Lecture 18

Last time ^I Today a Convergence guarantee ^D Exam results. -Computational comple · Modified Newton vity D . Chuali-Newton intro. D3 variants

New idea from last class Instead of using Taylor's approximation , consider $m_{k}(x) = f_{k} + g_{k}^{T}(x - x_{k}) + \frac{1}{2}(x - x_{k})^{T}B_{k}(x - x_{k})$ Thus, a natural strategy is to consider x_{k+1} is such that $\nabla m_k(x_{k+1}) = 0$. which in turn reduces to $\frac{space}{100}$ $x_{kt} = x_k - B_k^{-1} g_k$ R when B_e is
invertible. Natural questions : c.
When B_k
invertible. D How do we pick B_k so that we have descent?

$$
Can we make it cheaper per-
$$
\n
$$
i
$$
feredion?
\nWe will focus on the first question in
\n
$$
Let's look at the geometry of a Newton
$$
\n
$$
= \frac{\pi^2 f(x_k)}{\pi^3} \text{ for } k
$$
\n
$$
= \frac{\pi^2 f(x_k)}{\pi^3} \text{ as a symmetric, real matrix}
$$
\n
$$
= \frac{\pi^2 f(x_k) \cdot 1 \cdot 1}{\pi^2 f(x_k)} = \frac{\pi^2 f(x_k) \cdot 1}{\pi^3} \text{ for the general decomposition:}
$$
\n
$$
= \frac{\pi^2 f(x_k) \cdot 1}{\pi^3} \text{ for the general decomposition:}
$$
\n
$$
= \frac{\pi^3 \cdot 1}{\pi^3} \text{ for the general decomposition:}
$$
\n
$$
= \frac{\pi^3 \cdot 1}{\pi^3} \text{ for the general decomposition:}
$$
\n
$$
= \frac{\pi^3 \cdot 1}{\pi^3} \text{ for the general decomposition:}
$$
\n
$$
= \frac{\pi^3 \cdot 1}{\pi^3} \text{ for the general transformation:}
$$

Now we can decompose the Newton step:
\n
$$
\rho_{k} = -(v \wedge v^{T})^{-1} \nabla f(x_{k})
$$
\n
$$
= -v \wedge f^{-1}V^{T} \nabla f(x_{k})
$$
\n
$$
= -v \wedge f^{-1}V^{T} \nabla f(x_{k})
$$
\n
$$
= -\left(\frac{v_{+}}{v_{-}}\right)\left(\frac{v_{+}^{T}}{f} \wedge \frac{v_{+}^{T}}{f}\right) \left[\frac{V_{+}^{T} \nabla f(x_{k})}{V_{-}^{T} \nabla f(x_{k})}\right]
$$
\n
$$
= -\frac{V_{+} \wedge f_{+}^{T} \nabla f(x_{k}) - V_{-} \wedge f_{-}^{T} \nabla f(x_{k})}{V_{-}^{T} \nabla f(x_{k})}
$$
\n
$$
= -\frac{V_{+} \wedge f_{+}^{T} \nabla f(x_{k}) - V_{-} \wedge f_{-}^{T} \nabla f(x_{k})}{V_{+}^{T} \nabla f(x_{k})}
$$
\nWe can easily check
\n
$$
\nabla f(x) \cdot p_{k}^{T} = -\nabla f(x_{k})^{-1} \nabla f(x_{k}) \nabla f(x_{k}) \leq 0.
$$
\n
$$
\nabla f(x) \cdot p_{k}^{T} = 0.
$$
\nThus if all eigenvalues are positive \Rightarrow *1* and *2* eigenvalues are negative \Rightarrow *3* and *4* with respect to \Rightarrow *4* and *4* with respect to \Rightarrow *4*

In particular, if
$$
g_k = \nabla f(x_k)
$$
, then p_k
\nis a descent direction.
\nProof: Since B_k is positive definite,
\nthen $p \mapsto g_k^T \theta + p^T B_k \theta$ is strongly
\nconvex, then $P_k = B_k g_k$, thus
\n $g_k^T P_k = -B_k g_k$, thus
\n $g_k^T P_k = -g_k^T B_k g_k$ so
\n $g_k^T P_k = -g_k^T B_k g_k$ so
\n $g_k^T P_k = -g_k^T B_k g_k$ so
\n $g_k^T P_k = g_k^T P_k$ and we
\nhave $f(x_{k+1}) \le f(x_k)$ via
\n $x_{k+1} \le x_k - B_k^T \nabla f(x_k)$.
\nWe only have
\n $f(x_k + \alpha p_k) = f(x_k) + \alpha \nabla f(x_k)^T e_k + o(x^2)$.
\nThus we need an stepsize!
\nLinearly showed the applied. The Armyo
\ncondition reduces to: for some $g_k (g_k)$
\nwith α_k exponentially shrinking until this
\nholds.

Modified Newton's Method

\nConsider the following template

\nLoop
$$
K = 0, 1, \ldots
$$

\nCompute $\nabla f(x_k)$ and $\nabla^2 f(x_k)$

\n3 $path\,ds$ - Build B_k = 0 (Based on $\nabla^2 f(x_k)$)

\n3 $path\,ds$ - Build B_k = 0 (Based on $\nabla^2 f(x_k)$)

\n6.100

\n7.10

\n7.10

\n8.10

\n10.10

\n10.20

\n11.20

\n12.20

\n13.20

\n14.20

\n15.20

\n16.20

\n17.20

\n18.20

\n19.20

\n10.21

\n11.20

\n12.20

\n13.20

\n14.20

\n15.20

\n16.20

\n17.20

\n18.20

\n19.20

\n10.21

\n11.20

\n12.20

\n13.20

\n14.20

\n15.20

\n16.20

\n17.20

\n18.20

\n19.20

\n10.21

\n11.20

\n12.20

\n13.20

\n14.20

\n15.20

\n16.20

\n17.20

\n18.20

\n19.20

\n10.20

\n11.20

\n12.20

\n13.20

\n14.20

\n15.20

\n16.20

which we use if the negative
$$
\lambda_i
$$
.

\nWe move if the when $\nabla f(x_k)$ is aligned with negative components.

\nPutting each $\nabla^2 f(x_k) \ge \varepsilon I$,

\nin which case was good too.

\nOption 2

\nKeep equivalues with large magnitude, but make them positive.

\n $\nabla f(x_k) = \nabla^2 f(x_k) \ge \varepsilon I$,

\nFor example, we have that $\nabla^2 f(x_k) = \varepsilon I$.

\nFor example, we have:

\n $\nabla f(x_k) = \frac{1}{2} \int_{x_k}^{\infty} \int_{x_k}^{x_k} f(x_k) \le \int_{x_k}^{x_k} f(x_k) \le \int_{x_k}^{x_k} f(x_k) \le \int_{x_k}^{x_k} f(x_k) \le \int_{x_k}^{x_k} \int_{x_k}^{x_k} f$

Option 3

\nSmith the entire spectrum

\nCompute
$$
\lambda_{min} = \lambda_{min} \quad (\nabla^2 f(x_k))
$$

\nPick $\varepsilon > 0$

\nIt $\lambda_{min} \geq \varepsilon \Rightarrow B_k = 0$

\nOtherwise, set $3^2 = \varepsilon - \lambda_{min}$ and

\n $B_k = \nabla f(x_k) + \gamma \pm 1$

\nClearly

\n $\lambda_k (B_k) = \lambda_k - \lambda_{min} + \varepsilon \geq \varepsilon$

\nMoreover, if $\rho = -(\nabla^2 f(x_k) + \gamma \pm 1)^\top \nabla f(x_k)$

\n \Rightarrow as $3 \downarrow 0$, $\rho \rightarrow -\nabla^2 f(x_k)$ (Newton)

\n \Rightarrow as $\sqrt{100}$, $\rho \rightarrow \frac{\partial^2 f(x_k)}{\partial \rho}$ (dradern+)

\nNext, time, we will cover convergence

\nguarantees.