Probability Theory II Lecture 1 Mon :	Jan/21/24.
Today A Logistics A What is this course about? A Some examples?	
Logistics 411 the materials 411 the materials 411 the materials 411 the materials 411 the materials 411 the materials 412 available vere.	
 Instructor Mateo Díaz OH: Monday Spm Wyman S429 TA 	emailing
Ao Sun OH: Friday 9-11 am Nyman 5425	bsite.
Probabily: Theory & Examples. Rick	Durrett.
 Grading System Grade will have 4 components: Homework (40%) ~ Every ~ 2 wee 	eks.

- p Random Walks in R[°].
- D Brownian Motion.

If we have enough time we will cover D Ergodic Theory D Stochastic Calculus. » Multidimensional Brownan Motion. Some examples D Monkeys writing Shakespeare. Imagine you have a Monkey vandomly typing letters in a computer. Assume that they type any letter uniformly at random. Any finite seguence of letters has positive probability of appearing. So the monkey will eventually type: » A Shakespeare Novel.

Often, people solve these problem via
SGD:

$$x_{K+1} \leftarrow x_{K} - u_{K} \nabla f(x_{K}, z_{K})$$

stechastic approximation
of the gradient.
Since z_{K} is random, then x_{K+1} is modom.
Illustrative example: Imagive you are
User /Lyft, you want to solve:
 p_{ricing}
max $E_{2} f(x, z)$
 p_{evenve} Demand
 q_{evenve} Demand
 q_{evenve} Demand
 $q_{vestion}$. When does x_{K} converge to
solution? If it converges, can use
have confidence region? Martingales!

o Shuffling cards cheap a Casino and Assume you work at have to shuffle any new desk of cards at the start of a game.

Question. How many times do you need to shuffle the deck before it looks random? We can tackle this question with Markov chains (you need to do it 8 times).

D Drunk humans vs Drunk birds A drunk grad student walks randomly

In 1827, Robert Brown was studying grain of pollen in water and he noticed a continuous jittery motion.

Question: How can we model the random movement of these particles?

Brownian Motion!