Lecture 7 Today + Conic Optimization + Examples Last time » Fenchel conjugate v Fenchel duality Dvality Conic optimization To illustrate Fenchel duality, ve consider a broad template. Consider the primal $p' = \begin{cases} cet in f (c, x) bey \\ s.t. Ax e b + H e \\ Linear mp X e K. e \\ 4:E \rightarrow Y. \end{cases} convex cones \\ k^+ K \leq K \\ tK \leq K \\ Y \leq 20 \end{cases}$ Define the dual cone Kt = 1 xEEI < x, y>20 Yyeky.

Notice that ExY is also an Euclidean space with inner product given by

$$\begin{array}{l} (x,y), (x',y') \rangle \coloneqq \langle x, x' \rangle + \langle y, y' \rangle. \\ Then, we can see that $(x + i) = x + i + i \leq x + i < x + i \leq x + i < x + i \leq x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i < x + i$$$

ming (SOCP). min $C^{T}\chi$ $(q,t) \in (b_{i},-d_{i}) + SO_{t}^{k}$ s.t. IIAx-bill & fix+di Viezm] Here E=R", AieR", bieR", ceR", fier" and die R. One can encode any $\frac{1}{2}$ $\frac{1}$ LP as an socp by Sub example: Group LASSO Statisticians often encounter problems of the form of the form (i) min || Xβ - y||² + λ Σ ||β_I|₂ β⁻¹ γ^g R^{nxρ} Rⁿ vector wi indices in where Iq s [p] tp E [G] are sub sets of indices. This is a funda

This fact follows easily from a schur
complement computation.
Thus any SOCP is also an
SOP.
Subexample: Max cut
suppose we had an weighed
graph on a nodes and
we wanted to find a subset
of the nodes
$$S \leq Enj$$
 that
maximizes $p: cut-value(S)$
 $max \sum_{i \in S} W_{ij}$.
This can be modeled as an integer
optimization problem
 $max \sum W_{ij} (1 - x_i x_i)$
 $S t x \in t \pm 15$
or equivalently metrix of all 1's.
OPT = $\binom{max \frac{1}{2}}{x_i^2} (W, J - xx^T)$
 $s.t. x_i^2 = L.$ vector \mathbb{R}^n

We can relax this problem by considering a larger set $OPT \leq \begin{cases} max \frac{1}{2} \langle W, J - VVT \rangle \\ s.t. \|V^{(i)}\|^{2} = 1. \quad matrix = \begin{cases} max \frac{1}{2} \langle W, J - M \rangle \\ s.t. & M_{ii} = 1 \\ n \times n \end{cases}$ $Me S^{n}_{+}.$ In turn, after solving this problem, one can get pretty good cuts via: Goemans - Williamson sphere ▷ Sample ue Unif(\$ⁿ⁻¹) v Return $\hat{S} = \langle i | \langle v^{(i)}, u \rangle \leq 0 \hat{J}.$ Fact (Goemans-Williamson '94) Duality for conic optimization We can use our template inf (f(x) + g(Ax) f to write conic optimization problems

A'y e c r
$$N_{K}(R)$$
 (A'y-c, K-R>40
with $-y \in N_{H}(A\overline{x})$ (-y, b+h-Ai)
 $f(x) = \langle C, \chi \rangle + Z_{K}(x) \leq 0$
 $g(z) = Z_{b+H}(z)$.
Pecall that the dual was
 $\sup -f'(A'y) - g'(-y)$
Exercise: show that the dual
reduces to
 $d'= \int_{a}^{b} (b, y)$
 $j' \in H^{+}$.
Theorem: For converproblems
 $p'' \ge d''$. If H and K are convex
cones and either
i) $\exists \hat{x} \in K$ such that $A\hat{x} - b \in H$,
 $omel A$ is surjective.
Then, $p''=d''$ and if d'' is finite
it is attained. If (x, \overline{y}) are feasi

blen, then, they are optimal iff < x, A*y-c>=0 and <Ax-b, y>=0. These properties doesn't always hold Example Consider inf x_1 s.t. $x_2 - t = 0$ $\chi_2 - t = 0$ $(\chi_1, \chi_2, t) \in SO_{+}^2$ $(\chi_1, \chi_2, t) = 0$ $\chi_1 = 0$ $\chi_2 = 0$ $\chi_1 = 0$ $\chi_1 = 0$ $\chi_2 = 0$ $\chi_2 = 0$ $\chi_1 = 0$ $\chi_2 = 0$ This can be cast with c=(3), A = (0, 1, -1), b=0, H= (0y, and $K = SO_{+}^{2}$. The dual is sup o s.t. $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ $\forall \in \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $= SO_{+}^{2}$. The orange formulation makes it clear that p*= 0. On the other hand the dual constrained yields $\begin{pmatrix} -y \\ y \end{pmatrix} \in SO_{+}^{2} \iff$ $y \ge \sqrt{1+y^2}$ infeasible.

Thus,
$$d''=-\infty$$
. What goes wrong?
Consider the value function
 $\nu(z) = \begin{cases} \inf_{\substack{x_1 \\ x_1}} x_1 & \inf_{\substack{x_1 \\ x_2}} times \\ (x_1, x_2, t) \in SO_{+}^2 \end{cases}$
Let's consider two cases
(ase 1: $z < 0$, then
 $\chi_2 > \chi_2 + Z \ge 1|\chi|| \ge |\chi_2|$.
Thus, the problem is infeasible
and $\nu(z) = \infty$.
Case 1: $2 > 0$, then
 $\chi_2^2 + 2\chi_2^2 + Z^2 \ge \chi_1^2 + \chi_2^2$
if
 $2\chi_2 Z + Z^2 \ge \chi_1^2 + \chi_2^2$
if we let $\chi_2 \uparrow \infty$, the upper bound
is arbitrary large and $\nu(z) = -\infty$.
Thus, $\nu(z) = \begin{cases} -\infty \\ z > 0 \\ z < 0 \end{cases}$ and $0 \le int dom \nu$.