
Lecture 14

HW 3 de an hour ago
Midterm release tomorrow at 7 am.
Last time Today
# Black-box convex optimization ↑ Stockersfie Gradient

Descent.
1 Things that break -Examples
↳ Analysis I

D Analysis

Stochastic Gradient Methods

Before we had an exact gradient oracle
X +-> Vf(x) .

Now we have an stochastic gradient oracle
X# g(X, random variable

iid at each call

Such that
Eg(x , z) = 0 f(x) Cunbiased (

# (11g(x ,z) - Of(11) = 02 (Boundeance)
E(1g(x , z)12] "

" 18f(X1I3

A natural algorithm updates
Draw Ex. gk
u

Yne** - X g(X , (i).



Relevant properties of the expectation
Linearity
Given X.. ..., Xn r.V . and constants

↓...... In ,
we have

ELXiXi] = CDiEXi .

D Tower law

Given two random variables X
, Y

Ex[E(Y1x]] = E(y]
conditional
expectation

Examples of orachs

Example 1 : Coordinate approach
We want to solve min f(x) with

f : Ra -> R .

Pick it &1, ..., dy uniformly at random.

Set g(x , i) = d . (x).
Let's check that it is unbiased



E(g(x1] : ↑ [dof(xe.
=Cz(x) . e = Tf(x)

Check thata depends on the dim).

Example 2 : Finite sum

Suppose we want to minimize

minfi(x) We have ee

many examples

Then

g(x , i) = 0 fi(x)

yields an unbiased gradient oracle.
One can prove that if Ofi -Lips

E[18fi(x) -20fi11] <211 :

Example 3 : Stochastic programming Unfinite Sum)
Suppose we want to solve

min f(x , z)
X

and me only have access to samples z.
Then

g(x, z) = 0f(X , z).
This is unbiased by definition.



Example 4 : Improved oraches for finite
Soms

Idea 1 : Look at batches/minibatches
of samples.

Pick Self, ..., my with Isl = k

uniformly at random with or without

replacement.

Take
g(x , s) =

1 25f(x)
K its

which is clearly unbiased.
Intuition

Consideriid
. r.~ X , , . . ., Xn ERY

Var(i) = 1 var (i)
12
- Better to consider K71

Idea 1 : Variance reduction

compute full gradients every now
and

then 1f(x) = [*fi(Y).

Pick iths, ..., my uniformly at random

g(x , i)= 0 f(x) + +fi(x) -Vfi(x)
um
small when X *

is small and 7
is LLipschitz.



It is also unbiased

E(g(x , i)] = 0 f(x) + Evfi(X)- EUf ; (* )
- X
These two cancel
out

.

One can show that when fi -Lips , then

(10 f(x) -Of(x) + (v f,(x) =f(yD/2] : 421x- 5113
~ ↑

canbe made
g(x , i) - vf(x) small.

SURG [Johnson, Zhang , 2013].

Analysis for nonconvex functions.
Therem Suppose f :RP-IR is L-smooth

and g(X, z) is an unbiased estimator

such that

#(11g(,z) - gf(x)12] -82XX .
Then the iterates of stochastic

gradient descent with 0 < Xi < 2/

satisfy T

(f(x) -min f)+
E(m1f] an) + - )

k=0 t



Prof : By the Taylor ApproximationTheorem

f(X +1) = f(X) + 8 f(x) (xi- Xk) +E /Y Ball
= f(Yk) - &nOf(Yign + lg, 11

Conditioning on Xi random
because ofZie↓

#[f(X+1) /Xx] = f(x,c) - x[Tf()grlxi]
+L [11gi/l"(Xin]

Linearity Z
I
= f(x,) - x]f(x) E/g11xi)
+L [11gi/l"(Xin]
Z

= f(x) - x] f(x) #(g) xi)
- [02- nf(X ,)(1]

By Tower Law

E[f(X+1)] <E A(i) - K +LD10f(12
+Lo?
zk



By recursively applying this formula
# [f( ++)] = Ef(X) - (a . -L ENUfEIT

k=0

+02
2

The result follows from reordering
and using the fact that

El 118 f(Xn) 117] S (a-)in in
1T

=

[ & exn-L) [OfCX)IR] ·

k=0 El

Next time we will make a

Oil in the general case and

0("/k:2) in the convex call.


