k=1}^{j+1}$ $E[\mathcal{S}_{\kappa}|\mathcal{F}_{-(j+1)}]$ $=\frac{7}{1+1}E[S_{j+1}|Z_{-(j+1)}']$ $j+1$ $k =$
= $\frac{1}{j+1}$ $k =$
= $\frac{5j+1}{j+1}$ \int i^t1. Since $X_{-j} = (S_{j+1} - S_{j+1})/j$ we have that $E[X,$ j | $\mathcal{F}_{(j+1)}$] = $\frac{1}{j}$ $\left[\mathbb{E}\left[S_{j+1} | \mathcal{F}_{(j+1)}\right]\right]$ $25j$ ⁺¹ $25j$ ⁺¹)[]] $(*)$ $= \frac{1}{j} \left[S_{j+1} - \frac{S_{j+1}}{1+1} \right]$ - S_{j+1} = $X_{-(j+1)}$. $\sqrt{1+1}$ Let $inf_{i} \{k | k \in \{-1,...,-n\}, X_{k} \geq 1\}$

and set $N = -1$ if the set is empty. N is the first point where τ leads. Note that on the event 6^c \exists $N+1$ is such that S_{N+1} < $N+1$ \Rightarrow S_N \leq S_{N+1} $\leq N$ \Rightarrow $\frac{S_N}{N}$ \leq 1 and by def $X_N = 1$ $\frac{2}{1}$ On the other hand, on the event $\begin{array}{ccc} \n\begin{array}{ccc}\n\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{$ G we have $N = -1$, then $X_N = X_{-1} = S_1 < 1 \Rightarrow X_N = 0.$ Thus, we have $X_N =$ 1 go. Therefor $P(G^c|X_n) = E[X_N|X_n]$ from Follows
from optional ? X-n slopping why? $=\frac{S_{1}}{n}$

Example 2: Strong leur of large numbers
Let $\zeta_1, \zeta_2, ...$ lid r.v's with Etzil < 00. Let $S_n = \sum_{i=1}^{n} S_{i,3}$ $X_{-n} = S_{n/n}$, and $\mathcal{F}_{-n} = \sigma(S_{n}, S_{n+1}, ...)$. Our goal is to show that
 $\frac{S_n}{n} \to E \, \xi$, a.s. The same computation as in (*)
we obtain that X-n is a backwards martingales. Fact (Hewitt-Savage) If $X_1, X_2, ...$ are
id \Rightarrow $\forall A \in \mathcal{E}$ $\mathcal{P}(A) \in \{0, 1\}$. By the Convergence Thm Por backwards
martingales $\lim_{n} S_{n} \rightarrow \mathbb{E}[X_{-1} | \mathcal{F}_{-\infty}]$ Since $\mathcal{F}_{n} \subset \mathcal{E}_{n} \Rightarrow \mathcal{F}_{\infty} \subset \mathcal{E}$ and by
Hewitt-Savage the sets in $\mathcal{F}_{-\infty}$ are trivial,

so we have $E[X_{-1} | \mathcal{F}_{-\infty}] = E[X_{-1}] = E\{S_1\}$ Remark: One con use backwards martinger
les to prove Hewitt-Sourage (See Example 4.7.6. in Durrett). Example 3: de Finetti's Theorem A sequence $X_1, X_2, ...$ is said to de exchangeable if for every permutation $(X_1, ..., X_n) \underset{= \text{qvolity}}{\leq} (X_{\pi(1)}, ..., X_{\pi(n)})$. This generalize iid sequences, but these are more general as we can have a const. sequence $(X_1, X_1, X_2, \ldots).$ Theorem: If $x_1, x_2, ...$ are exchangeable. Then, $E[X, \lfloor \epsilon]$, $E[X_2 | \epsilon]$, ... are $id.$ This result is one of the pillars of
Pousosian Statistics. This will be

one of the potential topics for the one of the potential topics for the

Summary In the last lectures we covered ^D Conditional Expectation Mortingales レ
レ stopping times ^D Optional stopping Almost sure Almost sur convergence. 8 Al
8 L⁰ $\frac{c_0}{c_1}\cdots\frac{c_n}{c_n}$ b 1° convergence
→ Uniform Integrability & 1° convergence.
→ Boekwards martingoles. - Backwards martingales .

Next we will tackle Markov Chains.