
Lecture 3 Sep/03/2014

Recap
· Optimality conditions
↳ First order necessary cond.
↳ First order sufficient cord. convexfor

Agenda
functions .

is a d

↳ second order messary
cond.

↳ second order sufficient cond.
· Basic convex analysis. - convex sets

-> smooth comex
functions

Optimality conditions -> subdifferentials .

Theorem (1st-order sufficient condition)
Assume that f :Rd-IR is a smooth
convex function.
Then

,
x
* satisfies Of(X*) =0

iff X
*
is a global minimizer.

+

Prof : "7 "Done.



"E"Assume Of (I* ) =0. Then ,
Let Jera,axby.
Define & (t) = f(x* + +(y - y*) .
By chain rule

!'(q) = (y - x+)vf(x
*) = 0

For any te 20, 17
we have

**+ + (j -y
*)) - f(x*)

t 11y -
*
1

Convexity [11** ) + + f(j) - f(x*)
t Il y -X* 11

= fiy) - -(5+ 1)
- (ly -y

Taking limits on both sides

0 = d'(d) = f(y) - f(x) . I
Try-X& I



Theorem (2nd-order messary cond)
-

Suppose f : /R& +IR twice diff (C).

If X* is a local min

=> + f(x)=0 and STX2(**S20

Y #Seira

Of(** ) is positive
semidefinite

VI(X
*
)30.

Intuition
If 0f(x) =0 , but

JS s 02f(x*) S 8

Exists directionFi downhill (2nd-order(
=> Better point .

Proof : Suppose seeking contradiction
of(X) =0 and 75 · 578f(x*50.

Define : d(t) = f(x* + +5).
↑ norm 1.



then by def

> "Co = lim
-10

t -0 -2

For small enough too

of "(v) P(H- p(0)
-2

=> f( ** ) > f(x* + +5) -
Y
J

Is this sufficient ?
No ! Same example as before

f(x) = 43

f"(0) = 0 Fi
f(x) =- x4
f"(0) = 0 I

Ex : come up
with a 20 example



where p(0) 10. +

Theorem : 2nd - order sufficient cond.

Suppose f:-R is twice diff.

If *ER& satisfies that

7f(**) =0 = X
*
is a strict local

f(y O minimum

t
ST02f(** S > O USER?

Intuition:
-

The function curves
~ every# upwards in

direction- > X
*
13

strict local
minimum.

Proof : Suppose ** satisfies the assume

tions .



Let E IR
,
with 11 ll =

1.

Let Y(s) = f(+ su)

By the Fundamental Theorem of
calculus

Y(s) = y(s) + gy'()da
⑧

Applying it again on y'(t).
S X

y(s) = Y(0) + y (d) + j9y"(B)dBd
X o 0

HW +

Since 82f(X*) is continuous and
=↓min (Pf(x*(1) O , then for all

points y close to x
*

↓
min (8f(y)) : I

Then, for small enough s

y(s) = 4 10tty'(d) + [02(+Bi)
o udBdx



↳ yco)+ do da

o O

= Y(0) + 1
> y(0)

=> f(x*) = y(0) < y(s) = f(y
*
+ Si)

↑

any point t
in a nearby
radius.
·

Basics of convexity
We already saw comex functions
Def : f(tX + (1- t(y) < + f(x) + (1-t)f()

V xiy , te [0,1] .

There is also a natural motion of
convexity for sets

Def A set 2 : /Rd is convex if



for all Xiyc and tE20 ,1)

ty +( -t)y C .

Intuition

Segments never go out !

~
X

. it
There is a deep connection between
convey sets and convex functions.

Def : Given a convex function f:RP-IR,-

its epigraph is given by
epi f := G(x , t)1 f(x) [t]

/Sett



Proposition : A function is convex

iff its epigraph is convex.

Proof : HWL +

The relationship between comex functions

go deeper than this . If you are interes
fee consider taking "Intro to convexity
with Amitabl Bee. CEIR"
Lemma: Assume that C

,
C2E" convex sets.

Then
,
the following are convex

1
. (Sealing) IR+ C = <X 1X20 and X-b)
2 . (Sums) C +C = <5 ,

+
2 / X , EG , XE2]

3. (Intersections) C , 1C2.

4 . (Linear imagesand preimages
Let A : Ra -> R is linear,

AG and A"Cy areconvexa
Intuition -

T

#Fo



Proof: Exercise
#

Equivalence of operations
Function Epigraph
-

xf(X(x) ↑ epif

man fi I I epiff(Ax) (AxI] "epif


