in HW3:

min
$$\sum_{w} \max(0, 1 - y_{v}x_{v}^{T}w_{v}^{T} + \frac{\lambda}{2} \|w\|^{2}$$

where computing a subgradient was
easy, but solving the prox was
hard.

A natural idea is to generalize
$$GD$$

 $\chi_{k+1} \leftarrow \chi_k - \kappa_k G(\chi_k).$

Things that break Smooth optimization land was rather nice. In nonsmooth optimization we cannot have:

Guarantees with constant stepsize
Why?
$$f(x) = 1x1$$
 $x_0 = 2.5\alpha$
Fixed
step size

$$= \| x_{k} - x^{*} \|^{2} - 2\alpha_{k} \langle g_{k}, x_{k} - x^{*} \rangle + \alpha_{k}^{2} \| g_{k} \|^{2} \leq \| x_{k} - x^{*} \|^{2} - 2\alpha_{k} (f(x_{k}) - f(x^{*})) + \alpha_{k}^{2} \| g_{k} \|^{2}. \square$$

Intrition
We will get closer to the solution
if

$$-2\alpha_{k}(f(x_{k}) - f(x^{*})) + \alpha_{k}^{2} \|g_{k}\|^{2} < 0.$$

We can achive
that if $ng_{k}n$ is bounded
Lemma. If f is M-Lipschitz, then
for all $x \in \mathbb{R}^{d}$, $g \in \partial f(x)$,
 $\|g\|_{2} \leq M.$
Proof: Seeking contradiction assume
 $\|g\|_{2} \leq M.$
Proof: Seeking contradiction assume
 $\|g\|_{2} = M$ for some $g \in \partial f(x)$. Then,
if we take $y = x + g$
 $f(y) = f(x) + g^{2}(y - x)$
 $= f(x) + \|g\|_{2}^{2}$

$$\geq f(x) + |g|| M.$$
Thus, $f(y) - f(x) \geq M ||g|| = M ||y - x||.$

$$\begin{cases} \mathcal{F}_{\text{T}} \\ \mathcal{F}$$

Second Lemma

$$S \|X_{k} - X^{*}\|^{2} - \|X_{k_{11}} - X^{*}\|^{2} + L^{2} X_{k_{2}}^{2}$$
Summing up for $K \leq T$

$$2\sum_{k} X_{k} \left(f(X_{k}) - f(X^{*})\right) \leq \|X_{b} - X^{*}\|^{2} + L^{2} Z_{k_{k}}^{2}$$
Lower bounding by min $(f(X_{k}) - f(X^{*}))$
yields
min $f(X_{k}) - f(X^{*}) \leq \frac{\|X_{b} - X^{*}\|^{2} + L^{2} Z_{k_{k}}^{2}}{2 Z_{k}^{2} X_{k}}$
Taking limits on both sides gives

$$\lim_{k \leq T} \min_{k \leq T} f(X_{k}) - f(X^{*}) \leq \frac{\|X_{b} - X^{*}\|^{2} + L^{2} Z_{k_{k}}^{2}}{2 Z_{k_{k}}^{2} X_{k}}$$
Under bounding by min $(f(X_{k}) - f(X^{*}))$

Corollary: If we set $\alpha_{k} = \alpha$, then min $(f(x_{k}) - min f^{2}) \leq \frac{\|x_{0} - \chi^{*}\|^{2}}{2\alpha T} + \frac{M^{2}\alpha}{2}$

If we set
$$\alpha = E/M^2$$
 and $T \ge \frac{M^2 |IX_0 - X|^2}{E^2}$,
then
min $\int f(X_k) - minf Y \le E$.
Proof: First inequality follows trivially
from the Theorem. Then
 $\frac{|I \cdot V_0 - X^0 \cdot |I|^2}{ZK \cdot T} + \frac{M^2 \alpha}{2} = \frac{U}{2} \frac{|I \cdot X_0 - X^0 \cdot |I|}{ZE \cdot T} \frac{M^2}{2} + \frac{E}{2} = E$.
Thus we need $T = \Omega(\frac{1}{E})$ for an E -min.
With GO we needed $T = \Omega(\frac{1}{E})$.
Theorem There exists a convex M-Lipschitz
function $f: \mathbb{R}^d \to \mathbb{R}$ and a subgradient oracte
gex i $\in \partial f(X)$ s.t. any algorithm s.t.
Net $f(X_k)$ is first and for $K < d$