Lecture 3 Sep/03/2024
Recap
• Optimality conditions
5 First order veccssary cand.
5 First order sufficient cond. for convex
Agenda
5 second order vessary cond.
5 second order vessary cond.
5 second order sufficient cond.
• Basic convex avalysis. -> Convex sts
-> Sinceth cover
Spectra cover
Optimality conditions -> Subdifferentials.
Theorem (1st - order sufficient condition)
Assume that filled -> IR is a smooth
Convex function.
Then, x* satisfics
$$\nabla f(x*)=0$$

Iff x* is a global minimizer.
Proof: "E" Oone.

"=>" Assume
$$\forall f(\bar{x}^*) = 0$$
. Then,
Let $\bar{y} \in \mathbb{R}^d | Ax^* j$.
Define $\phi(t) = f(\bar{x}^* + t(\bar{y} - \bar{x}^*))$.
By chain rule
 $\phi'(0) = (\bar{y} - x^*) \forall f(x^*) = 0$
For any $t \in [0, L]$ we have

$$\frac{f(\bar{x}^* + t(\bar{y} - \bar{x}^*)) - f(x^*)}{t ||\bar{y} - \bar{x}^*||}$$
(convexity) $\leq (1 - \theta f(\bar{x}^*) + t f(\bar{y}) - f(x^*))$
 $= \frac{t(f(\bar{y}) - f(\bar{x}^*))}{||\bar{y} - \bar{x}^*||}$
Taking limits on both sides
 $0 = \phi'(0) \leq \frac{f(\bar{y}) - f(\bar{x}^*)}{||\bar{y} - \bar{x}^*||}$

Theorem (2nd - order nessary cond) Suppose f: IRd > IR twice diff (C2) If xt is a local min $\Rightarrow \nabla f(\bar{x}^*) = 0$ and $S^T \nabla^2 f(\bar{x}^*) S \ge 0$ $\forall S \in \mathbb{R}^d$ $\nabla f^2(\bar{x}^*)$ is positive semdefinite マネ(末*)と0.

Then by def

$$0 > \frac{1}{2} d''(0) = \lim_{t \to 0} \frac{\phi(1) - \psi(6)}{t^{2}}$$
For small enough $6 > 0$

$$0 > \frac{1}{4} \phi''(0) \ge \frac{\phi(1) - \phi(0)}{t^{2}}$$

$$9 f(\overline{x}^{4}) > f(\overline{x}^{4} + t\overline{s})$$
Is this sofficient?
No! Same enample as before

$$p(x) = x^{3}$$

$$f''(0) = 0$$

$$f(x) = -x^{4}$$

$$f''(0) = 0$$
Ex: Come up with a 20 example

where $\nabla f(0) \neq 0$. Theorem: 2nd-order sufficient cond. Suppose f: Rd R is twice diff. If \$\$ ERd satisfies that $\nabla f(\vec{x}^*) = 0 \Rightarrow \vec{x}^*$ is a strict local $\nabla^2 f(\vec{x}) > 0 \qquad \text{minimum}$ $5^T \nabla^2 f(x^*) > 0$ $\forall s \in \mathbb{R}^d$. Intuition: The function curves opwards in every direction => x* is strict local minimum. Proof: Suppose x * satistics the assump

tions.

Let
$$\overline{u} \in |R|$$
, with $||\overline{u}|| = 1$
Let $\Psi(s) = f(\overline{x} + s \overline{u})$.
By the Fundamental Theorem of
calculus
 $\Psi(s) = \Psi(s) + \int^{s} \psi'(x) dx$
Applying it again on $\Psi'(t)$.
 $\Psi(s) = \Psi(o) + \psi'(o) + \int^{s} \int^{x} \psi''(B) dp dx$
Hw1
Since $\nabla^{2} f(x^{*})$ is continuous and
 $\lambda = \lambda_{\min} (\nabla f(x^{*})) > 0$, then for all
points ψ close to x^{*}
 $\lambda_{\min} (\nabla f(y)) \ge \frac{\lambda}{2}$.
Then, for small enough s
 $\Psi(s) = \Psi(0) + \psi'(o) + \int^{s} \int^{x} \overline{u}^{*} \nabla^{2} f(\overline{x}^{*} + p\overline{u})$
 $u dp dd$

$$\geq \Psi(0) + \frac{\lambda}{2} \int_{0}^{s} \int_{0}^{\alpha} 1 d\beta d\alpha$$

= $\Psi(0) + \frac{\lambda s^{2}}{4}$
> $\Psi(0)$

$$\Rightarrow f(\bar{x}^*) = \varphi(0) < \varphi(s) = f(\bar{x}^* + s\bar{u})$$

$$comp \text{ point } \mathcal{N}$$

in a near by
radius.

Basics of contexity We already solv convex functions Def: $f(t\bar{x} + (i-t)g) \in tf(\bar{x}) + (i-t)f(\bar{y})$ $\forall \bar{x}, \bar{y}, t\in [0,1].$ There is also a natural notion of convexity for sets Def A set $C \in \mathbb{R}^d$ is convex if

Proposition: A function is context off its epigraph is convex. Proof: HWL. 4

The relationship between comex functions go deeper than this. If you are interes ded consider taking "Intro to Convexity" with Amitabh Base. C3 E IR" Lemma: Assume that C1, C2 EIR" convex sets. Then, the following are convex 1. (Scaling) IR+C1= 1/x 1/20 and xEC1 2. (Sums) $C_1 + C_2 = (\bar{x}_1 + \bar{x}_2) + \bar{x}_1 \in C_1, x_2 \in C_2$ 3. (Intersections) C, 1 C2. 4. (Lincar images and preimages) Let $A: \mathbb{R}^{a} \to \mathbb{R}^{n}$ is linear, AC_1 and A^-C_3 are convex. Intuition $c_1 + c_2 = c_1 c_2$

