
Lecture 2 Aug(29/24

Agenda
· calculus review
· Optimality Conditions

Calculus Review

Consider an smooth function
d

f : R - IR , i.e, there exists
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If I is differentiable at X
,
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2f(x)
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This doesn't necessarily hold even

if the partial derivatives exist .
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We say that a function in

twice differentiable at x if
= a linear mapping 82f(x) : /R

&
-IR
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lim)- (f(x) + - f(x) h +EEVEL)
he 0 lll2

= O.

Intuition f(x) + 0f(x)Th
Same second

f (x+ h) -
-

in the limit.#[
order behavior



Theorem :
Let f : R&-IR. Fix Y

,
JER

&
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Define Y(z) = f(y + +5) .
· IfI is differentiable Chain

So is o and I rule
Y'(t) =558f(x - +5)

·If I is twice differentiable
so isa and

4"(t) = 5502f(x + +5)s
-

Why do we care ?
This gives a nice way

to compute
derivatives !

Theorem (First-order Taylor approximation)
-

Let I have an L-Lipschifz continuous

gradient (fx, y 10f(x)-0 f(gllILIX-[11).



Then

(f(X +s) - f(x) + 5f(x)"s) - - 11SIP.

Proof Exercise in HW1. +
- I

-

Theorem (Second order approximation)
-

Let f have a K-Lipschitz continuous

Hessian V2f2(X). ↑
writ the operator

Twen norm.

(f(x + 1) - (f(x) + 5f(x)"h +740))/
Prof Exercise in HW1.

-

I

Why do we care ?

If you end up doing research, approxima
tious will simplify things for you !
Both in calculations (Physists are famous
for doing this) and for algorithms.



I optimazation
-

antively algorithmasens!)minimize

-
More*about
this later.



Optimality conditions
Types of minimizers

Assume f : /R
&
-IR is a function.

Consider
min f(x)
-

&

· Global optimizers (The holy
grail

A point X
*
is a global minimizer

if F* R&

f(y*) = f(x)

① Local minimizer

A point X
*
is a local minimizer if

52 s+ Ve B(x) 4. Gx/x-*2]
f(x*) - f(x)

A pointX* is a strict (local) minimizer
Fed (59 VEB(** ))

f(x
*)< f(x)
Notice the

STRICT equation.



Example
↓
local max

g

/[strict localmin ·↑
I

local min [ &
- 5
global min

When we draw a function in

2d
,
it's easy to find a

minimizer

But when the

in There
domain is high-dim,

&&it is ! e.g.,
d = 200; it's impossible
-

So we need to be able to find
conditions that ensure (or hint)
that a point is an optimum.
That's what optimality conditions
are all about !



We will cover 4 types of optimality
conditions
· First-order necessary condition
① First-order sufficient condition

for convex functions
↳ Second-order nessary condition
↳ second-order sufficient condition
Theorem First-order messag

condition

Suppose f is cont diff ((t)
If X
*
is a local min ,

E Xf(y) = 0.

Intuition
If Of(x* ) 70

·i Directiondownia
Prof : Assumelooking for a contra

-

-

diction
, vf(x) % 0 . - vf()

-

Define -jS
=

11 Of() Il

↓ (t) = f(x ++ 5)



Then , by the chain rele

6'(0) = 50f(**) = - 110f(x*)11 > 0.

By the def - of the derivative
----0)

↑

6'(0) =E
-P(

-
-Z0

Then, all for small enough t > o

P(t) - b(0) It so

=> f(y*+ +5) < f(x*) Y
Critical I
Y

Is 1f(X* ) =0 sufficient?

No ! f(x) =+3
↑

f(x) =-x-



In order to define a sufficient
condition we need to define
a special family of functions
Def : A function f :Ra-> IR is

convex if FX,YE9 and Eco,)

f (tX + (1-t)y) 1 ff(x) +( -t)f(y)+
Intuition

·
↑

tx + ( -t)y

Theorem (1st-order sufficient condition)
Assume that f :Rd-IR is a smooth
convex function.
Then

,
x
* satisfies Of(X*) =0

iff X
*
is a global minimizerit


