
Lecture 13

HW3 due Thursday
Midterm posted on Friday Morning

Last time Today
D Guarantees for strongly D Black-box convex optimization
convex I↳ Accelerated Forward

1 Things that break
backward Method

.
↳ Analysis

D More proximal methods

Alternating Projections

Black-box convex optimization
What happens when we cannot solve for the

prox? we are

Now we only assume that i given a problem
- Convex f:R

&
-IR

min f(x)
XIR

&

and that we can query for any x

f(x) and g(V)eGf(x).
We already saw a problem like this



in HW3 :

min & max Go , 1-yxiwy + 1 IWI

where computing a subgradient was

easy, but solving the prox was

hard.

A natural idea is to generalize GD

Xutz Xk- Xng(X).

Things that break
Smooth optimization land was rather
nice . In nonsmooth optimization
we cannot have :

Guarantees with constant stepsize
Why? f(x) = 1x) Xo = 2 .

52

& M - Fixed

I &

step size

-
E-



No guarantee of descent
Why ? f(X , X2) = 31X11 + (2)

No descent with Xo = (2)
regardless ofG 2 f (0 ,1) = 32(1x 11) (0, 7)
↳ - B ,H

-> G(Xc() (0,1)- = ( A &32- 1, 1]

=> (3 , 1) e 2f(0 , 1)
2x)f(x)]f(x]

Two perspectives on subgradients
Sideview

#f(x)

+<g(), y
x

We can also use this perspective to

derive

Xita = argain Lf(x) + <g(X) , X-X 3-+ Ex-X



Contour / Overhead

↑

#A
gT(y - X)] - E

If not e-optimal
at X

,
then optimal is here.

If 2(x) - min & & 2 Ef(x) - E >minf

If X' is such gily-y)I-E =

f(x)2 f(x) - E > min to

Lemma Assume that f : RP-IR is convex

achieving a minimum at X& Then the
iterates of subgradient descent satisfy.

1Xk+1 - XB11X-4
* 1-2x(f(x) - f(x)) ex

Prof : By definition
/Xiu-X

* 12 = /XR-Argn-X
* p



= 11xx - y8p - 2x(gn , Xn- x
*)

+ XIg , 112
Atlas-

-
> 114x - x012 - 2x(f(Xm) - f(x+)

- Xi
? Ilgall

Il

Intuition

We will get closer to the solution

if

~ 2x
,
(f(x) - f(x

+)) + X i19 .1 < 0 .

A
We can achive
that if Ngull is bounded.

Lemma. If of is M-Lipschitz , then

for all XEIRA , g ziffi),

Igll, M.

Proof : seeking contradiction assume

lg112 > M for some goaf(x) . Then,

if we take y = x + g
f(y) = f(x) + g+ (y - x)

= f(x) + 1912



= f(x) + 1g)M .

Thus
, f(y) - f(x) = Migh = Mlly- X 11.

YI
Exercise : Prove that the opposite implication-

in the previous Lemma also holds.

Theorem : Assume that filR" -> R is an
-

M-Lipschitz function , and suppose yearyminfed.
Then, the iterates of subgradient descent

satisfy
min Gf(x) - min fla 10-4512

+22
KIT 2 x

k=0

In particular, if x O and =,

then

Lim min Gf(x-minoh

Proof : For any k we have
-

First Lemma
↓

2 On (f(x) - f(x
*

1) E 11x - X
* 12 - 1 *

K+,
-X*/

- XI gall



second Lemma
I
= 11X1-y

* 12 - 11X - X
&p

+ 22 Xi

Summing up for K:

2 <
x (f(x ,) - f(x * )) = 10 - x

* / + 22x

Y
rower bounding by min (f(x) - fex* )),

KIT

yields
min· f(xi)-f(x) ! 40-X

* 12 + 12X
12IT

2[xi

Taking limits on both sides gives

12x??lim min fexi) - f(x) < -40-X8112+
T-D KIT ⑤

22x

when X
,

= X and xn< *, the

right hand side goes to zero I

Collary : If we set X = X
,
then

min [f(x) - minga ↳ NXo - x*/12 t M2g
- -

2xT 2



2

If We set < = E/M2 and T I
M2 11 X0-X*

S

-
then

min 98exu) - minfly = E
.

Proof : First inequality follows trivially
-

from the Theorem. Then

M

1140-X
* 11
?

M
2
Q

↓
-t- - -X2xT 2

T

↓
[ = E .

I

Thus we need T = -(2) for an e-min.

With GD we needed T =-()
and with AGD we needed T =() ·
Theorem There exists a convex M-Lipschitz

tfunction f : R&-IR and a subgradien orache

gexl = 28) s
.t - any algorithm s .

f

X+1eXo + span(g(Xo), ... , g(X6]
satisfies that for12d



f(x) -ming?
You can find the proof in Nesterov's
Book (Theorem 3

.2 .1)

Extensions

There are results for
- strongly convex functions O()
· weakly convex functions 0 Chil.


