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Lower bounds
·
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Assumption : The given method produces
-

iterates satisfying Subspace spanned~ by
XiE Xo + Span G0f(X), .... Of(Y]

Dimension dependent.
↓TheoremFor any 1 = k = & ed- 1)

-

and Li0 ,
there exists a function

f : R
&
-R with -Lips grad such that

for any algo
. Satisfying Assumption

1 , we have
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Proof : Next
,
we will build: "The worst

-

function in the world. "
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Let

fi(x) = /X-eix]
By the HW1

of(x) = &(A,x - e ,],
02f(x) = &Ar.

WLOG we take Xo (
otherwise

we could define f(x) = fr(X-Xo) ·



Intuition
-

If Xo = 0 ,
then X , can only have

the first its components being
nonzero. But we will see that the solution
Xo has nonzeros in its first Kentries.

Claim : Any algo satisfying
X : a spand ofev) , ... ,Of :-YK K

has spanGofu(to) , ..., VfXi) GEIR
:" Goya

for all i[k .

Proof Claims : We us induction
-

Base cause : i =0 = Of = -Le-

Inductive case : Assume it holds for i-1
-

=> Nf(Xi] = (Ax...- 21]

EXA - span40f(Yesy"-t
l=0

Since Ak E A . Reoyd
d - i = 1is tridiagonal
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Claim 2 : The function fr is
-

convex and have L-Lipschitz
gradients.
Proof : By our characterizations
-

these amounts to
showing

0 Xmin (UX)) [Xmax(8f = L
↑

LAv clearly positive
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Claim 3 : The vector ↑ with entries
-

-in ie4+, ..., k]
= E k+1

otherwise,



satisfies 8f(*) =0.

Prof : Follows by verifying A=elCheck

Therefore,
min fa = fuCX)
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Armed with these facts we can now

prove the lower bound.

For any fixed K , set d= 2k+1 and

f(x) = feet (X) ·

Let Xn be the output of an algo
satisfying Assumption 1. Then

f(x) = fari(X) = f[X]: minfa
↑

Claim 1

Then
,
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To prove the second part of the
theorem

,
let's lower bound

Claim 1 2k + 1
2

IX- Y1 * (i) : [ (t -+ )
↑ i=k+1 I=k+1 2k+2

2k+1again fac +1
z [ (2k

+ 2 - j)2
· K+1

2
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Summary of guarantees
for smooth optimization.
So far we have proved
the following table of results

,



&

Method Generic rate Quadratic
/L-smooth) growth

Gradient Descent * 1) f(x+) - f(x
*) = -(1) - ))

(for noncourexf) (Local rate forUf(X* ) 30)

Gradient Descent
f(x+) - min8 = (f) f(x-minfIOTY(for convex f)

On-strongly convex)

Accelerated Gradient
f(y+)-minf= (tz) f(xyl-minfo(

(for convex f)
X Im-strongly convex)

Optimal HW2 P3
(Also optimal).

What's next ? Structured nonsmooth optimization
1 . Motivating problems
2. The proximal operator
3. Constraints and projections
4. Proximal gradient method
5. Acceleration

6 . More proximal methods.


