## Lecture 18

New idea from less class Instead of using Taylor's approximation, consider  $m_{k}(x) = f_{k} + g_{k}^{T}(x - x_{k}) + \frac{1}{2}(x - x_{k})^{T}B_{k}(x - x_{k})$ Thus, a natural strategy is to consider  $\chi_{k+1}$  is such that  $\nabla m_k(\chi_{k+1}) = 0$ . which in turn reduces to  $\chi_{ktl} = \chi_k - B_k g_k$ K when B, is invertible. have descent?

or Can we make it cheaper per-  
iteration?  
We will focus on the first question in  
this lecture.  
Let's look at the geometry of a Newton  
step.  

$$\nabla^2 f(x_k)$$
 is a symmetric, real matrix  
(and let's assume nonsingular).  
We vnight take an spectral decomposition:  
 $\nabla^2 f(x_k) = V \cdot V^T - \cos t \circ (d^s)$ .  
 $Diagonal.$  for the gonal  
 $\Lambda = \begin{pmatrix} \lambda_1 & \lambda_2 \\ & \ddots \\ & & \lambda_d \end{pmatrix} = \begin{pmatrix} \Lambda_+ \\ & & - \\ & & - \end{pmatrix}$   
Eigenvalues  
 $\gamma = \begin{pmatrix} 1 & 1 \\ V_1 & \cdots & V_d \\ I & I \end{pmatrix} = \begin{pmatrix} V_+ & V_- \end{pmatrix}$   
Eigenvectors

Now we can decompose the Newton step:  

$$P_{K} = -(V \land V^{T})^{+} \nabla f(x_{k})$$

$$= -(V \land V^{T})^{+} \nabla f(x_{k})$$

$$= -(V \land V^{-1} V^{T} \nabla f(x_{k}))$$

$$= -(V \land V^{-1} V^{T} \nabla f(x_{k})) - V \land V^{T} \nabla f(x_{k})$$

$$= -V \land \Lambda^{-1} V \lor \nabla f(x_{k}) - V \land \Lambda^{-1} V - \nabla f(x_{k})$$
Claim:  $P_{K}^{+}$  is a descent direction  $P_{K}^{-}$  ( $\nabla f(x_{k}) P_{K}^{+} < 0$ ).  
We can easily check  
 $\nabla f(p_{K}^{T} p_{K}^{+} = -\nabla f(X_{k})^{T} V \land \Lambda^{-1} \vee \nabla f(X_{k}) \nabla f(x_{k}) \leq 0$ .  
Symmetrically  $P_{K}^{-}$  satisfies  $\nabla f(x_{k})^{T} P_{K}^{-} \geq 0$ .  
Thus if all eigenvalues are positive  $\Rightarrow$  Descent  
all eigenvalues are negative  $\Rightarrow$  Ascent  
mixture  $\Rightarrow$  Could do  
anything.  
Lemma: If  $B_{K} > 0$ , then  $P_{K} = arg.man.lg.kp + p^{T}B_{K}.p]$ 

In particular, if 
$$g_{k} = \nabla f(x_{k})$$
, then  $p_{x}$   
is a descent direction.  
Proof: Since  $B_{k}$  is positive definite,  
then  $p \mapsto g_{k}^{T}p + p^{T}B_{k}p$  is strongly  
convex, then  $P_{k}$  is well-defined.  
Then  $p_{k} = -B_{k}g_{k}$ , thus  
 $g_{k}^{T}P_{k} \stackrel{e}{=} -g_{k}^{T}B_{k}g_{k} < 0$  II  
Warning: This doesn't guarantee that we  
have  $f(x_{k+1}) \leq f(x_{k})$  via  
 $x_{k+1} \in x_{k} - B_{k}^{-1} \nabla f(x_{k})$ .  
We only have  
 $f(x_{k} + \alpha p_{k}) = f(x_{k}) + \alpha \nabla f(x_{k})^{T}p_{k} + O(\alpha^{2})$ .  
Thus we need an stepsize!  
Linesearch could we appied. The Armijo  
condition reduces to: for some  $g_{k}(0,1)$   
 $f(x_{k} - \alpha_{k}p_{k}) \leq f(x_{k}) + \eta \kappa_{k}g_{k}^{T}p_{k}$   
with  $\alpha_{k}$  exponentially shrinking until this  
holds.

Modified Newton's Method  
Consider the following template  
Loop 
$$K=0, 1, ...$$
  
Compute  $\nabla f(X_K)$  and  $\nabla^2 f(X_K)$   
3 nethods - Build  $B_K > 0$  (Based on  $\nabla^2 f(Y_K)$ )  
Today.  
Compute  $P_K \in B_K^{-1} \nabla f(Y_K)$   
Pick  $\alpha_K$  ensuring descent (Armijo)  
 $X_{K+1} \in X_K + P_K$   
End bop.  
 $P Option 1$ 



nitud" of the negative 
$$\lambda_i$$
.  
We move little when  $\nabla f(X_k)$  is aligned  
with negative components.  
Pretty bad unless  $\nabla^2 f(X_k) \ge \varepsilon I$ ,  
in which ase was good too.  
Option 2  
keep eigenvolves with large magnitud,  
but make them positive  
 $\nabla f(x_k) = V \land V^T$   
Pick  $\varepsilon = 0$  and set  
 $\overline{\Lambda} = diag(\overline{\Lambda}_i)$  where  $\overline{\Lambda}_i = max \Lambda |I\rangle_i |, \varepsilon Y$   
 $B_k = V \land V^T$   
 $\Rightarrow P_k = - B_k^{-1} \nabla f(X_k)$   
 $= -((V, V_{\varepsilon} V_{-}) (\bigwedge_{\varepsilon I = -\Lambda_{-}}^{-1} (\bigvee_{v_{\varepsilon}^T}^{T}))^{\dagger} \nabla f(x_k)$ .  
 $= -V_{\varepsilon} \land_{\varepsilon}^{-1} \nabla f(X_k) \leftarrow descent$   
 $-\frac{4}{\varepsilon} V_{\varepsilon} \bigvee_{\varepsilon}^{T} \nabla f(X_k) \xrightarrow{previous}$ 

Option 3  
Shift the entire spectrum  
Compute 
$$\lambda_{\min} = \lambda_{\min} (\nabla^2 f(\mathbf{x}_k))$$
  
Pick E>D  
If  $\lambda_{\min} \ge E \Rightarrow B_k = 0$   
Otherwise, set  $\mathcal{Y} = E - \lambda_{\min}$  and  
 $\mathcal{B}_k = \nabla f(\mathbf{x}_k) + \mathcal{Y} \mathbf{I}$ .  
Clearly  
 $\lambda_i (B_k) = \lambda_i - \lambda_{\min} + E \ge E$ .  
Moreover if  $p = -(\nabla^2 f(\mathbf{x}_k) + \mathcal{Y}\mathbf{I})^{-1} \nabla f(\mathbf{x}_k)$   
 $\Rightarrow as 3 \downarrow 0$ ,  $p \Rightarrow -\nabla^2 f(\mathbf{x}_k)$  (Newton)  
 $\Rightarrow as 3 \downarrow 0$ ,  $g \Rightarrow \frac{\nabla f(\mathbf{x}_k)}{\|\mathbf{p}\|}$  (Aradient)  
Next time we will cover convergence  
guarantees.