Letvin 3 Sep/03/2024

\nRecap
\n• Optimality conditions
\n• First order necessary and.

\nAgened
\n• Brist order self-recessarg and. For course, 15 seconds

\n• Bessel and order possibly order subficient conditions

\n\n- Beisen's property, 15.3 seconds
\n- Beisen's property, 15.4 seconds
\n- Beisen's property, 15.5 seconds
\n
\nOptimality conditions

\n\n- Subdifferential:
\n
\nTheorem (1st - order sufficient condition)

\nAssume that
$$
\oint
$$
 iR^d -3iR is a smooth

\n\n- Conver, 15.4 seconds
\n- Conver, 15.4 seconds
\n

1.30. Assume
$$
\nabla f(\vec{x}^*)=0
$$
. Then,

\nLet $\vec{g} \in \mathbb{R}^d \setminus \{x^*\}$.

\nDefine $\phi(t) = f(\vec{x}^* + t(\vec{g} - \vec{x}^*))$.

\nBy *chain rule*

\n $\phi'(t) = (\vec{g} - x^*) \nabla f(x^*) = 0$

\nFor any $t \in \mathbb{Z}^d$, $1 \neq 0$ and $\vec{g} = 0$.

\nFor any $t \in \mathbb{Z}^d$, $1 \neq 0$ and $\vec{g} = 0$.

\nFor any $t \in \mathbb{Z}^d$, $1 \neq 0$ and $0 \neq 0$.

\nThus, $\phi'(t) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \right)$

\nThus, $\phi'(t) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right) \right)$

\nTaking limits on both sides, $0 = \phi'(0) \Leftrightarrow \frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right)$.

\nThus, $\phi'(0) = \frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} \right)$.

Theorem (2nd-order messary cond) Suppose $f: \mathbb{R}^d \to \mathbb{R}$ twice diff (c^2) . $IP \tilde{x}$ is a local min \Rightarrow $\forall f(x^*)=\text{and}$ $S^{\top}\nabla^2 f(x^*)=\text{.}$ V SER^d $\nabla f^{2}(\vec{x}^{*})$ is positive $\nabla_{1}^{2}(\overline{x}^{*})\geq0.$ $\begin{array}{c} \nabla \text{se} \\
 \downarrow \text{se} \\
 \downarrow \text{se} \\
 \downarrow \text{se} \\
 \end{array}$ Intuition

Then by def
\n
$$
0 > \frac{1}{2} d''(0) = \lim_{k \to 0} \frac{\phi(k) - \phi(k)}{k^2}
$$

\nFor small enough $6 > 0$
\n $0 > \frac{1}{4} d''(0) \ge \frac{\phi(k) - \phi(0)}{b^2}$
\n $\Rightarrow \rho(\bar{x}^4) > \rho(\bar{x}^4 + b5)$.
\n $\Rightarrow \rho(\bar{x}) = \bar{x}^3$
\n $\rho(\bar{x}) = -\bar{x}^4$
\n $\rho(\bar{x}) = -\bar{x}^4$
\n $\rho(\bar{x}) = 0$
\n $\Rightarrow \rho(\bar{x}) = -\bar{x}^4$
\n $\rho(\bar{x}) = 0$
\n $\Rightarrow \rho(\bar{x}^4) = 0$

where $\sigma_f^2(\sigma) \neq 0$. Theorem : 2nd - order sufficient cond. Suppose $f: \mathbb{R}^d \rightarrow \mathbb{R}$ is twice diff. If $\bar{x}^* \in \mathbb{R}^d$ satisfies that $\nabla^2 f(\vec{x}^*) = 0 \implies \vec{x}^*$ is a strict local $\frac{1}{2}$ $S^{T}\nabla^{2}\hat{\beta}(\vec{x}^{4})S>0$ tseR^d. Intuition $r(x)$
 $r = \frac{1}{\sqrt{2}}$
 $r = \frac{1}{\sqrt{2}}$ The function curves # The function curves
upwards in every $direction \Rightarrow x^4$ is local n every
x⁴ is loca
frict loca
minimum. Proof : Suppose ** satisfies the assume

tions .

Let
$$
\overline{u} \in \mathbb{R}
$$
, with $||\overline{u}|| = 1$
\nLet $\Psi(s) = f(\overline{x} + s\overline{u})$.
\nBy the Fundamental Theorem of
\ncalculus
\n
$$
\Psi(s) = \Psi(s) + \int_{0}^{s} \psi'(\alpha) d\alpha
$$
\n
$$
A_{PP}^{(1)}(y) = \Psi(s) + \int_{0}^{s} \psi'(\alpha) d\alpha
$$
\n
$$
A_{PP}^{(1)}(y) = \Psi(s) + \psi'(s) + \int_{0}^{s} \int_{0}^{\alpha} \psi''(\beta) d\beta dx
$$
\n
$$
H_{\mathbf{W}}^{(1)}
$$
\nSince $\nabla^{2} f(x^{*})$ is continuous and
\n
$$
\lambda = \lambda_{min} [\nabla f(x^{*})] > 0
$$
, then for all
\npoints \forall close to x^{*}
\n
$$
\lambda_{min} (\nabla f(y)) \ge \frac{\lambda}{2}
$$
.
\nThen, for small enough is
\n
$$
\Psi(s) = \Psi(s) + \Psi(s) + \int_{0}^{s} \int_{0}^{x} \overline{u}^{T} \nabla^{2} f(\overline{x}^{*} + \beta \overline{u})
$$

$$
\geq \quad \Psi(\omega) + \frac{\lambda}{2} \int_{0}^{\infty} \frac{1}{2} d\rho d\alpha
$$

= \quad \Psi(\omega) + \frac{\lambda s^{2}}{4}

$$
\Rightarrow \quad \Psi(0)
$$

 \Rightarrow $f(\bar{x}^*) = \psi(0) < \psi(s) = f(\bar{x}^* + s\bar{w})$ $\varphi(s) = \iint_{cusp}$ any point >>
in a near by **LP(S) =**
cuny poir
a near
radius. **17**

Basics of convexity We already saw comex functions $Del: \qquad fC \neq \bar{x} + (-1) y) \leq t f(\bar{x}) + (-1) f(\bar{y})$ \forall xig, te [0,1]. There is also a natural notion of convexity for sets Def A set C = IR^d is convex if

Proposition : A function is convex Proposition: A function is co
Iff its epigraph is convex. Proof: HWL

The relationship between comex functions go deeper than this. If you are interes teel consider taking "Intro to Convexity" Proof: HWL
The relationship beth
o deeper than the
led consider taking
with Amitabh Bess!
mma: Assume that C_3 E $\,$ R $\,$ " wath Amitabh Bass.
Lemma: Assume that $C_1, C_2 \in \mathbb{R}^d$ convex sets. Then, the following are convex 1. (Sealing) $\overline{R_+C_1} = \{\overline{x_1 + \overline{x_2}} \mid \overline{x_1} \in C_1, x_2\}$

2. (Sums) $C_1 + C_2 = \{\overline{x_1} + \overline{x_2} \mid \overline{x_1} \in C_1, x_2\}$

3. (Intersections) $C_1 \cap C_2$. 2. (Sums) $C_1 + C_2 = \left\{ \bar{\chi}_1 + \bar{\chi}_2 \mid \bar{\chi}_1 \in C_1, \chi_2 \in C_2 \right\}$ 4. (Linear images and preimages) Let $A: \mathbb{R}^d \to \mathbb{R}^n$ is linear, Let $A: \mathbb{R}^d \to \mathbb{R}^n$ is linear,
 $A C_1$ and $A^{-1}C_3$
Intuition AC_1 and $A^{-1}C_3$ are contribution are convex. 2. (Sums) $C_1 + C_2 = \{\overline{x}_1 + \overline{x}_2 \}$ $\overline{x}_1 \in C_1$, $x_1 \in C_2$

3. (Intersections) $C_1 \cap C_2$.

4. (Livear images and preimages)

Let $A : \mathbb{R}^d \to \mathbb{R}^n$ is linear,
 $A C_1$ and $A^{-1} C_3$ are convex.

Intuition
 $\begin{bmatrix}$

