
Nonlinear Optimization 1, Fall 2024 - Homework 1
Due one hour before lecture on 9/12 (Gradescope)

Your submitted solutions to assignments should be your own work. You are allowed
to discuss homework problems with other students, but should carry out the execu-
tion of any thoughts/directions discussed independently, on your own. Acknowledge
any source you consult.

Problem 1 - Computing gradients

For each of the following functions f : Rn → R, write down the subset of Rn where the function
is twice differentiable and compute its gradient and Hessian.

(a) f(x) = 1
2x

THx where H ∈ Rn×n is a fixed matrix. What if H is symmetric?

(b) f(x) = bTAx− 1
2x

TATAx, where A ∈ Rm×n is a fixed matrix and b ∈ Rm is a fixed vector.

(c) f(x) = ∥x∥2 =
(∑n

i=1 x
2
i

)1/2.
(d) f(x) = ∥Ax− b∥2, where A ∈ Rm×n is a fixed matrix and b ∈ Rm is a fixed vector.

Problem 2 - Approximating functions

Answer all the following questions.

(a) Let f : Rd → R be a function. Assume that the partial derivatives ∂f(x)/∂xi exists for all
i ∈ {1, . . . , d}. Prove or disprove that ∇f(x) = (∂f(x)/∂x1, . . . , ∂f(x)/∂xd)

⊤.

Now, for the next few questions consider any set S ⊆ Rn and twice continuously differentiable
function f : S → R. Let x ∈ S and s ∈ Rn be such that x+ ts ∈ S for all t ∈ [0, 1].

(b) By defining θ(t) = f(x+ ts) and using the Fundamental Theorem of Calculus:

θ(1) = θ(0) +

∫ 1

0
θ′(t) dt,

show that ∣∣f(x+ s)− f(x)−∇f(x)T s
∣∣ ≤ 1

2
L∥s∥22

whenever f has an L-Lipschitz continuous gradient on S.

(c) Justify the formula

θ(1) = θ(0) + θ′(0) +

∫ 1

0

∫ t

0
θ′′(α) dα dt.

Hence, show that∣∣∣∣f(x+ s)− f(x)−∇f(x)T s− 1

2
sT∇2f(x)s

∣∣∣∣ ≤ 1

6
Q∥s∥32

whenever f has a Q-Lipschitz continuous Hessian on S with the operator norm (that is,
when any x, y ∈ S have ∥∇2f(x)−∇2f(y)∥op ≤ Q∥x− y∥2 where ∥M∥op = sup{∥Mu∥2 |
∥u∥2 ≤ 1}).
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Problem 3 - Convex functions

Prove the following statement about convex functions.

(a) Show that a function is convex if, and only if, its epigraph is convex.

(b) For any i ∈ {1, . . . , k}, let fi : Rd → R be a convex function and αi > 0 a scalar.

1. Show that the function given by f(x) =
∑

αifi(x) is convex.

2. Similarly, show that f(x) = max{f1(x), . . . , fk(x)} also yields a convex function.

3. Show that the composition of two convex functions is not necessarily convex.

4. Consider an affine map T (x) = Ax+ b where A is an n× d matrix and b ∈ Rn, and
a convex function h : Rn → R. Show that their composition h ◦ T is convex.

Problem 4 - Grading scheme

Please read the syllabus defining the linear optimization problem that will be solved to maximize
each student’s course score. This question asks you to reason about and then write a short
program to solve this three-dimensional optimization problem.

(a) Denote the set of all feasible grading rubrics (H,M,F ) ∈ R3 as

P = {(H,M,F ) | H+M+F ≤ 100, H,M ≥ 15, F ≥ M, 50 ≤ M+F ≤ 80, H+M+F ≥ 90}.

Prove the set P is convex (that is, for every x, y ∈ P and λ ∈ [0, 1], λx+ (1− λ)y ∈ P).

(b) Denote the set of ten corners of P as

S = {(15, 40, 40), (20, 40, 40), (50, 25, 25), (40, 25, 25), (15, 37.5, 37.5),

(15, 15, 65), (20, 15, 65), (50, 15, 35), (40, 15, 35), (15, 15, 60)}.

Carathéodory’s Theorem ensures us that x ∈ P can be written as a convex combination
of these corners: For any x ∈ P, there exist coefficients λp ≥ 0 for each p ∈ S such that∑

p∈S
λpp = x and

∑
p∈S

λp = 1.

Given this theorem, show that for any student with arbitrary course component grades
(CH , CM , CF , CP ), one of these ten corner points in S maximizes their course score (Hint:
an average is smaller than a max).

(c) Knowing some corner must be optimal, write a program that computes the maximum course
score for students given their four component gradings. Compute and output the (i) maxi-
mum course score and (ii) an optimal corner point in S for the following three hypothetical
students

(CH , CM , CF , CP ) = (100, 90, 80, 70),

(CH , CM , CF , CP ) = (85, 85, 85, 85),

(CH , CM , CF , CP ) = (70, 80, 90, 100).
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