
Lecture 11

Last time Today
1 Review of smooth optimization & Forward-Backward method

Motivating Problems Examples
$ Proximal Operator

i
is Constraints vicl proxima

operator
↳ Analysis

Forward-Backward Method
.

When we have a sum f + h .
we have

X ↑
smooth convex

a natural approximation
I , (x) = f(x*) + (0f(xx)

,
X - x

*

) + h(x)
- ↑

linear approximation perfect
approx .

Then
,
at each iteration we update

Xies * argmin [h(x) + f(xx)+ 20 f(xn), x -x)
X

onnet +

1 1x-xll Z- !W

-Part
2xk

By Lemme D smooth

- n8f(Xn) - X - ) = 2h(x)

By Proposition &
,
this is equivalent to

Xk+1 = ProX Nich (xx - xx f(x ,)) .

ee

Backward step Forward Step

Thus
,
this method works well for



By Proposition &
,
this is equivalent to

XK+1 =proXach(Xx - xx f(x ,)) .

ee

Backward step Forward Step

Thus
,
this method works well for

convex functions for which me can compute
Iproximal operators efficiently ·

Examples
The 11 norm I . 111 (HW3)

x : <
- X

sproxam : & "
**

-x < Y : 22

Xi -x Xi) <
.

- known as hard

thresholding .#
U diag (0(X)) V

SVD decompositionof X
- The nuclear norm Holle .

↓
proxam(X) = U diag (proxam . 110(x))) V

"

"



Constraints via the proximal operator
Suppose we want to minimize

min

XES f smooth
.

comex closed
We can capture these problems using
the extended reals 6 xES

,

min f(x) + 25 4Yg(X)= E& XS
.

which matches the template we are consi

desig (smooth + convex)
.

Lemma : proxans*)
=

proj
,
(x)

.

-

Proof proxaz
,

(X) = argmin(n,(y) + ally-x-
:

=

argmin [11y-x12}
XES

=projs(X) .
I

Then the Forward-Backward method

reduces to Projected Gradient Descent

xx+1
< projs (Xx-xXf(x)) .



Xo
-28 f(x)

⑤ 8.Intuition · Xx7 Tto · X
*

↑, *z·
min- CTX W - *.....

Examples

xGS ⑪gEmball
S = Gx1 11X1

,
= 13 ......-

ProjsCX)
X XES

3

proj , (X) = E E otherwise
.

11x1)=

motiveorthant
S = G x 1 x = = 0 Fil

---8

projec
- maxsenoswit

Grading Polyhedral
S = GCH, M ,

F) /Asyllabus
.

Quadratic
projs(X) = argmin My-XII C programming

sit yes Robtem .



Analysis of FBM
We define the Gradient mapping

GalX) = I (x-proxahly-1 fix1))
"+

By definition

I(X - x 0f(x) - x+ (e 2h(x+)

Then

Gan(x) G 8 fex) + 2h(X+)

Thus
,
when Gx(x) = 0

.

= x = X+ and

- f(x)G2h(X) < First order
optimality
condition

.

Thus we one /GaX)II as a measure

of optimality .

Lemma (Descent 2 .01 : Assume I is L-smooth

Then
,
for all NEIR*

(fth) (x+) = (f+h(x) - (x - ) 11GaIXII



Proof : By Taylor Approximation
-

f(x+) = f(x) + 0 f(x)"(x+ - x) + Elix-x
(i)
Moreover I(X -x fex) - xT) = 2h(x)

(B)
=> h(x) = h(x+) + 1(x-x8fex) -x),x - xt)

= h(x+) - 0 f(x)Ya-x X-x
+

I?

Then
, taking (i) + (B)

(f + h) (x) If(x) + n(x) - (t -=)1x- xR
= fexen(x) - (x - ) IGalx

L
Thus

, picking a = 1 gives

(f+W(x+) = (fehl(x) - 11Gy (x)ll?

Linesearch procedures work exactly the
same as before. If you want the details

see Chapter 10 of Amir Beck's "First--

Order Methods in Optimization.

"

Theorem : For any f with L-lipschitz gradient-

and convex h .
The iterates of FBM

with stepsize Xx=K . satisfy



1 IGrl= 22 ((fen(x) - minfen
-

T k= 0
T

-

Intuition

There is an iterate that is approximate stationary
min (1Gy(Xx)11 = 0 () .

kIt -1

Proof :

By DL2 .0
-

11G(X ,) 11
2
< 22 ((f + h) (x ,) -(f(n)(xxe))

summing up to -1 yields

IG(X)l= 22 (17th)(x0)-(frh)(* 1i
=22 ((f+ 4(x) - min fth)

,

divide by i to get the result 1

Theorem For any convex ,
L-smooth I and

-

convex A such that x
* E angmin + hix) ·

Then
,
the iterates of FBM with=In satisfies
(fth) (xx+1) - min (th) =21Xo-x* /2
-

2k

Proof
-

: We start by proving
(=x)

0 = (fth) (x - -) - min 18th) ==( AXx-x 11 - IXmix*)



By definition Xk minimizes

Y(x) = 1 f(x) (x-x1) + h(x)+ Ex-x
e

o-strongly L-strongly
convex convex

By HW2 P2 :

(1) Y
, (4xx) +Ex

*
- xx, = Y .

(X*)

Using the characterization of L-smooth convex

functions
(2) (f + h) (xxa)= Yos(Xken)

Using the convexity of

1) Yx(x) = f(x*) + h(x8) + IX=Xill
-

min (f+h)
Then

(fthI(Xx+) - min(Ath] Y(Xr) - min (f+ h)

"Y
,
(** ) - I 11X

* -Xall

- min (fth)

(x* -Xill-nx0-XanllY
,

which establishes (E) .

Summing up and dividing by I gives

o((f(h)) - min(fth)] = (Ixo -x*-11 x-x*



I IlX .
-** II?E -

25

DL 2 .0 ensures that the minimum function gap
is achieved at

1 = T-1

- Ith(X+) - min (1th) = ⑭X
*
IP

.

24 It


