
Lecture 17

Last time Today
① What's to come I a Convergence guarantee↳ One-dimensional Newton's -Computational comple-

method. vity

I Newton's in 19. ID .Chuasi-Newton intro.

Local Convergence geavan tes

Recall that given a matrix Acided,
llAll = max llAxllz.
A

11X 112=2

Operator norm , or spectral norm.
Moreover if A is symmetric, then

llAll = max(1x : (A) ly Eigenvalue.
E -

Theorem Let F: RRP-IR" be cont
. diff-

and assume F(x*) for some XPEIR and
VF(XP) is nonsingular. Suppose that

- wo such that VFCX) is L-Lipschitz
on B(X *, r).

Ther for some Eso
,
we have that

if XoEB(X*, El , then the iderates of
Newton-Raphson satisfy



XB(X*, E), VICX) is nonsingular
and

11X
,

- X* 11 =1xx-X*1 ?

for some fixed co. +

Proof First let's state a Lemma-

Lemma %: Assume A
,
BEIRded. 18 A is

-

nonsingular and It"(B-A) /I < 1,
then B is nonsingular with

IIB"11A'l-
1-lIA"(B-A) D

↑ I

With this Lemma we can show a

bound on UN F(XO) 11 .

Since DFCX1 is invertible
,
we

define M = 110 F(X* )"II .

WLOG assume that Y X-B(X
,
r),

VF(X) is invertible.

Define E = miner
, "reury . Then , we

have

11.8 F(X *)
" (VF(X) - O F(XP))11

& 110 F(X *) "11 11 V F(X) - VF(XP) 11

& MLIo-Xon 1 MLE < /2 ·



Thus
, by Lemma -- VF(VO) is

invertible and 118F(X11 12 M.

Next we show guadratic improvement
1lX 1

- xol = 140 -X1 - * F(X) "ECXoIl
= 110F(X0)" (VF(Y) (Xo - XP) - F(xo))1l

[IIVF(X)"1111 F(x0) - 1CX0)+ 5F((B) (Yo-X*/I

Taylor W Linear approx
= 2ME1X0-X

* 11?
Approximation
We can inductively apply the same argo-
ment if11x

, -X
*12.. Note that

1lx
,
-X* 1 = ML1IX0- X * 12

= (MLE) . E

zE/2 .

Proof ofComma : Notice that B is

invertable If , and only if , A B is
invertable. It suffices to prove that

: A "BXll > o * X
&
103

.

llA"B X 11 = 1 + A B = A)) XI

/IX11-11A- B - A)X11

= 11-llA"(B-A(DIIX11 >0.



To prove the bound on the norm,
IIB"11 (1-1A"(B-A)11)

Cavehy-
-ElB"11-11A" (B-A) B"Il

Schwarz
2
= IB** A"- B'll

Reverse -

friangle I 11 A"II
.ineq Il

Caveats

D In HWY you'll prove that

* Newton-Raphson might diverge
F(X) = 1X1

* ---
* If might also cycle

# FRACTALS
C

IN

"When VF(X* ) is singular , then
we either diverge or converge showerS
F(X) = X2

, you can easily check



that
F(X) = 1 Xo.

2k
↑ linear rate.

D The method is sign invariant,
Thus

,
the iterates are the same

if we consider # or - F.

Not desirable when F = Vf.

something really nice about this
method iS that it is affine
invariant.

If A epded is invertible

F (x) = 0 E F(Ay) =:G(y) = 0

No
, X ,.

.. Yo , Y , ...
↑

X = Ay ·

Iteration cost/ Computational complexity
Let's see the sealing of each operation
and what we could do with a

laptop : In spirit
h

·Compute a gradient Ocd) memory/time



We can compute da 108100 with laptop
O Compute a Hessian Old21 memory/time

4-or du 10 - 105

d

& Solve -F(Xn) p = F(Xx) Worse than

d + 102-103 Old)

- If we solve directly old3)
.

T
Matrix factorization/triangular solve

People use inderect methods
,
e.g.· conjugate gradient.

The cost of inverting a matrix at each

- iteration truly prevents us from sealing.
A potential alternative Quasi-Newton13

methods.
3
Quasi-Newton Methods.

r In the next couple of classes
we'll cover

a Issues with eigenvalues
↳ Modified Newton

i Convergence guarantees
> computational concerns

"Approximating Messions/secant Methods



1 Quasi-Newton Methods (BFGS)
D Chasi-Newton Superlinear convergence.

Issues with Eigenvalue
As we discussed last time,
Newton-Raphson moves to a criti
cal point of

fu(x) = fex) + 5f(X, (x - Xk) +&(x -x)V
-

f(x)(x-**

Working with 828CX1 , might be prohibitive,
but we could consider general
end-order models :

mm(x) = fr + gr(x-Xk) +E(x- Yk)"Bu(n-X1.-
E constants are not

When fr = fex relevant

Ex= 0f(Xk) 3 Newton's

Hr = 02f(Xk)

When fu = f(xn)

gr = 5f(Xk) S Gradient descent.
Hu = (&) I



When

fu = f(xn)

S Coordinate descent.In = fe
Hu = (*) I

K

Thus
,
a natural strategy is to

consider

Xk+ 1 is such that UMp(x) = 0.
which inwrn reduces to

↑ke Y - Big
- When Be is
invertible.

Natural questions :
D How do we pick Bu so that we
have descent?

i Can we make it cheaper per-
iteration?


