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Therem Suppose f :RP-IR is L-smooth

and g(X, z) is an unbiased estimator

such that

#(11g(,z) - gf(x)12] -82XX .
Then the iterates of stochastic

gradient descent with 0 < Xi < 2/

satisfy
(f(x) -minf)+

E(mi 110f(xi)(l] = xx)+- )
k=0 t

Relevant properties of the expectation
Linearity



Given X.. ..., Xn r.V . and constants

↓...... In ,
we have

ELXiXi] = CDiEXi .

D Tower law

Given two random variables X
, Y

Ex[E(Y1x]] = E(y]
conditional
expectation

Prof : By the Taylor ApproximationTheorem

f(X +1) = f(X) + 8 f(x) (xi- Xk) +E /Y Ball
- f(xk) - &nOf(Yign + lg, 11

Conditioning on Xi random
because ofZie↓

#[f(X+1) /Xx] = f(x,c) - x[Tf()grlxi]
+L [11gi/l"(Xin]

Linearity Z
I
= f(x,) - x]f(x) E/g11xi)
+L [11gi/l"(Xin]
Z



= f(x) - Xi 115f(X , /12
- [02- nf(X ,)(1]

(M)
= f(x) - (4k + Lan) 118f(X

-

By Tower Law

E[f(X+1)] <E A(i) - K +LD10f(12
+Lo?
zk

By recursively applying this formula
# [f( ++)] < Ef(X) - (a . -L ENUfEIT

k=0

-
2

The result follows from reordering
and using the fact that

El 118 f(Xn) 117] S (a-)in in
1T

=

[ & exn-L) [OfCX)IR] ·

k=0 2



Consequences
If Xn =

↓ - --mT+1

Thus we derive

I 110 f(x) 117] 11(x0-minf)+in inEns
&

I -T+1
= 0() .

By Jensen's inequality
E

-

=> min 110f()l = 0(7)
·

11T

This is rather show , however it improves
when have convexity.

Convex guarantees
Theorem Consider the same
-

setting as the previous Theorem
,

further assume that ex = E,
f is convex and X

*

Eargminf. Then
11 Xo - X

* 112
# (minGf(x)-f(x]] Talker) - X0?



In particular if = For and T = 12

# (minGf(x)-f(x]] 11Xo - X
* /12 + 202
-

-Tt
T

Proof when c . 1 I ,
(B) gives

E(f(Xi2)(Xn] = f(x) - -110 f(x) + &
o
Z

By convexity-
&

-I
By Assumption

[ f(x* - -f(xu)T(X
*
-X)

- [Ig(Xi, ZIP(Xi]
[Ig(y,PIX] - G2

· T *82
= 1vf(x)112

E ((*) · E[g(x, z)T(X
*
- xi)

- &11 g(+, z)112(*]

Using that + x02

1Xmi X* 112 = 114x-x* -&gall = 11X-X*1*2xg(X* - X .) + x lg12
↳ f(x * ) - EC (11Xy 1 - X= 12 - Hxx - x*+]

14]
+ x02

By Tower law



E(F(xmi) - f(x)] E-X-N-
+ 20?

Once more the result follows by summing
up and dividing by T.

I

Remark

"The rate above is of the order Of),
exactly like the rate for nonsmooth
convex optimization .

a In HW 4 you'll show the same rate

for stochastic nonsmooth convex opt.
There

,
we will have g(x , z) s .

t.

#[g(x , z]]e 2f(x) .

Extensions
Acceleration?

The noise dominates and leads to slow

comergence . Best known rate

↓ 1140 - X * 1120-- )T2



Randomized coordinate descent
Assume our oracle is

()
in Unif ( +, ..., dy)
g(X , i) = d . f(x) .e.

The analysis above yields a gravate
but we can do better.

Theorem
&

Assume F:RP-IR L-smooth.
-

Then SGD with (2) and =Ed
yields

E 2mi 110 F(Xin) (1]=(f(x)
-min

=

Proof Indeed this orade gives descentAt iter K ,

f(xi +1) 1 f(xm) + 0f(x ,)
+
(Xx+ 1

- Xx)
- Ellxi , - * * /2

= f(ul -↑(
+

= f(x) - (2)



Taking expectations

#(f(m)] < E(f] --(47]
= E(f(xu)] - * [10fbli]

-

-

((2x] = of

By recursively applying the formula above,
we obtain

E(f(x++)] = #Cf(Xo)] -1 It (10fINIT2Ld k=0

Reordering and multiplying by I , yields
-

E .[min 101()]2d(f()-ming)KIT

X I
This is the same rate as

in the deterministic
case.

Extensions to greedy and cyclic
wis can be found in [Notini

,
ICML15]

and [Beck , Tetrushuli , Slopt 151].



Stochastic Variance Reduced Gradient (SURG)

Recall the finite sum problem

min t fi(x)

The SURG reads as follows

Algorithm
Set * Xo

fo i = 0, ...or

Yo
for j = 0, ..., 2d

Draw &"Unif Cht, ..., n3]· g jE Of (f) + 8fe) (i) - Vfe( * )Yit< Y ; - Xgj
end for
Y1it 2d+ 1

end for



Theorem : Assume filR&SIR I-smooth
-

n-strongly convex . Then
,
if a

sufficiently small
Y
0 (0

, 1) .

ECf(Y) - ming] -O" (f(o)-minf].

Prof : (Johnson , Zhang 2013] I


