
Nonlinear Optimization 1, Fall 2024 - Homework 4
Due at 3:30PM on Thursday 11/12 (Gradescope)

Your submitted solutions to assignments should be your own work. While discussing
homework problems with peers is permitted, the final work and implementation of
any discussed ideas must be executed solely by you. Acknowledge any source you
consult.

Problem 1 - Stochastic subgradient descent is just as fast as SGD

The similarities between our O(1/
√
T ) result for deterministic nonsmooth optimization and

O(1/
√
T ) result for stochastic smooth optimization extend deeply. In this question, you’ll show

a O(1/
√
T ) convergence rate for stochastic nonsmooth optimization.

Consider minimizing a convex function f(x), given a stochastic subgradient oracle g(x, z), such
that

Ez[g(x, z)] ∈ ∂f(x) and Ez[∥g(x, z)∥2] ≤ M2,

via the following Stochastic Subgradient Method with αk > 0:

Sample a new independent zk

xk+1 = xk − αkg(xk, zk) .

(a) Derive the following inequality bounding the expected change in distance to a minimizer x∗

from one-step of this method for fixed xk

E
[
∥xk+1 − x∗∥2 | xk

]
≤ ∥xk − x∗∥2 − 2αk(f(xk)− f(x∗)) + α2

kM
2.

(b) Use this to provide any upper bound on E [mini≤k{f(xi)− f(x∗)}] for any sequence αk.

(c) For some fixed k, propose a sequence αi such that your bound after k steps is at most
O(1/

√
k).1

(d) Propose a sequence αi such that your bound after k steps is at most O(log(k)/
√
k) for all

k.

Problem 2 - Pitfalls and hidden beauty of Newton-Raphson

This question concerns the diverengent behavior and interesting properties of the Newton-
Raphson method.

(a) Divergence. Find a continuously differentiable function F : R → R with exactly one root
x⋆ such that the root is nondegenerate (F ′(x⋆) ̸= 0) and there exists at least one point
x0 ∈ Rd for which the iterates of the Newton-Raphson method started at x0 diverge to
infinity.

(b) Cycles. Consider the polynomial F (x) = x3−2x+2 find two points x0 ∈ R and x1 ∈ R such
that if we start the Newton-Raphson method at x0, then the iterates of the algorithm cycle
between x0 and x1. Thus, the iterates the algorithm generates are x0, x1, x0, x1, x0, . . . .

1For (c) and (d), you only need to show that your upper bound has dependence on k matching the claimed
order of magnitude O(1/

√
k) or O(log(k)/

√
k). It can have other constants like M or ∥x0 − x∗∥ occurring freely.

1



(c) Fractals. It turns out that the regions of the space where the Newton-Raphson method
fails to converge are related to fractals in the complex numbers. In particular, the fractal
associated with the polynomial in question (b) is depicted in Figure 1.

Figure 1: Fractal generated with x3 − 2x+ 2 via the Newton-Raphson method.

3Blue1Brown has an absolutely fantastic video about it https://youtu.be/-RdOwhmqP5s?
si=0RfSS5McZ0EcXAdT. For this question, you just need to watch the video :).

(d) Affine invariance. Let f : Rd → R be a C2 function with invertible Hessians everywhere.
Define the mapping g(y) := f(Ay) where A ∈ Rd×d is an invertible matrix. Let y0 ∈ Rd

be any point and set x0 = Ay0. Let x0, x1, . . . be the iterates of the Newton-Raphson
method, initilized at x0, applied to f and, similarly, let y0, y1, . . . be the iterates of the
method, initilized at y0, applied to g. Show that for any k ∈ N we have that xk = Ayk.

Problem 3 - Root finding via gradient descent

Consider a continuously differentiable F : Rd → Rd where F (x) is L-Lipschitz and bounded
uniformly by ∥F (x)∥ ≤ M and has Jacobian ∇F (x) Q-Lipschitz and bounded uniformly by
∥∇F (x)∥ ≤ N . Rather than searching for a solution to the nonlinear system of equations

F (x) = 0

as the Newton-Raphson method does, we could instead solve the nonlinear optimization problem

min
x∈Rd

h(x) :=
1

2
∥F (x)∥22

(which of course has minimum value zero attained at the solutions above).
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(a) Derive a formula for the gradient ∇h(x) and compute a Lipschitz constant for ∇h(x).

(b) Consider running gradient descent here xk+1 = xk −αk∇h(xk). How does the per iteration
cost of this compare to that of the Newton-Raphson method? Give an example where this
method converges to a point x∗ with F (x∗) ̸= 0 despite points with F (x) = 0 existing.

(c) (Bonus 1pt) Suppose F = ∇f for some function we are interested in minimizing. Devise
a generic condition relating the gradient and Hessian of f under which you can prove the
convergence of this method in terms of ∥∇f(xk)∥ → 0.

Problem 4 - Eigenvalues via Newton-Raphson

Let A ∈ Rn×n be a real symmetric matrix.

(a) Write down a formula for Newton-Raphson Method applied to the system n+ 1 equations

(A− λI)x = 0 and xTx = 1

with n+1 unknowns (x, λ). Using this formula, write a program that applies the Newton-
Raphson method to find and print out an eigenpair (x, λ) for the matrix

A =

4 2 1
2 3 0
1 0 1

 from initial point x0 =

 1/5
−1/5
4/5

 and λ0 = 1.

(b) Using the gradient descent algorithm proposed in Problem 3 (b), write a program that finds
and prints out an eigenpair (x, λ) for the above example matrix and initialization. Use a
backtracking Armijo linesearch initialized with α = 100, τ = 0.9, η = 0.1. How does this
method’s performance compare to the Newton-Raphson method?
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