Let
$$
U = 6
$$

\nHow 1 was due an hour ago.

\nLast time

\nSubifferential calculus

\nExample 2: The second point is 1 and 2 is 2 and 3 is 3 and 4 is 4 and 5 is 2 and 6 is 2 and 3 is 2 and 4 is 2 and 3 is 2 and 4 is 2 and 3 is 2 is 2 and $$

Moreover,
\n
$$
\frac{1}{T} \sum_{k=0}^{T-1} ||\nabla f(x_{k})||_{2}^{2} \leq max \left\{ \frac{1}{7a}, \frac{L}{2\tau_{2}(1-\eta)} \right\} \frac{(\frac{L}{1}(x_{k})-m\pi)}{T}
$$
\nwhen we use $A_{r}m_{ij}$ to backtracking.
\n 0 on sequence
\n $Pick_{i}nq_{i}T = \Omega(\frac{1}{\epsilon})$ then
\n $3k \leq T$ s.t. $||\nabla f(x_{k})||_{2}^{2} \leq \epsilon$.

Proof: We prove it for
$$
x = \frac{1}{k}
$$
, the
rest of the proofs are similar.

\nBy DL, we have $Ykzo$

\n
$$
f(x_{k+1}) = \frac{1}{2k} ||\nabla f(x_k)||^2
$$
\nSummary all of these up to T-1

\n
$$
f(T) \le f(x_{p}) - \frac{1}{2k} \sum_{k=0}^{m} ||\nabla f(x_k)||^2
$$
\n
$$
= 2L [f(x_{p}) - \int f(x_{p})]
$$
\n
$$
= 2L [f(x_{p}) - \min f]
$$
\nDividing both sides by T gives the
result.

\nThe reason why we have such slow
converges is that our function can
grou very slowly

 χ * iS a second-order critical point Theorem. Assume f is ture diff and
 x^4 is a second-order critical point
 $\forall f(x^*)=0$ and $\nabla^2 f(x^*) \ge \lambda \mathbb{I}$ $\nabla^2 f(x) \geq \lambda \int_{0}^{x} |f(x)|^2 dx$
 λ min($\forall^2 f(x^*) \geq \lambda$ Assume that $\|\gamma_{k+1} - \gamma^{\star}\| \le \|\gamma_{k} - \gamma^{\star}\|$. Then, if x_0 is close enough to x_j^* $f(x_{k+1}) - f(x^*) \leq (1 - \frac{x^2}{4!2}) (\frac{0}{2} (x_i) - \frac{0}{2} x^*)$ $\frac{\lambda^{2}}{4L^{2}}$ $(\ell(x_{\gamma}) - \ell(x^{*}))$ $\forall k z 0.$ $H(x) = C1 - \frac{1}{4}$ $H(x) = C1 - \frac{1}{4}$ $H(x)$ is this ≤ 1 ?

For points where 2nd-order approximation grows, we have that if we start $\frac{1}{\sqrt{1-\frac{1}{100}}}\int_{\frac{1}{100}}^{\frac{1}{100}}\frac{1}{\sqrt{1-\frac{1}{100}}}\frac{1}{\sqrt{1-\frac{1}{100}}}}$

 $\Omega\left(\left(\frac{\lambda^{2}}{L^{2}}\right)^{1}\log\left(\frac{f(x)-f(x)}{E}\right)\right)$

T ⁼

$$
S\cup\{f_{i}c\} \text{ for } f(x_{\tau}) - f(x_{0}) \leq \varepsilon.
$$
\nProof: Since $\lambda_{min}(\nabla^{2}f(x))$ is conditional to $\lambda_{min}(\nabla^{2}f(x)) \leq \frac{\lambda}{2}$.

\n
$$
\lambda_{min}(\nabla^{2}f(x)) \geq \frac{\lambda}{2}.
$$

Then, for any 11511 st we can define $\Psi(t) = f(x^* + t\tilde{s})$ and $\Psi'(1) = \Psi'(0) + \int_{0}^{1} \Psi''(t) dt$ $\int \int f(x^4 + 5)^T 5 = 0 + \int_0^1 5^T 7^2 f(x^2 + 5) s dt$ $\geq \sum_{Z}$ 11912 \geq $\frac{\lambda}{2}$ $\|S\|^2$. $\parallel \nabla \oint (x+s) \parallel$. \Rightarrow $\frac{\lambda \parallel s \parallel}{2}$ $(\dot{\mathbf{r}})$ By Taylor Approximation:

L
$$
||s||^2 \ge f(x^* \cdot s) - (f(x^*) + o^r s)
$$

\n= $f(x^* \cdot s) - f(x^*)$ (0)
\nCombining (3) and (0)
\n $\frac{4}{\pi} \cdot \pi \cdot f(x^* \cdot s) = f(x^*)$ (4)
\nThen, using 0L, and the fact that $\chi_k \in B_{\chi_k}(x^*)$
\n $f(x_{k+1}) - f(x^*) \le f(x_k) - f(x^*)$
\n $= \frac{1}{2} || \nabla f(x_k)||^2$
\nfrom (4) $\le (1 - \frac{x^*}{4L^2}) (f(x) - f(x^*))$
\n $\frac{1}{2}$
\nBchter guarantees for convex functions
\nLemma (Chavcatenization L-smochhness for convex functions
\nfor convex functions)
\nSvpose that $f: \mathbb{R}^d \to \mathbb{R}$ is differ and

then the following are equivalent 1) I has L-Lipschitz gradient $\begin{array}{ccc} 1 & \text{if} & \text{has} \\ 2 & \text{if} & \text{has} \\ 2 & \text{if} & \text{if} \\ 2 &$ 3) $f(y) \leq f(x) + \sqrt[3]{f(x)}$, $y-x + \frac{1}{2} \|x-y\|^2$ $4x, y$ 4) $\big\{\nabla \frac{\rho(y)}{\rho(y)} - \nabla \frac{\rho(x)}{y}, \ y - x \big\rangle \geq \frac{1}{L} \|\nabla \frac{\rho(y)}{\rho(y)} - \nabla \frac{\rho(y)}{y}\|^2$ $\forall x, y.$ $\frac{1}{2}$ $\frac{1}{2}$ f the above 5) $\sigma^2 f(x) \leq L I \quad \forall x (LT - \nabla^2 f(x) z_0)$ 1 ntuition $f(x) + \langle \nu f(x), \gamma - x \rangle + \frac{1}{2} \|x - y\|^2$ $f(x)$ + Then the following are eq.

1) $f_{\text{abs}} = L - L \text{psch} / L = \text{grad } u$

2) $\frac{L}{2} = 1.12 - fL.$ is convert

3) $f(y) \leq f(x) + \sqrt{\pi} f(x) y - x$

4) $(\sigma f(y) - \sigma f(x), y - x) \geq \frac{1}{L}$

1) $(\sigma f(y) - \sigma f(x), y - x) \geq \frac{1}{L}$

1) $(\sigma f(y) - \sigma f(x), y - x) \geq \frac{1}{L}$

1)
 f has L-Lipschitz of
 $f(x) = f(x)$ is c
 $f(y) = f(x) + \sqrt{\pi} f(x)$
 $(\sqrt{\pi} f(y) - \sqrt{\pi} (x), y - x)$

further $f(x)$, y-x)

(above also equ
 $f(x) + \sqrt{\pi} f(x)$

(ition $f(x) + \sqrt{\pi} f(x)$)

(ition $f(x) + \sqrt{\pi} f(x)$)

(ition $f(x) + \sqrt{\pi} f(x)$) ζ of (x) , $y - x$

 $Proof: (2) \Leftrightarrow (5)$ $h(x) = \frac{1}{2} \|x\|^2 - \frac{1}{3}(x)$ is convex \Leftrightarrow $\nabla^2 h(x) z_0$ $LI \geq 7^2f(x)$ $\frac{1}{2}$ second order characterization (2) (3) $h(x) = \frac{1}{2}||x||^2 - f(x)$ is convex \Rightarrow h(x) + <0 h(x), y -xy \leq h(y) $\forall y$, λ \Leftrightarrow $\frac{1}{2}$ lik li² - f(x) + L < x, y - x> - < $P(f(x), y - x)$ 2 - $f(x)$ + L(x
4 $\frac{2|1|}{2}$ y¹² - $f(y)$ \Leftrightarrow $f(y) = f(x) + \sqrt{x}f(x)$, y $-x$) + $\frac{L}{2}$ || $x - y$ || ? TO BE CONTINUED NEXT CLASS .