
Nonlinear Optimization 1, Fall 2024 - Homework 3
Due at 3:30PM on Thursday 10/10 (Gradescope)

Your submitted solutions to assignments should be your own work. While discussing
homework problems with peers is permitted, the final work and implementation of
any discussed ideas must be executed solely by you. Acknowledge any source you
consult.

Problem 1 - Computing proximal operators

Compute the proximal operator proxf for the following functions.

(a) (ℓ1-norm) f(x) = ∥x∥1 =
∑n

i=1 |xi|.

(b) (Indicator ℓ∞-ball) f(x) =

{
0 if ∥x∥∞ ≤ 1, or
+∞ otherwise.

(c) (ℓ3-norm cubed) f(x) = α∥x∥33 = α
∑n

i=1 |xi|3 with α > 0.

Problem 2 - The Moreau envelope is slick

Given any closed proper1 convex continous function f : Rd → R ∪ {∞}, we define its Moreau
envelope as the function given by

f̂(x) = min
y∈Rd

f(y) +
1

2
∥y − x∥2.

Then, proxf (x) is the unique y attaining the above minimum. Moreover, assume that f attains
a minimum value.

(a) Prove that f and f̂ have the same minimum value. Moreover prove that they also have the
same minimizers.

(b) Prove that f̂ is convex and everywhere finite.

(c) Prove that proxf (x) depends continuously on x.

(d) Prove that ∂f̂(x) = {x− proxf (x)}, so f̂ is continously differentiable.

Problem 3 - The forward-backward method is not always the best choice

Consider a dataset of observations represented as {(xi, yi)}ni=1, where each xi ∈ Rd denotes a
feature vector and the corresponding yi ∈ {±1} serves as its label. One prevalent approache to
derive a classifier from this dataset is through Support Vector Machines (SVM). The training
process for an SVM entails solving the following optimization problem:

min
w∈Rn

f(w) where f(w) :=
n∑

i=1

max{0, 1− yix
⊤
i w}+

λ

2
∥w∥2.

1A proper function is a function such that there exists at least one x ∈ Rd with f(x) ∈ R.
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(a) For any w ∈ Rd, show that there exists subgradient ξ ∈ ∂f(w) that has the form

ξ =

n∑
i=1

gi + λw where gi =

{
0 if y · x⊤i w > 1,

−yixi otherwise
for all i ∈ [n].

(b) In contrast to this simple subgradient computation, argue that computing proxαf (0) is as
hard as solving another Support Vector Machine Problem.

Problem 4 - A regularization rodeo

Consider the following LASSO optimization problem used to compute sparse approximate solu-
tions to a linear system Ax = b:

min
x∈Rn

f(x) with f(x) =
1

2
∥Ax− b∥2 + λ∥x∥1

for a given A ∈ Rm×n, b ∈ Rm and λ = 2.

(a) Write a program that generates random A and b with i.i.d. normally distibuted entries
N(0, 1) with n = 1000 and m = 100. Note that this means that the system Ax = b has
infinitely many solutions.

(b) For any x, verify that

g(x) = A⊤(Ax− b) + λ sign(x) where sign(x)i =


1 if xi > 0,

0 if xi = 0,

−1 otherwise
for all i ∈ [n].

satisfies g(x) ∈ ∂f(x).

(c) Implement and run 100 steps of Subgradient Descent, i.e.,

xk+1 = xk − αkg(xk),

on you random problem using x0 = 0 and stepsize αk = 1/λmax(A
⊤A). Verify your last

iterate is not a sparse vectors (having no zero entries).

(d) Implement and run 100 steps of the Forward-Backward Method using same stepsize and
initial point. Verify that the last iterate is fairly sparse (having more zero than nonzero
entries). How does the loss function of the last iterate compare with the one you got in
(c)?

(e) Implement and run 100 steps of the Accelerated Forward-Backward Method using same
stepsize and initial point. Verify that the last iterate is fairly sparse (having more zero
than nonzero entries). How does the loss function of the last iterate compare with the ones
you got in (c) and (d)? Consider making a plot.
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