Lecture 19

Lost time cost time
D Exam results. Le Convergence guarantees DEXam results.
> Modified Newton Modified Newton & Computational concerns ^a ³ variants ^I ^D Secant method I Quasi-Newton Methods Convergence Guarantees When $\nabla^{\mathbb{Z}} f(x_k) \succeq \varepsilon \mathbb{I}$, all the variants yield $B_{\kappa} = \nabla^2 f(x_{\kappa})$. Thus, the temple yield $B_{k} = \nabla^{2} f(x_{k})$. Thus, the
He reduces to Newton's method. te reduces to Newton's method.
So local quadratic convergence still holds lunder strong convexity). For global convergence me need Lunder strong connu
For global conver
a Descent Lemma! Lemma: Suppose ∇f is L-Lipschitz and $\overline{\mathbf{r}}$ a_{k+1} $\begin{array}{ccc} \text{where} & \text{where } &$ Then, $f(x_{k}) \leq f(x_{k}) - \left(\frac{\alpha}{\lambda_{max}(B_{k})} - \frac{L\alpha^{2}}{2 \lambda_{min}^{2}(B_{k})}\right) \| \nabla f(x_{k}) \|^{2}$

Proof : HW 5.

This recovers the GD result when $B_{\kappa} = \mathbb{L}$. r
I re
I.

 B_{κ} = I.
Backtracking works. Using this Lemma we derive $f(x_{k_1}) = f(x_k) - c \| \nabla f(x_k)\|^2$ $= \oint c \times d$) - $|| \nabla f(x_k)||^2$
 $\subset \sum_{i=0}^{K} || \nabla f(x_i)||^2$ which leads to the following result r esult
Theorem : $l\frac{p}{r}$ l : R & wich
sult
reorem -IR has L-lips $\begin{array}{ccc} \n\text{theorem} & \text{if } f: \mathbb{R} \rightarrow \mathbb{R} \text{ was } L \\
\text{chitz } \text{gradient } & \text{and } & \text{min } f > 0 \text{,} \n\end{array}$ and Bi has exgenvalves bounded away from 0 and 00, then there prom o and ∞ , then ther
exists a constant M s.t re
|-
| $min_{i \in \mathcal{U}} |i \nabla f(x_i)| \leq$ $\min_{\tilde{u} \leq k}$ $\|\nabla f(x_i)\|$ $\leq \frac{M}{\sqrt{k}}$

 $Proof: HWS.$

Intuition Modified Newton converges globa $\lim_{\Delta t \to 0} \lim_{\delta t \to 0} \frac{1}{\delta t}$, slowly, but if we approach α , slowing, so, if we approach
a "strong" local minimum ($\widehat{V}_+^2(x^*)$ zeI) then, it recovers Newton's fast My, slowly, but if
a "strong" local min
then, it recovers
gradratic convergence. - Intuition
Modified Newton converges
Ily, slowly, but if we approach
a "strong" local minimum (1744)
Henri it recovers vectors of
graduatic convergence.
Computational concerns (Again gradrotic convergence. \sim \uparrow \uparrow Newton can be unstable

Computational concerns (Again) We still need to compute $\sigma^2 f(x)$, which consumes olds) when done directly.

We might also have bad condition
\nning. If
$$
\nabla^2 f(x_k)
$$
 is singular
\n $\Rightarrow B_k$ has eigenvalues $\Delta(e)$
\n $\Rightarrow B_k$ has eigenvalues $\Delta(e)$
\n $\Rightarrow \text{for } e_k$ will about ϵ .
\nand conditioning does appear
\nin product, for example when
\n $\text{corsidering } high \text{ degree polynomial}$
\n $\text{f(x)} = (k - \lambda I) \times 0$
\n $\text{if (x)} = (k - \lambda I) \times 0$
\nThen $\|\text{F(x)}\|^2$ has degree 4.
\nAs another simple example:
\n $\{\text{f(x, y)} = \lambda^2 + \mu^4\}$
\n $\Rightarrow \nabla f(x, y) = \begin{bmatrix} 2x \\ 4y^3 \end{bmatrix}$ and $\nabla^2 f(x, y) = \begin{bmatrix} 2 \\ 4y^2 \end{bmatrix}$
\nAs $y \Rightarrow b$, $\nabla^2 f(x, y) \Rightarrow \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

Idea : Generalize the secant method Just to remind you, the secant method finds, a root of $F: \mathbb{R} \to \mathbb{R}$ by approximating $\nabla F(X_{k})$ 2 $F(x_{k})$ white the secan
white the secan
fine of
 $f(x_{k})$ - $F(x_{k-1})$
 $\frac{F(x_{k}) - F(x_{k-1})}{B_{k}}$ $F(Y_{k-1})$ $\chi_{\mathbf{k}}$ $\frac{r(x_{k}) - r(x_{k})}{\frac{x_{k} - x_{k-1}}{B_{k}}}\n{f(x_{k}) - r(x_{k})}$ $- x_{k-1}$ and updating B_{κ} ope
X_{ktl} $= \gamma_{\perp} - F(x_{\perp})$ x_{k} - $\frac{x_{k-1}}{B_{k}}$
 x_{k} - $\frac{F(x_{i})}{B_{k}}$ D B_{k} locally It is "superlinear
yet not quadratic. A $\nabla F(x_{k}) \approx \frac{F(x_{k})}{2}$
 $\nabla \log(\alpha + \alpha) = \frac{F(x_{k})}{2}$
 $\chi_{k+1} = \chi_{k} - \frac{F(x_{k+1})}{2}$ Er).
Br locally
yet not gradratic. $\begin{array}{ccc} \uparrow & \uparrow & \downarrow & \downarrow \ \uparrow & \downarrow & \downarrow & \downarrow \ \uparrow & \downarrow & \downarrow & \downarrow \ \end{array}$ F(x_k) $\approx \frac{F(x_k) - F(x_{k-1})}{x_k - x_{k-1}}$
updating $\frac{B_k}{B_k}$ soultz
 $x_{k+1} = x_k - \frac{F(x_k)}{B_k}$, soultz
It is soperline
 x_k and x_k
 x_{k+1} x_k x_{k+1} soultz
accolumntation thessian I_t avoids
 λ_{K-1} χ_{K} $\chi_{K^{*1}}$ $\chi_{K^{*1}}$ Jacobian/Messian. Goal : Get these two - features for $\mathsf{I\!R}^{\mathbf{d}}$. Get these two features for
(Hopefully at a cost of Old?)). No inverses .

The model build by the secant
\nmethod process: first order
\ninformation of
$$
x_k
$$
 and x_{k-1} :
\n $m_k(x) = f(x_k) + f'(x_k)(x - x_k)$
\n $+ \frac{1}{2} \left(\frac{f'(x_k) - f(x_{k-1})}{x_k - x_{k-1}} \right) (x - x_k)$
\nNotice that both
\n $m'_k(x_k) = f'(x_k)$ and $m'_k(x_{k-1}) = f'(x_{k-1})$.
\nInprirel by this, we want a
\nmethod that solves
\n(1) B_k symmetric, this is not super part.
\n(2) $m_k(x_k) = f(x_k)$, $Om_k(x_k) = Df(x_k)$
\n(3) $Om_k(x_{k-1}) = \nabla f(x_k) = Capbre curvature$
\n(4) $B_k > 0$
\n(5) Udpating and inverting B_k is deep
\n Out^2
\nBut (3) use that that

By (2) we have that $m_{\kappa}(x) = \beta(x_{\kappa}) + \nabla \beta(x_{\kappa})^{\dagger}(x-x_{\kappa}) + \frac{1}{2}(x-x_{\kappa})^{\dagger}B_{\kappa}(x-x_{\kappa}).$

Then, taking derivatives
\n
$$
Um_k(x_k) = \nabla f(x_k) + B_k(x_{k-1} - x_k) = \nabla f(x_{k-1})
$$

\n $\Rightarrow B_k(x_{k-1} - x_k) = \nabla f(x_{k-1}) \nabla f(x_k)$.
\n $\Rightarrow B_k(x_{k-1} - x_k) = \nabla f(x_{k-1}) \nabla f(x_k)$.
\nThus gives $\frac{d(d+1)}{2}$ variables and
\nd constants (losts of solutions).
\nTo satisfy (6) we need cheap
\nopdales B_k from B_{k-1}^{-1} :
\n(6a) $B_k - B_{k-1}$ is rank one.
\nWe average an important result.
\nLemma (Sherman-Morrison) For
\nany invertable $x, v \in \mathbb{R}^d$. If $v^T A u \ne 1$,
\nthen $(A + uv^T)$ is invertable and
\n $(A + uv^T)^{-1} = A^{-1} - \frac{(A^{-1}u)(A^{-1}v)^T}{1 + v^T A u} - 1$

 $Proof:$ $\not\! H \vee S$ (woodbury Identity) AWS (Woodbury Identity) You'll prove a more general : HW 5 (Woodbury Identity
You'll prove a more general
formula for rank r updates. You'll prove a more generales.
Pormula for rank rupdates.
Update formulas for Guasi-Newton. We assume $(1)-(4)$, and $(5a)$, then WE IRd B_{k} - B_{k-1} = α ww^T ac ik Simmetry Because of (3) $B_{\mathbf{k}+\mathbf{l}}$ $S_{k+1} = \mathcal{Y}_{k+1}$ Let's consider two cases $Case 1$ $B_k S_{k+1}$ = $y_{k_{t_1}}^{k_{t_1}}$ ases
 $y_{k_{t_1}}$ = W = O. $Case 2 B_{K}S_{K+1} \neq 4K+1$ \Rightarrow (B_K + α ww¹) S_{K 11} = y_{k+1} $= 6 \times w^{-1} S_{k+1}$
 $= 6 \times s_{k+1} - y_{k+1}$ $\Rightarrow -(\alpha w^T s_{k+1}) w = B_{k} s_{k+1}$
 $\alpha w^T s_{k+1} \Rightarrow w = \beta (\beta_k s_{k+1} - y_k)$ There f -re,

$$
B_{k+1} = B_{k} + B_{k}^{2}g_{k} (B_{k} S_{k+1} - y_{k}) (B_{k} S_{k+1} - y_{k})
$$

\nThen we obtain
\n
$$
B_{k} S_{k+1} + 3 (B_{k} S_{k+1} - y_{k+1}) (B_{k} S_{k+1} - y_{k+1}) S_{k+1} = y_{k+1}
$$

\n
$$
\Rightarrow (1 + 3 (B_{k} S_{k+1} - y_{k+1})^{T} S_{k+1}) B_{k} S_{k+1}
$$

\n
$$
-(1 + 3 (B_{k} S_{k+1} - y_{k+1})^{T} S_{k+1}) y_{k+1} = 0
$$

\n
$$
B_{k+1} = 0
$$

$$
\Rightarrow \quad \gamma = \frac{1}{(\beta_{k}S_{k+1} - \beta_{k+1})^{T}S_{k+1}}
$$

Thus

Thus
\n
$$
\beta_{k+1} = \beta_k - \left(\frac{\beta_k s_{k+1} - y_k}{\beta_k s_{k+1} - y_{k+1}}\right)^T
$$
\n
$$
\begin{array}{ccc}\n\beta_k s_{k+1} - y_{k+1} & \frac{\beta_k}{\beta_k s_{k+1} - y_{k+1}} \\
\beta_k s_{k+1} & \frac{\beta_k}{\beta_k s_{k+1} - y_{k+1}} \\
\beta_k s_{k+1} & \frac{\beta_k}{\beta_k s_{k+1}}\n\end{array}
$$
\nBy, *issue* here: β_{k+1} might not be
\npositive definitile!

 B_{k+1} might not be positive definite!