Lecture 17

Last time > What's to come > One - dimensional Newton's Convergence guarantee method. > Newton's in R^d. | Today > Convergence guarantee > Computational comple xity > Cavasi-Newton intro. Local Convergence gearantees Recall that given a matrix AEIR^{drd}, $||A|| = \max_{\|x\|_2=1} ||Ax||_2.$ Operator norm, or spectral norm. Moreover if A is symmetric, then ||A|| = max 1 | X. (A) | Y. Eigenvalue. Theorem: Let F:Rd -> Rd be cont. diff. and assume F(x*) for some x*ER* and VF(x*) is nonsingular. Suppose that 3rx such that VF(x) is L-Lipschitz on B(x*,r). Then for some E>0, ve have that if xoe B(x*, E), then the iterates of Neuton-Raphson satisfy

$$\chi_{k} \in B(x^{*}, \epsilon), \nabla F(\chi_{k})$$
 is nonsingular
and
 $\|\chi_{k_{i}} - \chi^{*}\| \leq c \|\chi_{k} - \chi^{*}\|^{2},$
for some fixed c>0.
Proof: First let's stele a Lemma
Lemma :: Assume A, BEIR^{d×d}. If A is
nonsingular and $\|A^{-1}(B-A)\| \leq 1,$
then B is nonsingular with
 $\|B^{-1}\| \leq \frac{\|A^{-1}\|}{\|I-I\|A^{-1}(B-A)\|}.$

With this Lemma we can show a bound on $\|\nabla F(x_0)\|$. Since $\nabla F(x^*)$ is invertible, we define $M = \|\nabla F(x^*)^{-1}\|$. WLOG assume that $\forall x \in B(x, r)$, $\nabla F(x)$ is invertible. Define $\mathcal{E} = \min\{r, 1/2mL\}$. Then, we have $\|\nabla F(x^*)^{-1}(\nabla F(x_0) - \nabla F(x^*))\|$ $\leq \|\nabla F(x^*)^{-1}\| \|\nabla F(x_0) - \nabla F(x^*)\|$

$$\leq M \parallel \| x_0 - x^* \| \leq M \parallel E \leq 1/2.$$

Thus, by Lemma
$$\because$$
, $\nabla F(x_0)$ is
invertible and $\|\nabla F(x_0)\| \le 2M$.
Next we show quadratic improvement
 $\|x_1 - x^*\| = \|x_0 - x^* - \nabla F(x_0)^{-1} F(x_0)\|$
 $= \|\nabla F(x_0)^{-1} (\nabla F(x_0) (x_0 - x^*) - F(x_0))\|$
 $\le \|\nabla F(x_0)^{-1}\| \| F(x^*) - (F(x_0) + \nabla F(x_0) (x_0 - x^*))\|$
 $taylor \le 2M \frac{L}{2} \|x_0 - x^*\|^2$.
We can inductively apply the same argument
if $\|x_1 - x^*\| \le E$. Note that
 $\|x_1 - x^*\| \le M L \|x_0 - x^*\|^2 \le (M L \in] \cdot \mathbb{E}$
 $\le (M L \in] \cdot \mathbb{E}$
 $\le E/2$.

Proof of Lomma :: Notice that B is invertable if, and only if, $A^{-1}B$ is invertable. It suffices to prove that $\|A^{-1}B \times \| > 0$ $\forall x \in \mathbb{R}^d \setminus \{0\}$.

$$\|A^{-1}BX\| = \|[I + A^{-1}(B - A)]X\|$$

$$\geq \|IX\| - \|A^{-1}(B - A)X\|$$

$$\geq (1 - \|A^{-1}(B - A)\|)\|X\| > 0$$

To prove the bound on the norm,

$$||B^{-1}|| (1 - ||A^{-1}(B - A)||)$$

Cauchy $\leq ||B^{-1}|| - ||A^{-1}(B - A)B^{-1}||$
Schwarz
Reverse $\leq ||B^{-1} + A^{-1} - B^{-1}||$
mangle $= ||A^{-1}||$.

Caveats

Hat

$$F(X_{k}) = \frac{1}{2^{k}} \chi_{0}.$$
Eirear role.
The method is sign invariant,
Thus, the iterates are the same
if we consider F or -F.
Not desirable when $F = \nabla f.$
Something really nice about this
method is that it is affine
invariant.
If $A \in IR^{d \times d}$, is invertible
 $F(x) = 0 \equiv F(Ay) = G(y) = 0$
 $\chi_{0}, \chi_{1}, \dots \equiv y_{0}, y_{1}, \dots$
 $\chi_{k} = Ay_{k}.$
Iteration cost / Computational complexity
Let's see the scaling of each operation
and what we could do with a
laptop:
Compute a gradient O(d) memory line

d~10°=10° with laptop We can compute · Compute a Hessian O(d²) memory/time d~ 104 - 105 • Solve $\nabla F(X_k) p = F(X_k)$ Worse than $d \sim 10^2 - 10^3$ O(d²) $d \sim 10^2 - 10^3$ If ve solve directly O(d³). Matrix factorization /triangular solve People use inderect methods, e.g. conjugale gradient. F The cost of incring a matrix at each siteration truly prevents us from scaling. A potentral alternative is Quasi-Newton \$ methods. Auasi-Newton Methods. In the next couple of classes we'll cover D Issues with eigenvalues D Modified Newton D Convergence guarantees D Computational concerns D Approximating Hessians/Secant Methods

D Quasi-Newton Methods (BFGS)
b Quasi-Newton superlinear convergence
Issues with Eigenvalues
As we discussed best time,
Newton-Raphson moves to a criti-
cal point of

$$f_{k}(x) = f(x) + \nabla f(x_{k})^{T}(x - x_{k}) + \frac{1}{2}(x - x_{k}) \nabla f(x_{k})(x - x_{k})$$

Working with $\nabla^{2}f(x)$, might be prohibitive
but we could consider general
 2^{nd} - order models:
 $m_{k}(x) = f_{k} + g_{k}^{T}(x - x_{k}) + \frac{1}{2}(x - x_{k})^{T}B_{k}(x - x_{k})$
When $f_{k} = f(x_{k})$
 $g_{k} = \nabla f(x_{k})$
 $H_{k} = \nabla^{2}f(x_{k})$
 $H_{k} = (\frac{1}{w_{k}})$
 $H_{k} = (\frac{1}{w_{k}})$
 $H_{k} = (\frac{1}{w_{k}})$
 $G_{raelient}$ descent.

When

$$\begin{aligned} f_{k} &= f(x_{k}) \\ g_{k} &= \frac{\partial f}{\partial x_{i}}(x) e_{i} \\ H_{k} &= \left(\frac{1}{\alpha_{k}}\right) I \end{aligned}$$
Coordinate descent.

Thus, a natural shategy is to consider χ_{k+1} is such that $\nabla m_k(\chi_{k+1}) = 0$. which in turn reduces to $\chi_{k+1} = \chi_k - B_k^{-1} g_k$.

iteration?