Lecture 19

Last time Dervergence guarantees DExam results. · Computational concerns > Modified Newton D Secont method D Quasi-Newton Methods 03 variants Convergence Guarantees When $\nabla^2 f(x_k) \geq \epsilon I$, all the variants yield $B_{K} = \nabla^{2} f(X_{K})$. Thus, the templa te reduces to Newton's method. So local gradrafic convergence still holds Lunder strong convexity). For global convergence ue need a Descent Lemma. Lemma: Suppose Pf 13 L-Lipschitz and $\chi_{KT1} \leftarrow \chi_{k} - \chi_{k} B_{k}^{-1} \nabla f(\chi_{k})$ with $B_{k} \neq 0$. Then, $f(x_{k_1}) \leq f(x_k) - \left(\frac{\alpha}{\lambda_{max}(B_k)} - \frac{L\alpha^2}{2\lambda_{min}^2(B_k)}\right) \|\nabla f(x_k)\|^2$

Proof: HW S.

This recovers the GD result when $B_{k} = I$.

Backtrackinez works. Using this Lemma ve derive $f(x_{kt}) \leq f(x_k) - c \|\nabla f(x_k)\|^2$ < f(x0) - c Ž 11 ∇ f(xi) 112 which leads to the following result Theorem: If f: IRd -> IR has L-Lips chitz gradient and min f>0, and Br has eigenvalues bounded away from 0 and 00, then there crists a constant M s.t. $\min_{i \leq k} \|\nabla f(x_i)\| \leq \frac{M}{\sqrt{k}}$

Proof: HW S.

Intuition Modified Newton converges globa Ily, slowly, but if we approach a "strong" local minimum (Ff(x*) ZEI) then, it recovers Newton's fast gradratic convergence. Pecover Newton's Newton un stable

Computational concerns (Again) We still need to compute $\nabla^2 f(x)$, which consumes $O(d^3)$ when done directly.

We might also have bad condition
ning. If
$$\nabla^2 f(X_k)$$
 is singular
 $\Rightarrow B_k$ has eigenvalues $O(E)$
we have to be
careful about E.
Bad conditioning does appear
in proctice. For example when
considering high degree polynomial
systems:
In HW 4 we have
 $F(x) = (A - \lambda I) x$
 $x^T x - 1 = 0$
Then $\|F(x)\|^2$ has degree 4.
As another simple example:
 $f(x, y) = x^2 + y^4$
 $\Rightarrow \nabla f(x, y) = \begin{bmatrix} 2x \\ 4y^3 \end{bmatrix}$ and $\nabla^2 f(x, y) = \begin{bmatrix} 2 \\ 12y^2 \end{bmatrix}$
As $y \Rightarrow 0$, $\nabla^2 f(x, y) \rightarrow \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

I dea: Generalite the secant method Just to remind you, the secant method finds a root of $F:\mathbb{R} \to \mathbb{R}$ by approximating $\nabla F(X_{k}) \approx \frac{F(X_{k}) - F(X_{k-1})}{\chi_{k} - \chi_{k-1}}$ and updafing B_{k} $\chi_{k+1} = \chi_k - \frac{F(\chi_k)}{2}$ Br bocally It is superlinear yet not quadratic. It avoids It avoids computing the XK-1 XK XK+1 Jacobian / Hessian. Goal: Get these two features for IRd. (Hopefully at a cost of Old 2)). No inverses.

The model build by the secont
method "preserves" first order
information af
$$\chi_{k}$$
 and χ_{k-1} :
 $m_{k}(\chi) = f(\chi_{k}) + f'(\chi_{k})(\chi - \chi_{k})$
 $+ \frac{1}{2} \left(\frac{f'(\chi_{k}) - f(\chi_{k-1})}{\chi_{k} - \chi_{k-1}} \right) (\chi - \chi_{k})^{2}$
Notice that both
 $m'_{k}(\chi_{k}) = f'(\chi_{k})$ and $m'_{k}(\chi_{k-1}) = f(\chi_{k-1})$.
Inspired by this, we want a
method that satisfics
(1) B_{k} symmetric This is not super function
(2) $m_{k}(\chi_{k}) = f(\chi_{k}), \quad \nabla m_{k}(\chi_{k}) = \nabla f(\chi_{k})$
(3) $\nabla m_{k}(\chi_{k-1}) = \nabla f(\chi_{k}) \leftarrow Capture analyze$
(4) $B_{k} \neq 0$
(5) Udpating and inverting B_{k} is cheap.
 $Oddy$

By (2) we have that $m_{k}(x) = f(x_{k}) + \nabla f(x_{k})^{T}(x - x_{k}) + \frac{1}{2}(x - x_{k})^{T}B_{k}(x - x_{k}).$

Then, taking derivatives (3)

$$Pm_{k}(x_{k}) = Pf(x_{k}) + B_{k}(x_{k-1} - x_{k}) \stackrel{!}{=} Pf(x_{k-1})$$

 $\Rightarrow B_{k}(x_{k-1} - x_{k}) = Pf(x_{k-1}) - Pf(x_{k})$.
(S_{k} Y_{k}
 $This gives d(d+1)$ variables and
 $d constraints$ (lots of solutions).
To satisfy (5) we need cheap
 $updates B_{k}^{-1}$ from B_{k-1}^{-1} :
(5a) $B_{k} - B_{k-1}$ is rank one.
We leverage an important result.
Lemma (Sherman - Morrison) For
 $any invertable u, v \in \mathbb{R}^{d}$. If $v^{T}Au \neq 1$,
then $(A + uv^{T})^{-1} = A^{-1} - (A^{-1}u)(A^{-T}v)^{T}$.

Proof: HW 5 (woodbury Identity) [] You'll prove a more general formula for rank r updates. Update formulas for Guasi-Newton. We assume (1)-(4), and (5a), then weird $B_{K} - B_{K-1} = \alpha W W^{T}$ aER symmetry Because of (3) BK+1 SK+1 = YKti Let's consider two cases Case 1 $B_K S_{Kt_1} = Y_{Kt_1} \rightarrow W = 0$. Case 2 BK SKI = GK+1 $\Rightarrow (B_{k} + \alpha WW^{T}) S_{k+1} = Y_{k+1}$ $\Rightarrow - (\alpha w^{T} S_{K+1}) w = B_{k} S_{k+1} - y_{k+1}$ $\mathcal{W}_{S_{k+1}\neq0}$ = $\mathcal{B}(\mathcal{B}_{k}S_{k+1}-\mathcal{Y}_{k})$ There f-re,

$$B_{k+1} = B_{k} + B_{k}^{2} \mathcal{O}\left(B_{k} S_{k+1} - Y_{k}\right) (B_{k} S_{k+1} - Y_{k})^{T}$$
Then we obtain
$$B_{k} S_{k+1} + \mathcal{O}\left(B_{k} S_{k+1} - Y_{k+1}\right) (B_{k} S_{k+1} - Y_{k+1}) S_{k+1} = Y_{k+1}$$

$$\Rightarrow (1 + \mathcal{O}\left(B_{k} S_{k+1} - Y_{k+1}\right)^{T} S_{k+1}) B_{k} S_{k+1}$$

$$- (1 + \mathcal{O}\left(B_{k} S_{k+1} - Y_{k+1}\right)^{T} S_{k+1}) Y_{k+1} = 0$$
need to make
this zero

$$3 = - 1 \\ (B_{k}S_{k+1} - Y_{k+1})^{T}S_{k+1}$$

Thus

$$B_{K+1} = B_{K} - (B_{K} S_{K+1} - Y_{K})(B_{K} S_{K+1} - Y_{K})^{T}$$

$$(B_{K} S_{K+1} - Y_{K+1})^{T} S_{K+1}$$

$$This is called the Symmetric Rank
One update (SR 1).$$

$$B_{10} (SSUP, here, : B_{10}, might not be$$

Big issue here: Brin might not be posifive definite!