Lecture ¹⁴ HW 3 de an hour ago Midterm release tomorrow at ⁷ am. Last time Today # Black-box convex optimization [↑] Stockersfie Gradient Descent. ¹ Things that break -Examples ↳ Analysis ^I ^D Analysis Stochastic Gradient Methods Before we had an exact gradient oracle ^X +-> Vf(x) . Now we have an stochastic gradient oracle X# g(X,random variable iid at each call Such that Eg(x , z) ⁼ 0 f(x) Cunbiased (# (11g(x, z) - Of(11) ⁼ ⁰² (Boundeance) E(1g(x,z)12] " " 18f(X1I3 ^A natural algorithm updates Draw Ex. u gk Yne** - ^X g(X ,(i).

Relevant properties of the expectation Linearity G_1 iven X_1, \dots, X_n r.v. and constants $\lambda_{1}, \ldots, \lambda_{n}$, we have $E[\hat{\Sigma}_i \lambda_i X_i] = \sum \lambda_i E X_i$. ^D Tower law Given two random variables X, y $E_x[E(Y|X)] = E[Y]$ conditional expectation Examples of oracles Example 1: Coordinate approach We want to solve min f(x) with $P: \mathbb{R}^d \longrightarrow \mathbb{R}$. $f: \mathbb{R}^d \to \mathbb{R}$.
Pick ie {1, ..., d} uniformly at random.
Set $g(x, i) = d \cdot \frac{\partial f}{\partial x_i}(x) \cdot e_i$ Set $g(x,i) = d$. Let's check that it is unbiased

Example 4: Improved oraces for finite
\n
$$
\frac{1}{\log n}
$$

\n $\frac{1}{\log n}$
\n $\frac{$

Idea 2: Variance reduction
\nCompute full gradients every now and
\nthen
$$
\nabla f(x) = \frac{1}{n} \sum \nabla f_i(x)
$$
.
\nPick $i G_i, ..., ny$ uniformly at random
\n $g(x, i) = \nabla f(x) + \nabla f_i(x) - \nabla f_i(\tilde{x})$
\nsmall when $x - \tilde{x}$
\nsmall with $x - \tilde{x}$
\nis small with $x - \tilde{x}$
\nis the path

If is also unbiased
\n
$$
E[g(x, i)] = \nabla f(x) + E\sigma f_i(x) - E\sigma f_i(x)
$$
\nOne can show that when σf_i if i-*i*ps, then
\n
$$
E[D\sigma f(\tilde{x}) - \sigma f(x) + (\sigma f(x) - \sigma f(x))]^2] \leq 4L^2 1x - \tilde{x} = 4
$$
\n
$$
\frac{1}{2}(x, i) - \sigma f(x) = \frac{2\pi}{3}L^2
$$
\n
$$
\frac{1}{2}(x, i) - \sigma f(x) = \frac{2\pi}{3}L^2
$$
\n
$$
\frac{1}{2}(x, i) - \sigma f(x) = \frac{2\pi}{3}L^2
$$
\n
$$
\frac{1}{2}(x, i) - \sigma f(x) = \frac{2\pi}{3}L^2
$$
\n
$$
\frac{1}{2}(x, i) - \frac{1}{2}(x, i) = \frac{1}{2}L^2
$$
\n
$$
\frac{1}{2}(x, i) - \frac{1}{2}(x, i) = \frac{1}{2}L^2
$$
\nThen the *i*terches of stochastic
\n
$$
\frac{1}{2}(x, i) - \frac{1}{2}(x, i) = \frac{1}{2}L^2
$$
\n
$$
\frac{1}{2}(x, i) = \frac
$$

Proof: By the Taylor Approximation Theorem
\n
$$
\begin{aligned}\n\{\mathbf{L}(\mathbf{x}_{k+1}) &\leq \mathbf{L}(\mathbf{x}_{k}) + \nabla f(\mathbf{x}_{k})^T(\mathbf{x}_{k+1} - \mathbf{x}_{k}) + \frac{L}{2} \mathbf{L}(\mathbf{x}_{k+1} - \mathbf{x}_{k+1})^2 \\
&= f(\mathbf{x}_{k}) - \alpha_k \nabla f(\mathbf{x}_{k})^T g_k + \frac{L}{2} \mathbf{L}^2 g_k \mathbf{L}^2 \\
\text{Conditioning on } \mathbf{x}_{k} \\
\mathbf{E}[f(\mathbf{x}_{k+1}) | \mathbf{x}_{k}] &\leq f(\mathbf{x}_{k}) - \alpha_k \mathbf{E}[\nabla f(\mathbf{x}_{k})^T g_k | \mathbf{x}_{k}] \\
\text{Linearity} + \frac{L}{2} \mathbf{L}^2 \mathbf{E} [\mathbf{L} g_k \mathbf{L}^T | \mathbf{x}_{k}] \\
&+ \frac{L}{2} \mathbf{L} (\mathbf{x}_{k}) - \alpha_k \nabla f(\mathbf{x}_{k})^T \mathbf{E}[g_k | \mathbf{x}_{k}] \\
&+ \frac{L}{2} \mathbf{L} (\mathbf{x}_{k}) - \alpha_k \nabla f(\mathbf{x}_{k})^T \mathbf{E}[g_k | \mathbf{x}_{k}] \\
&+ \frac{L}{2} \mathbf{L} (\mathbf{x}_{k}) - \alpha_k \nabla f(\mathbf{x}_{k})^T \mathbf{E}[g_k | \mathbf{x}_{k}] \\
&+ \frac{L}{2} \mathbf{L} (\mathbf{J}^2 + \mathbf{L} \mathbf{J}^2 (\mathbf{x}_{k}) \mathbf{L}^2 \mathbf{J}^2 \
$$

By Tower Law
\n
$$
E\left[\bigoplus_{\mu\in\mathbb{Z}} C(X_{k+1})\big] \leq E\left[\bigoplus_{\mu\in\mathbb{Z}} (X_{\mu}) - [X_{\mu} + L_{\frac{\mu}{2}}]^2\right] E\left[\|\nabla f(X_{\mu})\|\right]^2 + \frac{L_{\frac{\mu}{2}}}{2}\sigma^2
$$

By recursively applying this formula
\n
$$
E \left[f(x_{\tau_{+1}}) \right] \leq E f(x_{\circ}) - \sum_{\mu=0}^{T} (\alpha_{\kappa} - \frac{L\alpha_{\kappa}^{2}}{2}) E ||\nabla f(x_{\kappa})||^{2}
$$
\n
$$
+ \sum_{\mu=0}^{T} L \underline{\alpha}_{\mu} \underline{\sigma}^2
$$

The result follows from reordering
and using the fact that

$$
\mathbb{E} \left[\min_{k \in T} ||\nabla f(x_k)||^2 \right] \sum_{k=0}^{T} (x_k - \frac{L\alpha_k^2}{2})
$$

$$
\leq \sum_{k=0}^{T} (x_k - \frac{L\alpha_k^2}{2}) \mathbb{E} [||\nabla f(x_k)||^2] .
$$

Next time we will make a Next time we vill make a $O(1/\kappa^{1/2})$ in the convex case. Z in the general case
 x in the general case