

Agenda

- ^D Syllabus
- Motivation
- ^D Overview
- ↳ Background Review
- Some B Background Renview
Syllabus
Four rompovents four code Background Veuvieur
Syllabus
Four comporents: Some code
- Homework (5-6) - Homework $(5 - 6)$ Midterm Takehome $($ Oct 11 - 17)
	- Finel
- Takehome (Dec 13-15) A

- Participation Might change. - Engaging in class, OH , Piazza.

GradingSystem Let CH , Cm , C+ , Up denote your normalize grades 10-100).

Let
$$
H, M, F
$$
 be variable
weights for each component.
\nYour grade will be the optimal value
\nof
\n $\begin{bmatrix}\n m\alpha R & C_{H} \cdot H + C_{H} \cdot M + C_{F} \cdot F \\
r & r & r \cdot (100 - H - M - F)\n\end{bmatrix}$
\n $\begin{bmatrix}\n m\alpha R & C_{H} \cdot H + C_{H} \cdot M + C_{F} \cdot F \\
r & r & r \cdot (100 - H - M - F)\n\end{bmatrix}$
\n $\begin{bmatrix}\n m\alpha R & m\alpha R & m\alpha R \\
r & r & r\alpha R & m\alpha R\n\end{bmatrix}$
\n $\begin{bmatrix}\n m\alpha R & m\alpha R & m\alpha R \\
m\alpha R & m\alpha R & m\alpha R\n\end{bmatrix}$
\n $\begin{bmatrix}\n m\alpha R & m\alpha R & m\alpha R \\
m\alpha R & m\alpha R & m\alpha R\n\end{bmatrix}$
\n $\begin{bmatrix}\n m\alpha R & m\alpha R & m\alpha R \\
m\alpha R & m\alpha R & m\alpha R\n\end{bmatrix}$
\nIn this class we will found
\nin the unconstrained setting $C = R^d$.

Example 1 (Least-Squares) Gauss was interested in predicting the position of ceres (Pranetoid) From ²² observations made by Joseph Piazzi: where next? $(x, y,)$, ..., (x_{22}, y_{22}) . 1 (Least-Sgraves)
as interested in prediction
on of ceres (planetoid)
2 observations made log
Piazzi: where next?
., (x₂₂, Y₂₂).
6 on ellipse:
e to an ellipse: Gauss assumed that the data was close to an ellipse: $close$ to an ellipse:
 $x \times 2 + \beta y^2 + \gamma xy = 1.$ To find a, B, ⁰ he formulated $\lim_{x \to 0} \frac{3^2}{x^2} \left(x x^2 + \beta y^2 + \gamma x y^2 \right)$ $\begin{array}{ll} \nmin \limits_{\mathbf{k},\mathbf{b},\mathbf{3'}} & \sum_{i=1}^{22} \left(\alpha \chi_i^2 + \beta \chi_i^2 + \gamma \chi_j \right) \end{array}$ r.
niv
, B, γ $\sum_{i=1}$ Gauss solved this problem and obtained meaning ful predictions (after a 100 hours). This is an instance of a leastsquares problem

min
\n
$$
\overline{w}
$$
 || A $\overline{w} - \overline{b}$ ||² = $\sum_{i=1}^{n} (\overline{a}_{i}^{T} \overline{w} - b_{i})^{2}$
\n $a_{i} = \begin{bmatrix} x_{i}^{2} \\ x_{i}^{2} \\ x_{i}^{2} \end{bmatrix} b_{i} = 1, \overline{\beta} = \begin{bmatrix} x_{i}^{2} \\ x_{i}^{2} \\ x_{i}^{2} \end{bmatrix}$
\nExample 2: Data Eilling in general
\n \overline{Q} and: Find function $\overline{f}(x_{i})$ and
\n \overline{Q} and: Find function $\overline{f}(x_{i}) \ge 0$
\n \overline{Q} has function
\n \overline{Q} has function
\n \overline{Q} has \overline{Q} with
\n \overline{Q} has \overline{Q} has \overline{Q} with
\n \overline{Q} has <

Geometry J Optimality conditions

When we can only use
$$
x \mapsto \nabla(x)
$$

\nFirth-order
\nwellholds
\nFor convex functions
\n- For stochastic functions
\n $f(x) = \frac{F}{2} F(x, e)$
\nSecond-order
\n $\begin{cases}\nWhen we have a\n $f(x) = \frac{F}{2} F(x, e)$
\n $\Rightarrow (\sigma f(x), \nabla^2 f(x))$
\n $\Rightarrow When we have a\n $\Rightarrow (\sigma f(x), \nabla^2 f(x))$
\n $\Rightarrow When's method$
\n $\Rightarrow$$$