
Lecture 10 (Sep128)

Scribe ? HW due tomorrow.

Last time Today
↓ Classroom Choos I a Review of smooth optimizationI Proof lower bound D Motivating Problems

I Proximal Operator

Summary of guarantees
for smooth optimazation .

Method Generic rate Quadratic
/L-smooth) growth

Gradient Descent * 1) f(x+) - f(x
*) = -(1) - ))

(for noncourexf) (Local rate forUf(X* ) 30)

Gradient Descent
f(x+) - min8 = (f) f(x-minfIOTY(for convex f)

On-strongly convex)

Accelerated Gradient
f(y+)- minf= (tz) f(x +-minfo(

(for convex f)
X Im-strongly convex)

Optimal HW2 D3-i~
(Also optimal)



What's next ? Structured nonsmooth optimization
1 . Motivating problems
2. The proximal operator
3 . Proximal gradient method
1 . Constraints and projections
5. Acceleration tions

6 . More proximal methods.

Motivating problems
several optimization problems are non-smooth

.

One common way in which nonsmoothness arise

is by promoting structure .

Sparsity
Imagine we wished to solve a linear system

AX =b
,

This could be solved using least-squares
min EllAx-b11?

which works well when A = T ; more constraints

than variables. But often in science we have
-

more variables than constraints A =2 . Thus
,
we



have motiple solutions . Which one to pick?

· This a common problem stats (Regression).
A common approach is to pick one

-

with few nonzero entries. Good for interpretability

This motivated Rob Tibshirani to propose Lasso

min tllAX-b1+ 11/X111 * Promotes
wonsmooth sparsity

· This is also a common problem in signal
processing (inverse problems) When you are

trying to recover a sparse signal
.

Donoho (2004)
,
Landes

, Romberg ,
To (2004)

proposed compressed sensing
min 1X111 St . Ax = b.
X-IR

&

Intuition

4x(Ax = by

-of
<XIIII= GY



Low-Rankness

Sometimes researchers are interested in

recovering a matrix Xe Rac satisfying
a linear system

A(x) = b
-

Linear map A : Rand-> Mi

but died>m (less constraints than variables).

Examples arise in

· signal processing
The seminal problem of phase retrieval
aims to recover a rank 1 matrix X

.

Other examples include blind deconvolution.

· Recommendation systems
movies

: The matrix completion
problem aims to recover

I 2 5 a matrix X from
:- entries (a linear map).

X is assumed to be low-rank (similar people
like similar movies).



To solve this problems Fazel (2002)

proposed to solve

min ElA(X)-b1 + XIXII*
t

nuclear norm

IXIIn = 0.(X).

A class of problems
These examples have the form

min f(x) + h(X) .
X- IR

&
↑ ↑

smooth convex (and nicelydecomposable).
In the next few lectures we will study
how to solve optimization problems of this

form.

Proximal operator
How do we come up

with algorithms?
Approximations ?
We saw before that gradient descent
can be written as

*++ 1
= argmin [f(xt) + of (xP(x - Xt)

+ 1 1X - X
+
14%.

20t



This strategy goes well beyond GD. Given

a function correx function I : IR
*
-> RULDY.

↑closed

We define the proximal operator
proxu(x) = argmin [I(z) + 1 1lz-X1).

Z 2x

Lemma : The proxa : IR* -> IRA is well-defined.-

Proof : The function z [(z) +1 117-X112
2x

is strongly convex . By HW2 it has a unique
minimizer. I

Lemma · Let NiRd-IRUIN be a closed
-

comex function and f : /R&-IR be a

smooth function. Let **- argmin fex+II(x) ,

then
-- f(x) - 2π(x9

Proof : Let XEIR9 and te 0
,
1]

Xt

=> f(x*) + N(x*) = f(mt(x- X*)) + y(x * + t(x -x))
↑

- f(x) + (1 - t)Y(X* ) + -Y(x)

=> f(x9) - f(x) -t(y(x) - u( +))()



By definition of the gradient :
< - Of(x* ) , X- x* ) = Sim f(x *) - f(x + +(x - x

*))
↓O
--

t
(i)
E [(x) - U(X *).

- - - f(x + ) - 2 [(X *) ·
I

Semma : Let NiRd-IRUIN be a closed
-

convex function and f : /R&-IR be a convex

smooth function. Then

** Eargiin (C) + fex E-VIX)E2(x
%)

Proof :"
-

an
& For

any XEIR
&

& (x
*
) + iex*)[f(x) + (0f(x* ) , X

P

-X]
+ M(X) - (8f(x) , X

*
-X)

- f(x) + Y(X) .

I

Proposition & : The point Xt = proxay(x) iff

↑ (x - x
+

) => Gi(X
+ 1

.



Proof . Follows directly from the previous
Lemma. D

The
up
date X

..
* PROX(X) is usually

called an implicit (or backward) step
because

- GueGI(X+ 1) .

xx + 1
= Xy = xgx

That is like gradient descent with the
gradient evaluated at the future iterate vi
The proximal operator gives a natural
templates to design algorithms :

Loop K20 :

Define approximationIn of f near Xi
UpdateXie * ProXXTR (X) .

Two examples :
Gradient descent
in(X) = f(x) + <8f(Y) , X-Yi]

Proximal point method
Each iteration might

Ex(X) = f(x) a bejust as hard as original
problem.


