Lecture 15

Last time
Stochosstic Gradient | > Analysi's continued PStochastic Gradient $\begin{array}{c|cc}\n\circ\text{Stochastic} & \circ\text{Andysis} & \text{continued} \\
\hline\n\circ\text{Escent} & \circ\text{ Comves} & \text{guaram 1} \\
\circ\text{Examples} & \circ\text{Tr} & \circ\text{Tr} & \text{Tr} & \text{Tr}$ Descent. -Examples ^A convex guarantees p Analysis $\begin{array}{c|c} \circ & \circ \\ \circ & \circ \\ \circ & \circ \end{array}$ $\begin{array}{c} \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & \circ \end{array}$

Theorem Suppose $f: \mathbb{R}^d \rightarrow \mathbb{R}$ is L-smooth and $g(x, \epsilon)$ is an unbiased estimator such that $\mathbb{E} \big[\mathbb{I} | g(x, z) - \mathbf{V} \mathbf{L}(x) \mathbb{I}^2 \big] \leq \sigma^2 \quad \forall x.$ Then the iterates of stochastic $gradient$ descent with $\sigma < \alpha_{\kappa} < 2/2$ satisfy $(f$ (x.) restic

< x_{k} < $2/2$

min f) + $\frac{\sigma^{2}L}{2}\sum_{k=0}^{T}x_{k}^{2}$

F x ($1 - Lx_{k}$) $E[\min_{x\leq 1} \|\nabla f(x_i)\|_2^2] \leq$ $0 < \alpha_{k} < \frac{2}{L}$
 $(\frac{\beta(x_{0}) - \min \beta + \frac{\sigma^{2}L}{2} \sum_{k=0}^{T} \alpha_{k}^{2}}{\sum_{k=0}^{T} \alpha_{k} (1 - \frac{L\alpha_{k}}{2})}$ k= \overline{r} $\frac{1}{\pi}$ (k) + $\frac{\sigma^2 L}{2}$
 $\frac{1}{2}$ (k) + $\frac{\sigma^2 L}{2}$
 $\frac{1}{2}$ \overline{a}

Relevant properties of the expectation Linearity

Given
$$
X_1, ..., X_n
$$
 r.v. and constant
\n $\lambda_1, ..., \lambda_n$, we have
\n $E[\hat{z}_1 \lambda_i X_i] = \sum \lambda_i E X_i$.

^D Tower law Given two random variables X, Y $E_x[E(Y|X)] = E[Y]$ conditional expectation Proof: By the Taylor Approximation Theorem $f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^T (x_{k+1} - x_k) + \frac{L}{2} \|x_{k+1} - x_k\|^2$ = $f(x_k) - \alpha_k \nabla f(x_k)$ ⁷ $g_k + \underline{L \alpha_k^2} \|g_k\|^2$ $7f(x_{k})^{T}(x_{k+1}-x_{k})+\frac{L}{2}x_{k+1}^{T}x_{k}^{T}$
 $(x_{k}0f(x_{k})^{T})g_{k}+\frac{L}{2}x_{k}^{T}x_{k}^{T}$ Conditioning on x_{12} because of Ze $E[f(x_{k+1}) | x_k] \in f(x_k)$ $x_{k}E[\nabla f(x_{k})^{T}g_{k}|\nu_{k}]$ x_k] $\leq \frac{\beta(x_k)}{2} - \alpha_k E \left[\frac{\gamma f(x_k)^T g}{\gamma(x_k)^T g} \right]$
Linearity $\frac{1 - \alpha_k^2 E \left[\frac{\gamma g_k}{\gamma(x_k)^T g} \right]}{2}$ Linearity + $L\alpha_k^2 E [I_1 g_k]^{2} (x_k)$ $=\int f(x_{k})^{2}-x_{k}\sqrt{f(x_{k})^{T}}$ [[g_K] x_{k}] $\frac{1}{2}ELM_{k}^{3k1} | X_{k}]$
 $+ L\alpha_{k}^{2}ELM_{k}^{3k1} | X_{k}]$ $L \propto \frac{2}{2}$

$$
\leq \frac{\rho(x_{k}) - \alpha_{k} \ln \sqrt{2}(x_{k}) \ln^{2} + \frac{1}{2} \alpha_{k}^{2} \left[\sigma^{2} + \ln \sqrt{2}(x_{k}) \ln^{2} \right] + \frac{1}{2} \alpha_{k}^{2} \sigma^{2} + \frac{1}{2} \alpha_{k}^{2} \sigma^{2}
$$

By Tower Law
\nE [f(X_{k+1})]
$$
\leq E
$$
 f(X_{k}) - [x_{k} + L_{k}^{2}] E ||\n
+ L_{k}^{2} \sigma^{2}
\nBy recursively applying this form la
\nE [f(X_{\tau_{+1}})] $\leq E$ f(X_{0}) - $\sum_{k=0}^{T} (\alpha_{k} - L_{k}^{2})$ E ||\n
+ $\sum_{k=0}^{T} L_{k}^{2} \frac{\alpha_{k}^{2}}{2}$

The result follows from reardeng
and using the fact that $\mathbb{E}\left[\min_{k\in T} \|\nabla f(x_k)\|^2\right] \sum_{k=0}^{T} \left(\alpha_k - \frac{L\alpha_k^2}{2}\right)$ $\leq \sum_{k=0}^{T} (\alpha_k - \frac{L\alpha_k^2}{2}) \mathbb{E} [\|\nabla f(x_k)\|^2].$

Consequences If $\alpha_{k} = \frac{1}{L\sqrt{T+1}} \Rightarrow 1 - \frac{L\alpha_{k}}{2} \ge \frac{1}{2}$. Thus we derive
 $\mathbb{E}\left[\min_{k\leq T} \|\nabla \mathcal{L}(X_k)\|^2\right] \leq \frac{\left(\frac{\beta}{x}) - \min \frac{\beta}{x}\right) + \frac{\sigma^2}{2L}}{\frac{1}{2} - \sqrt{T+1}}$ = $0(\frac{1}{17})$. By Jensen's inequality $\Rightarrow E \min_{k \leq 1} \|\nabla f(x_k)\| = O(T^{-k}4).$ This is rather slow, however it improves when have convexity. Convex guarantees Theorem Consider the same setting as the previous theorem,
further assume that $\alpha z \alpha \leq \frac{1}{L}$, f is convex and $x^* \in argmin f$. Then $E = \left[\min_{k \leq 1} \left\{\int f(x_k) - \int f(x^*) \right\}\right] \leq \frac{\ln x - x^* \mu^2}{2\alpha (k+1)} + \alpha \sigma^2.$

In particular if
$$
x = \frac{1}{\sqrt{\pi_{H}}} \text{ and } \tau \geq L^{2}
$$

\n
$$
E \left[\min_{x \leq T} \left\{ f(x_{k}) - f(x^{*}) \right\} \right] \leq \frac{1}{2} \frac{x_{k} - x^{*} + 2\sigma^{2}}{2\sqrt{k+1}} + \frac{2\sigma^{2}}{2}
$$
\n
$$
P_{\text{cool}} \qquad \text{When } x \leq \frac{1}{L}, \quad (0) \qquad \text{gives}
$$
\n
$$
E \left[\left\{ f(x_{k+1}) \mid x_{k} \right\} \leq f(x_{k}) - \frac{\kappa}{2} \left\| \sigma \right\{ f(x_{k}) \right\|^{2} + \frac{\kappa \sigma^{2}}{2} \right\}
$$
\n
$$
E \left[\left\{ f(x_{k+1}) \mid x_{k} \right\} \leq f(x_{k}) - \frac{\kappa}{2} \left\| \sigma \right\{ f(x_{k}) \right\|^{2} + \frac{\kappa \sigma^{2}}{2} \right\}
$$
\n
$$
E \left[\log(\kappa_{H}) e^{-\kappa_{H}}\right] = \frac{\kappa}{2} E \left[\log(x_{k}, \frac{1}{2}) \right] \left\{ x_{k} \right\}
$$
\n
$$
= \frac{\kappa}{2} E \left[\log(x_{k}, \frac{1}{2}) \right] \left\{ x_{k} \right\}
$$
\n
$$
\leq \log x \right\} - E \left[\log(x_{k}, \frac{1}{2}) \right] \left\{ x_{k} - x_{k} \right\}
$$
\n
$$
= \frac{\kappa}{2} \log \frac{1}{2} \left\{ x_{k} - x_{k} \right\}
$$
\n
$$
= \frac{\kappa}{2} \log \frac{1}{2} \left\{ x_{k} - x_{k} \right\}
$$
\n
$$
= \frac{\kappa}{2} \log \frac{1}{2} \left\{ x_{k} - x_{k} \right\}
$$
\n
$$
= \frac{\kappa}{2} \log \frac{1}{2} \left\{ x_{k} - x_{k} \right\}
$$
\n
$$
= \frac{\kappa}{2} \log \frac{1}{2} \left\{ x_{k} - x_{k} \right\} + \frac{\kappa}{2} \log \frac
$$

 $+ \alpha 0^2$

 \mathbf{R}

By Tower law

$$
E[L f(x_{k+1}) - f(x^*)] \leq \frac{1}{2\alpha} E[Ix_{k+1} - x^*k^2 - \ln x_{k-1}x^*k^2 + \kappa \sigma^2 + \kappa \sigma^2]
$$

Once more the result follows by summing
up and dividing by T.

b The rate above is of the order
$$
O(\frac{1}{\sqrt{\pi}})
$$
,
exactly like the role for nonsmooth
convex optimization.

D In HW 4 you'll show the same rate for stochestre nonsmooth convex opt. There, we will have $g(x,z)$ s.t. $E[g(x, \epsilon)] \in \partial f(x)$.

Ex tensions Acceleration? The noise dominates and leads to slow convergence. Best Known rate $O\left(\frac{\text{Lax-}x^{\text{th}}-1^2}{T^2}+\frac{\sigma^2}{T^2}\right).$

Randomried coordinate descent
\nAssume our oracle is
\n
$$
i \sim \text{Unif}(l1, ..., d_s)
$$

\n $g(x, i) = d \frac{\partial f}{\partial x_i}(x) \cdot e_i$.
\nThe analysis above yields a guarantee
\nboth we can do better.
\nThen 560 with (3) and $\alpha_i = \frac{1}{id}$
\n $g_{\text{red}}ds$
\n $E[\min_{k \leq r} || \nabla f(x_k)||^2] \leq 2L d(f(x_i) - \min_{k \leq r} d)$
\n Proo_+^2 Indeed, this oracle gives descent
\nAt iter k,
\n $f(x_{k+1}) \leq f(x_{k}) + \nabla f(x_{k})^T (x_{k+1} - x_k)$
\n $+ \frac{L}{2} ||x_{k+1} - x_k||^2$
\n $= f(x_k) - \frac{1}{id} d \frac{\partial f}{\partial x_i}(x_i) \cdot \nabla f(x_k)^T c_i$
\n $+ \frac{1}{2L} [d \frac{\partial f}{\partial x_i}(x_k)]^2$
\n $= f(x) - \frac{1}{2L} (\frac{\partial f}{\partial x_k}(x_k))^2$.

Taking expectations
\n
$$
\mathbb{E}\left[f(x_{k+1})\right] \leq \mathbb{E}\left[f(x_{k})\right] - \frac{1}{2L}\mathbb{E}\left[\left(\frac{\partial \ell}{\partial x}(x_{k})\right)^{2}\right]
$$
\n
$$
= \mathbb{E}\left[f(x_{k})\right] - \frac{1}{2L}\frac{1}{d}\mathbb{E}\left[\|\nabla f(x_{k})\|^{2}\right]
$$
\n
$$
\mathbb{E}\left[\left(\frac{\partial f(x)}{\partial x}\right)\right] \times \left[-\frac{1}{d}\|\nabla f(x_{k})\|^{2}\right]
$$
\nBy recursively applying the formula above,
\nwe obtain
\n
$$
\mathbb{E}\left[f(x_{j+1})\right] \leq \mathbb{E}\left[f(x_{k})\right] - \frac{1}{2Ld}\sum_{k=0}^{T}\mathbb{E}\left[\mathbb{E}\left[\nabla f(x_{k})\right]\right]
$$
\n
$$
\text{Reordering and multiplying by } \frac{1}{T}, \text{ yields}
$$
\n
$$
\mathbb{E}\left[\min_{k\leq r} \|\nabla f(x_{k})\|^{2}\right] \leq \frac{2L}{d} \frac{d}{d} \left(\frac{f(x_{k}) - \min f}{T}\right)
$$
\n
$$
\text{Thus, is the same rate as}
$$
\n
$$
\text{in } H\text{ we determine}
$$
\n
$$
\text{in } H\text{ we determine}
$$
\n
$$
\text{and}
$$
\n
$$
\mathbb{E}\left[\text{kension of the ground by equation}
$$
\n
$$
\text{fivability, and by the formula}
$$
\n
$$
\text{fivability, and by the formula}
$$
\n
$$
\text{fivability, and by the formula}
$$

Stochastre Variance Reduced Gradient (SURG) Accall the finite som problem $\min_{\mathbf{x}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{f}_{i}(\mathbf{x}).$ The svreg reads as follows Algorithm $\int \zeta_{c} dt$ $\chi_{o} < \chi_{o}$ $i = 0, ...$ $\frac{1}{\frac{1}{2}}\begin{cases} \text{for } j = 0, ..., 2d \\ \text{Draw } l \sim Unif (11, ..., n) \\ 0, - \nabla f(x) + \nabla P \end{cases}$ $g_j = \nabla f(x_i) + \nabla f_l(y_j) - \nabla f_l(\tilde{x})$
 $y_{j+1} = y_j - \alpha g_j$ Lend for 2d
 $\tilde{x}_{in} < \frac{1}{2d+1} \sum_{j=0}^{2d} y_{j}$. end for

Theorem: Assume f: R^d > R L-smooth *M-strongly convex.* Then, if α
sufficiently small $\gamma \in (0,1)$.
 $E[f(\tilde{x}_{k}) - minf] \leq \gamma^{k} [f(\tilde{x}_{0}) - minf]$. Proof: [Johnson, Zhang 2013] $\bm{\mathit{\Pi}}$