

What's next? Structural nonsmooth optimization
\n1. Motivating problems
\n2. The proximal operator
\n3. Posimal gradient method
\n4. Constants and projections
\n5. Acceleration
\n6. More proximal methods.
\nMotivating problems
\nSeveral optimization problems are non-smooth.
\n0re common way in which nonsmoothness are
\n1s by promoting structure.
\nSparsity
\nImage we wished to solve a linear system
\nA x = b,
\nThis could be solved using least-squares
\nmin
$$
\frac{1}{2} ||Ax - b||^2
$$
.
\nwhich works well when $A = \prod$; more constraints
\nmore variables. But often in science we have
\nmore variables than constraints $A = \prod$; thus, we

have motiple solutions . Which one to pick? · This ^a common problem stats (Regression). A common approach is to pick one with few nonzero entries.Good for interpretability This motivated Rob Tibshirani to propose Lasso min tllAX-b1 ⁺ 11/X111 * Promotes wonsmooth sparsity · This is also ^a common problem in signal processing (inverse problems) When you are trying to recover ^a sparse signal. Donoho (2004) , Landes , Romberg , To (2004) proposed compressed sensing min 1X111 St. Ax ⁼ ^b. X-IR & -

-

Intuition

Low-Rankness

Sometimes researchers are interested in
recovering a matrix $X \in \mathbb{R}^{d_x d_x}$ recovering a matrix $X \in \mathbb{R}^{d \times d_2}$ satisfying a linear system $A(x) = b$ - 0
كر Linear $A(x) = b$
map $A: \mathbb{R}^{d_1 \times d_2} \rightarrow \mathbb{R}^m$ but dixd2 >>m (less constraints than variables). Examples arise in · signal processing The seminal problem of phase retrieval aims to recover a rank 1 matrix X. The seminal problem of phase retrieval
aims to recover a rank 1 matrix >
Other examples include blind deconvolution. · Recommendation systems movies one times researches are
covering a matrix
linear system
for a matrix
for a matrix
for a matrix
for a map of R
Examples are in
signal processing
The seminal problem
aims to recover
other examples inch
Pecommendation syst The matrix completion problem aims to recover I 2 3 mars : "I problem ains to rece Other examples include blind deconvolution
Recommendation systems
 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1$ ^X is assumed to be low-rank (similar people : [: : : : : : ...]
X is assumed to be
like similar movies).

To solve this problems Fazel (2002)
\nproposed to solve
\nmin 11 A(x) - b||² +
$$
\lambda
$$
 ||x||_x
\nmodel matrix
\n $||x||_x = \sum_{i=1}^{n} \sigma_i(x)$.
\nA class of problems
\nThese examples have the form
\nmin 10 X ||x |.
\nSince examples have the form
\n $\sum_{i \in \mathbb{R}} f(x) + h(x)$.
\nsmooth boundary and actually
\nhow to solve optimization problems of this
\nform.
\nProximal operator
\nHow do we come up with algorithm of
\nApproximalors!
\nWe saw before that gradient descent
\ncan be written as
\n $x_{k+1} = \arg min \{ f(x_k) + \nabla f(x_k) [x - x_k] \}$
\n $+ \frac{1}{2a_k} ||x - x_k||^2$.

This strategy goes well beyond 90. Given
\na function convex function
$$
Y: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}
$$
.
\nwe define the program 1 $Y(2) + \frac{1}{2\alpha} \|z - \chi\|^2$].
\n \downarrow Prox_{ir} (x) = argmin 1 $Y(2) + \frac{1}{2\alpha} \|z - \chi\|^2$].
\nLemma: The program 1 $Y(2) + \frac{1}{2\alpha} \|z - \chi\|^2$.
\n \downarrow from a: The function $z \mapsto \psi(z) + \frac{1}{2\alpha} \|z - \chi\|^2$
\nis strongly convex. By HW2 if has a unique
\nminimizer. \square
\n \downarrow emma: Let $\psi: \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ be a closed
\nconvex function and $\psi: \mathbb{R}^d \to \mathbb{R}$ be a
\nsmooth function. Let $x^d \in argmin \{\infty\} \cup \{x\}$,
\nthen $\neg \forall \psi(x^*) \in \partial \psi(x)$.

 $Proof:$ Let $X\in\mathbb{R}^d$ and $t\in[0,1]$ $\mathsf{Y}_{\boldsymbol{t}}$ $f(x^4) + \psi(x^4) \leq f(\chi^4 + f(x-\chi^4)) + \psi(x^4 + f(x-x^4))$ ζ $\beta(x_i) + (1 - \epsilon) \mathcal{V}(\chi^{\bullet}) + \epsilon \mathcal{Y}(\chi)$

$$
\Rightarrow f(x^{\star}) - f(x) \leq f(\Psi(x) - \Psi(x^{\star})) \qquad (1)
$$

By definition of the gradient:
\n
$$
\langle -\nabla f(x^*) , x - x^* \rangle = \lim_{\epsilon \to 0} \frac{f(x^*) - f(x + t(x - x^*))}{t}
$$

\n $\leq \psi(x) - \psi(x^*).$
\n $\Rightarrow -\nabla f(x^*) \in \partial \Psi(x^*).$
\n $\Rightarrow -\nabla f(x^*) \in \partial \Psi(x^*).$
\n $\Rightarrow -\nabla f(x^*) \in \partial \Psi(x^*).$

convex function and
$$
f: \mathbb{R}^d \rightarrow \mathbb{R}
$$
 be a convex
\n $x^* \in \text{argmin } \mathbb{Y}(x) + \text{max } \Leftrightarrow -\nabla f(x^*) \in \partial \mathbb{Y}(x^*).$

\nProof: $\begin{array}{rcl} \downarrow & \downarrow$

Proposition ϑ : The point $\chi^+ = \rho r \circ x_{\alpha Y}(x)$ iff $\frac{1}{\alpha}$ (x - x⁺) $\int \epsilon \, \partial \, \Upsilon(x^+)$.

Proof . Follows directly from the previous Proof. Follows directly from the previous
Lemma.

The update $\chi_{\kappa_{t1}}$ \leftarrow $prox_{\alpha Y}(\chi)$ is usually called an implicit (or backward) step called an implicit (or backward) step
because $\alpha = \alpha - \alpha$ $\alpha = \alpha + \frac{1}{2}$ $\chi_{\kappa+1} = \chi_{\kappa} - \alpha g_{\kappa}$ That is like gradient descent with the gradient evaluated at the future iterate $x_{\kappa,i}$ The proximal operator gives a natural templates to design algorithms: $Loop$ $Kz0$: p K20:
Define approximation Y_{κ} of \int near κ_{κ} Define approximation Ψ_{κ} of \int need ν_{κ} approximation Ψ_{κ} of \int need Two examples : Gradient descent $\gamma_{\kappa}(x) = f(x_{\kappa}) + \langle \nabla f(x_{\kappa}), x-x_{\kappa} \rangle$ Proximal point method $\Psi_{\kappa}(x) = f(x)$ Each iteration might
 $\Psi_{\kappa}(x) = f(x)$ be just as hard as original