Lecture 1 Aug/27/23
Instructor: Mateo Diaz (mateoddo)
Office Hours: Mondays 4:00 - 5:30 pm
Wyman S429
TAS: Wyman 5425
- Pedro Izquierdo (pizquie 10 jh.edn)
0H: Th 10:00 - 11:30 am
- Daniel Lopez (jlopezcl@jh.edn) OH: The 10:00 - 11.30 am
- Thabo Samakhona (tsamakh 1 @jhu.eau) OH: Wed 10:30 - 11:15 am
Resources
- Canvas
- Website (mateodd 25.github.io/
nonlinear)
- Piazza Ask guestions here before emailing me
- Gradescope « All submissions.

Agenda

- D Syllabus
- D Motivation
- · Overview
- D Background Denview
- Syllabus Four components: - Homework (5-6) - Midterm Takehome (Oct 11-17) - Final Takehome (Dec 13-15)

Let
$$H, M, F$$
 be variable
weights for each component.
Your grade will be the optimal value
of
max $C_{H} \cdot H + C_{M} \cdot M + C_{F} \cdot F$
 $+ C_{F} (100 - H - M - F)$
s.t. $(H, M, F) \in \mathbb{R}^{3} = P$
 $q0 \in H + M + F \leq 100$
 $H, M \geq 15$
 $F \geq M$
 $50 \leq M + F \leq 80$
Motivation
We want to solve
 $\min_{X \in C} f(x)$
In this class we will foursed
in the unconstrained setting $C = \mathbb{R}^{d}$.

Example 1 (Least-Squares) Gauss was interested in predicting the position of ceres (planetoid) From 22 observations made by Joseph Piazzi: where next? $(x, y,), \dots, (x_{22}, Y_{22}).$ Gauss assumed that the data way close to an ellipse: $\alpha \chi^2 + \beta y^2 + \gamma \chi y = 1.$ To find &, p, 8 he formulated min $\sum_{i=1}^{\infty} (\alpha \chi_i^2 + \beta y_i^2 + \gamma \chi_{ij} - 1)^2$ κ, β, γ i=1Gauss solved this problem and obtained meaning ful predictions (after a 100 hours). This is an instance of a leastsquares problem

min
$$\|A\overline{w} - B\|^2 = \sum_{i=1}^{\infty} (\overline{a}_i^T \overline{w} - b_i)^2$$

 $a_i = \begin{bmatrix} x_i^2 \\ y_i^2 \end{bmatrix} \quad b_i = 1, \overline{\beta} = \begin{bmatrix} \alpha \\ \beta \\ \beta \end{bmatrix}$
Example 2: Data tilting in general
Learning problem
Data: $(\overline{x}_1, y_1), \dots, (\overline{x}_m y_n)$
Goal: Find function $f(\overline{x}_i) \approx y_i$.
Approach boss function
min $\widehat{\Sigma}_i l(f_{\overline{w}}(\overline{x}_i), y_i)$
Min $\widehat{\Sigma}_i l(f_{\overline{w}}(\overline{x}_i), y_i)$
Parametrized function,
before $f_{\overline{w}}(a_i) = \overline{a}_i^T \overline{w}$
Imagive we want to predict whether a
patient has COVID from observations
 $\overline{x}_i = \begin{bmatrix} hearrideric} hear \\ hear derive \\ Hear derive \end{bmatrix} \quad y = \begin{cases} 1 & \text{if COVID} \\ 0 & \text{otherwise} \end{cases}$

We might imagine that data is linearly
separable
X X X Space Consider

$$UX X = \frac{1}{L+e^{-wx}}$$

Separatives i
hyperplane i
With logistic regression we minimize
min Z yiln fw(xi) + (2-yi) ln(1 - fw(xi))
In general we can use more
complicated parametrizations
 $f(x) = W_{1} \cdot \dots \circ \sigma_{0} \otimes W_{2} \circ \dots \circ W_{n} \times W_{n}$
Montimear parameters
This is what gives rise to reveal
networks.
Overview
Geometry Optimality cenditions
Basic convex analysis.

When we can only use
$$\chi \mapsto \nabla f(x)$$

First-order
Nethods
- For smooth functions
- For nonsmooth functions
- For nonsmooth functions
- For stochastic functions
 $f(x) = IE F(x, z)$
Second order
When we have access to
 $\chi \mapsto (\nabla f(x), \nabla^2 f(x))$
- Newton's method
- Questi-Newton methods
- Trust region
Time permitting (Linear Programming
Conjugate Gradient
composite optimization.