Lecture 9 Today Last time b Linear programming revisited D Subdifferential calculus D Lagrange duality D Extreme points D Intro to Simplex. > Fenchel biconj gation Linear Programming Revisited We can always write any LP in "standard form?" i.e., (P) $P' = q \inf \{C, \chi\}$ S.t. $A\chi = b$ AER^m $\chi \ge 0$ Feasible From Lecture 7 we know its dual is equal to (0) $d^{*} = \begin{cases} \sup \langle b, \psi \rangle \\ \text{s.t. } A^{*} \psi \leq 0. \end{cases}$ For general conic programming one requires a constraint goali

fication condition for strong duality. LPs de not regrire that. Proposition: There are exactly 4 possibilities for LPs: 1) Both primal and clual are alaxed achieved and p*=d*. 2=05 2) The primal is feasible and the dual infeasible p*=-00=d? 3) The dual is feasible and the dual infeasible. 4) Both primal and dual are infea sible $p^* = \infty$ and $d^* = -\infty$. Proof: Exercise. Intuition

The reason we neededed OE int f dom g - A dom fy = int dom y, value function. was to guarantee JyE 22(0). If this doesn't happen a subgra dient might fail to exist, e.g., $f(x) = \begin{cases} -\sqrt{(x-1)^2} & \chi \in [0,2] \\ +\infty & \text{otherwix}, \end{cases}$ Closed, convex functions that are precewise linear on their domain de not have this issue. Extreme points Vertices will play a critical role for simplex, so let's try to understand them better. Let P=dxIAx <by be a generic polyhedron. (when P is bounded me call) it polytope.

Def: We say $x \in P$ is a Basic Feasible Solution (BFS) if there exist a linearly independent a_i with $a_i^T x = b_i$. (If we drop the constraint $x \in P$, we say it is a Basic Solution.)

Hence they are contained in a subspace S= ZZEIRⁿ I d^TZ=09 for some d≠0. Then for any E>0 $a_i^T(x+Ed) = b_i$ VieI. $a_i^T(x-\epsilon d) = b_i$ For ie I^c we can take & small to ensure $a(x \pm ed) \leq b$; $\forall i \in \mathbb{Z}^{c}$. Thus $\chi = \frac{1}{2}(x - \varepsilon d) + \frac{1}{2}(x + \varepsilon d)$ is not extreme. (BFS & Vertices) Let XEP be a BFS and let $I = h i | a_i^T x = b_i \}$ and let I be a subset of size n s.t. faities are linearly independent. Consider $C = -\sum_{i \in I} a_i$. For any yep $\{x_i\}$ we have $a_i^{i \in I} y \leq b_i$ $\forall i$ and so $C^{T}y = -\sum_{i \in I} a_{i}^{T}y > -b_{i}$ $\exists i \quad s.t. \qquad = -\sum_{i \in I} a_{i}^{T}x$ aiy < b as otherwise y=x. = CTX.

Vertices of standard form Polyhedra. Recall that a for standard form problems ve have $P = \chi | A x = b, x z 0 y.$ A $A \in \mathbb{R}^{n \times n}$ WLOG ve may assume the rows of A are independent (why?) Thus for any BFS we will have n linearly independent constraint hold tightly: > m come from Ax=b. > n-m from nonnegativity constraints s.t. $x_i=0$. Def: We call any B = {B,,... Bmg schj of size m. 1 For any vector $x \in \mathbb{R}^n$ and a set $S = \{s_1, \ldots, s_n\} \subseteq [n], let$ $\chi_{S} = (\chi_{S_1}, \ldots, \chi_{S_K}).$

For AERMAN, let $A_{S} = \begin{pmatrix} A_{S_{1}} & \dots & A_{S_{K}} \end{pmatrix}$ rows of A. Note that any BFS XEP corresponding to a basis B is the unique solution of $\begin{array}{c} \langle z \rangle \\ \langle z \rangle$ (B) Lemma V: Any nonempty P in standard form has at least one BFS. $\begin{pmatrix} P & cannot have infinite \\ lines <math>\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Proof: Exercise. 0

Theorem: If (P) achives a minimizer, then some BFS is a minimiter. Proof: Let $Q = \left(\chi \mid A\chi = b, \chi \ge 0 \right)$ $c^{T}\chi = p^{4}$ be the set of minimizers. Then by Lemma 1/ there is a BFS of Q, call it x". Let's show that x* is also a BFS of P. Let y, z & P and $\lambda \in (0,1)$ Consider two cases: P T-c of Y. ▶ If y, z ∈ Ca, then $\lambda y + (1-\lambda) \neq \chi$ since χ is extreme. If either yor z belong PIG, say is y. Then $C^{T}(\lambda y + (1-\lambda) z) = \lambda c^{T}y + (1-\lambda)c^{T}z$ yer(a -> > C'x. Thus $\chi \neq \lambda y + (1-\lambda)z$. D

