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Lecture 5 HW1 : Due in 2 days.
Last time Today
- More convexity Subdifferential Calculus.
a Characterization ↳ What's to come?
smooth convex functions I Gradient Descent

↳ Subgradients

Subdifferential calculus.

Proposition : Subdifferential calculy
-

Suppose that fifiR&R are convex
I

functions . Then the following
holds
1 (Sums) G (2 + fe)(x) = G f(x) +2f(() ·↓ 1

2. (chain rule) If A : IR" -> IR linear

& (fA)(x) = A2f(AX)1

3. (Scalings
G (xf)(x) = xGf(x).1

5. (smooth functions) If I diff,
2f(x) = [5f(x)Y ·

t



4
. (Max) For all x , define M(X) = [ : 1 fill) =max(ex , fex]]

2 max &f , frg(x) = convgeafil iemexsy·
↑ convex hall .

&

5. (smooth functions) Assume that f, is diff at X.

Gf, (x) = [0f(X)3. < This one

you should preve.

We will not prove this result, as we need
additional machinary from convex geometry.
But you are free to use it.

What's next Algorithms !
We will cover Smooth first

Gradient Descent
Descent Lemma- & stepsizes/Lineseach↓
Nonconnex smooth opt guarantees

Y
Better guaran tees for convex

M complexity Lower Bounds
Acceleration



Bread & Butter
Gradient Descent of opt . Theory.
Gradient Descent (GD) updates

X+* XR-XVf(X) (i)
↑

Follow descent
direction !

-

Another view of GD hi

-
*

+ 1
= min (f(x) + <0 f(x)

, X
-Xi)
(

+↳ IX-X,/23.
22k

Why are (i) and (D) the same?

The loss function is convex

*hi(X) =0 = Of(X) +1#
Xx+ 1 = Xx - XkVf(Xx)

Intuition
This will be a

recurrent theme# in algorithm
design. ↳

- T- n . , /



Bread & Butter
DescentLemma s

of opt. theory.
Lemma. : For any f with L-Lipschift
-

gradient, and K20

f(tm) 1 f(x) - (x-)10f(1
T

consequences
1 . Decrease when (Ni-L) > 0

#
Xx7

2. Best decrease when Nic = l
-

L

of - It 110f(X)Il2z
Proof : We use the Taylor approximation-

bound

1. f(Fri) - (f(Fk) + (Df(x) , Y - Xi7 /
- E 11 xk+ 1

- Xk1

Subtituting -

f(xx+) - f(xx) + 2, 10f( Of(X)11



IMPRACTICAL

Rearranging
-> f(m) 1 f(Xk) -191-118f(*)?

J

How to pick stepsizes?

Natural idea
According to DL , we should pick
Xx= = 210f(XII2 descent.

The problem is that we don't know

La priori !

Exact lineseach
We know we have descent if we

follow -Of(X) .

Let's pick the best
descent : 1D problem

a = argmin f(xx - *0f(x)
LEIR

It outperforms Xi = " since

f(x + 1) = &(xx - XXf(x)) Ex
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= f(xx = = Xf(xx)) ·

It requires solving an

optimization problem at each iter

Backtracking Linesearch

Idea : How about we try smaller
-

stepsizes until we see sufficient
descent? I ↑ (2)

How do Wei
wate sufficient?

I make them (1)

small ?

(1) Decrease exponentially fast.
Pick a Ed and To (0,1)

and try
&
n
= a th for m 1 2, ...

(2) To measure descent we use



could not findapictureL

the so-called Armijo Condition:

Pick NE (os1) , declare sufficient
descent when

/

f(x,) - x8f(xx))[ f(Xk) - 14110f(x ,I (A)-
Intuition q(x)

M - = 12

I $(x)
f(x)V->E L

Y
Armijo Holds

-a
Multiple itervals.



The full backtracking algorithm

Pick = Sup (at holdseaton]

Lemma The Armijo condition
holds for

↓ E Co , 2 j

Prof : By the DL

f(x, x0f(Xx)) < f(x) - 1x
- /10fI
2

?
E f(x) - 2x110 fexli
X

would hotel if (x-2x"124xz

↳ X I 2(
-4)

1

I
-

L Al



PRACTICALConsequence
1
. Backtracking only require

flog steps to stop.
↑check this ! Armijos

② original
If we take n = t = 2 choice

a = ↳

and LE106 Function
is very unstable

=> 20 steps are enough.
2 . Note that2 minda , Call
Then

f(xm+ 1) = f(xi) - @i110f(X)/12

[f(Xk) - 7minga , 2 l11



Thus
, if a =1 and y = T =2L

-
Reasonable

.
= f(x) - EminEt , LYDOfC1

24
a = 1 = E

= f(xm) - 1 110f(X, /12
If L?1. 44

OnlyFost constant fraction.


