Lectore 14
HW 3 due an hour ago
Midterm release tomorrow of 7 am.
Last time
D Black-box convex optimization
D Things that break
D Analysis
Stochastic Gradient Methods
Before we have an exact gradient oracle

$$\chi \mapsto \nabla f(\chi)$$
.
Now we have an stochastic gradient oracle
 $\chi \mapsto \nabla f(\chi)$.
Now we have an stochastic gradient oracle
id at each call
Such that
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le \sigma^2$ (bounded)
 $E (\| g(x,z) - \nabla f(x)\|^2) \le$

Relevant properties of the expectation > Linearity Given X.,..., Xn r.V. and constants λ,..., λη, we have $\mathbb{E}\left[\sum_{i} \lambda_{i} X_{i}\right] = \sum_{i} \lambda_{i} \mathbb{E} X_{i}.$ d Tower law Given two random variables X, Y $E_{x} [E[Y|x]] = E[y]$ conditional expectation Examples of oracles Example 1: Coordinate approach We want to solve min fox) with $f: \mathbb{R}^d \rightarrow \mathbb{R}.$ Pick ie 11, ..., dy uniformly at random. Set $g(x,i) = d \cdot \frac{\partial f}{\partial x}(x) \cdot e_i$ Let's check that it is unbrased

$\mathbb{E}\left[q(x)\right] = \frac{1}{d} \sum_{i=1}^{d} \frac{\partial f}{\partial x_{i}}(x) \cdot e_{i}$
$= \sum \frac{\partial f}{\partial x_i}(x) \cdot e_i = \nabla f(x).$
(check that o depends on the dim).
Example 2: Finite som
Suppose we want to minimize $\min \frac{1}{2} \hat{f}_i(x)$ we have seen $\pi n_{i=1}^{2} \hat{f}_i(x)$ many examples
x n := ; Fi(x) many examples
Then $g(x, i) = \nabla f_i(x)$
yields an unbrased gradient oracle.
One can prove that if Vfi L-Lips
$\mathbb{E}\left[\ \nabla f_{i}(x) - \frac{1}{n} \Sigma \nabla f_{i}(x)\ ^{2}\right] \leq 2L^{2} \ x\ ^{2}.$
Example 3: Stochastic programming (Infinite sum)
Suppose we want to solve
$\min_{\chi} \mathbb{E} f(\chi, z)$
and we only have acces to samples z.
Then $q(x,z) = \nabla f(x,z)$.
This is unbiased by definition.

Example 4: Improved oracles for finite
Idea 1: Look at batches/minibatches
of samples.
Pick
$$S \in \{1, ..., n\}$$
 with $ISI = K$
uniformly at random with or without
replacement.
Take
 $g(X, S) = \frac{1}{K} \sum_{i \in S} \nabla f_i(X)$
which is clearly unbiased.
Intuition
Consider i.id. r.v $X_{1,...,X_{N}} \in \mathbb{R}^{n}$
Var $(\frac{1}{K}\sum_{i \in I} X_{i}) = \frac{1}{K}$ Var (X_{i})
Retter to consider K-21

Idea 2: Variance reduction
Compute full gradients every now and
then
$$\nabla f(\hat{x}) = \frac{1}{n} \sum \nabla f_i(\hat{x})$$
.
Pick i GAI, ..., ny uniformly at random
 $g(x,i) = \nabla f(\hat{x}) + \nabla f_i(x) - \nabla f_i(\hat{x})$
small when $x - \hat{x}$
is small and f
is thipschite.

It is also unbiased

$$E [g(x,i)] = \nabla f(\bar{x}) + E \nabla f_i(\bar{x}) - E \nabla f_i(\bar{x})$$
There two eared
One can show that when $\nabla f_i^{-1} - Lips$, then

$$E [I \nabla f(\bar{x}) - \nabla f(x) + (\nabla f(x) - \nabla f(x))||^2] \leq 4L^2 ||x - \bar{x}||^2$$
 $g(x,i) - \nabla f(x)$ converse and a small.
SVRG E Johnson, Zheng, 2013].
Analysis for non-convex functions.
Theorem Suppose $f^{-1} \mathbb{R}^d \rightarrow \mathbb{R}$ is L-smooth
and $g(x, \bar{z})$ is an unbiased estimator
such that
 $E[|I g(x, \bar{z}) - \nabla f(x)||^2] \leq \sigma^2 \quad \forall x.$
Then the iterates of stochastic
gradient descent with $O < K_K < 2/L$
Suffixing
 $E[min ||V f(x_i)||^2] \leq \frac{(f(x_0) - \min f_i) + \frac{\sigma^2 L}{2} \sum_{k=0}^{T} \alpha_k^2}{\sum_{k=0}^{T} \alpha_k (1 - \frac{L}{2}x_k)}$

Proof: By the Taylor Approximation Theorem

$$f(x_{k+1}) \leq f(x_{k}) + \nabla f(x_{k})^{T} (x_{k+1} - x_{k}) + \frac{L}{2} \|x_{k+1} \times_{k}\|^{2}$$

$$= f(x_{k}) - \alpha_{k} \nabla f(x_{k})^{T} g_{k} + \frac{L}{2} \|g_{k}\|^{2}$$
Conditioning on x_{1k}

$$E[f(x_{k+1}) | x_{k}] \leq f(x_{k}) - \alpha_{k} E[\nabla f(x_{k})^{T} g_{k} | x_{k}]$$

$$\lim_{k \to \infty} E[f(x_{k}) - x_{k} E[\nabla f(x_{k})^{T} g_{k} | x_{k}]$$

$$= f(x_{k}) - \alpha_{k} \nabla f(x_{k})^{T} E[g_{k} | x_{k}]$$

$$= f(x_{k}) - \alpha_{k} \nabla f(x_{k})^{T} E[g_{k} | x_{k}]$$

$$= f(x_{k}) - \alpha_{k} \nabla f(x_{k})^{T} E[g_{k} | x_{k}]$$

$$= f(x_{k}) - \alpha_{k} \nabla f(x_{k})^{T} E[g_{k} | x_{k}]$$

By Tower Law

$$E [f(X_{k+1})] \leq E [f(X_{k}) - [K_{k} + L \frac{x^{2}}{2}] E [\nabla f(X_{k})]^{2}$$

 $+ \frac{L \kappa^{2}}{2} \sigma^{2}$

By recursively applying this formula

$$E [f(X_{T+1})] \leq E f(X_0) - \sum_{k=0}^{T} (\alpha_k - \frac{L\alpha_k^2}{2}) E \|\nabla f(X_k)\|^2$$

 $+ \sum_{k=0}^{T} \frac{L\alpha_k}{2} \sigma^2$

The result follows from reordening
and using the fact that
$$\mathbb{E}\left[\min_{k \in T} \|\nabla f(x_k)\|^2\right] \sum_{k=0}^{T} (\alpha_k - \frac{\lfloor \alpha_k^2 \rfloor}{2})$$
$$\leq \sum_{k=0}^{T} (\alpha_k - \frac{\lfloor \alpha_k^2 \rfloor}{2}) \mathbb{E}\left[\|\nabla f(x_k)\|^2\right].$$

Next time we will make a $O(1/k^{1/2})$ in the general case and $O(1/k^{1/2})$ in the convex case.