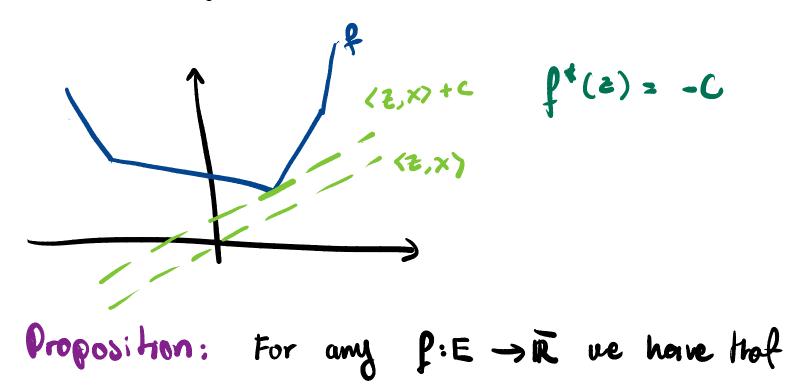
Lechre 6 Today > Fenchel conjugate > Fenchel duality Last time of alternatives p Optimality conditions with functional cons-traints. Fenchel conjugate We will infroduce a transformation that plays a key role in duality. Chrestion: Given a function $f: E \to \mathbb{R}$ and a point ZEE, how to find x s.t. ZEdf(x)? Recall that gedf(x) iff f(x) - < Z, x) & f(x) - <Z, x> YxEE. This is equivalent to $x \in argmin f(x) - (z, x)$ $\mathcal{R} \in \operatorname{argmax} (\mathcal{E}, \mathcal{X}) - f(\mathcal{X}).$ This is the core idea behing the following definition. Oef: The Fenchel conjugale of a function f:E>R is

f'(Z) = Sup (Z, X) - f(X). Lemma: f' is convex and closed. Proof: Note that t 2 f'(Z) (=) t 2 (Z,X) - f(X) VX EE. Then, epi f'' is an intersection of helfspa ces. Another interpretation By our derivation, the sup in f'(Z) is

affained whenever $z \in \partial f(x)$. Thus, we could compute f^* geometrically by raising the graph of $x \mapsto \langle z, x \rangle + c$ until it is langent to f.



f(x)+ f*(z) z (z,x) If f(x) is finite, then equality holds iff ZE ƏFLX). Proof: Follows easily by our discussion above. Π Examples & Linear punctions Suppose flex)=<<,x> Then, $f^{*}(2) = \sup_{x} \langle z, x \rangle - \langle c, x \rangle$ = sup (2, -C, x)= { o if g=c to otherwise. = Zyci (2). D Indicator of a point f(x) = Cycy(x) $f'(z) = \sup_{\chi} \{z, \chi\} - Z_{\{c\}}(\chi)$ = SUP (2, 2) xeacy = (c, Z). We got f = f. We will see this is a recurrent pattern for convex closed functions.

▶ Indicator of E-1, 1) suppose
$$g(x) = Z_{E1,1j}(x)$$

$$f'(z) = \sup_{x \in C^{-1}, 1j} 2x$$

$$= 12i.$$
N Absolute value $f(x) = 1xi$

$$f'(z) = \sup_{x} p = zx - 1xi$$
Let's consider two cases if $|z| \leq 1$

$$\Rightarrow \sup_{x} x (z - \sup_{x} p) \leq 0 = achied with x=0$$

$$x = alweys have opposite signs$$
if $|z| > 1$, then $|aking ang x = \lambda \geq$
for any $\lambda > 0$ yields
$$f'(z) \geq \lambda \geq^{2} - \lambda |z| > \lambda (z^{1} - z) > 0$$
Taking $\lambda \uparrow \infty$ gives $f'(z) = 0$.
There fore, $f'(z) = Z_{L-1,1j}(x)$.
Once where the two concrete.
P norms suppose that $f(x) = |x|^{p}$
Then
$$f''(z) = \frac{1 \geq 1}{4} \quad \text{with } \frac{1}{p} + \frac{1}{q} = 1.$$
(Exercise)

Fenchel duality
Recall that the adjoint A of a linear
wap
$$A: E \rightarrow Y$$
 is defined via
(Ax, y) = < x, Ay> $\forall x \in E, y \in Y$.
Theorem (Fenchel Duality): For any func-
trons $f: E \rightarrow \mathbb{R}$ and $g: Y \rightarrow \mathbb{R}$, and
linear map $A: E \rightarrow Y$. Define the
primal problem
 $p^* = \inf_{x \in E} f(x) + g(Ax)$
and the dual problem
 $d^* = \sup_{x \in Y} -f^*(A^*Z) - g^*(-Z)$.
Then, without extra assumptions,
 $p^* \geq d^*$ (weak duality).
If further f and g are never -oo and
convex, and
 $0 \in \mathbb{R}$ (dom g - Adom f) = int fu-Av | u \in dom g, vedonall
then, we have
 $p^* = d^*$ (Strong duality).

In this case d' is finite, and it is
always attained. Moreover,
$$\overline{x}$$
 and \overline{y} are
optimal if, and only if,
A' $\overline{y} \in \partial f(\overline{x})$ and $-\overline{y} \in \partial g(A\overline{x})$
(complementary suckness)
Moreover, constrainit qualification holds
if either
1. There is $\overline{x} \in dom f$ s.t. $A\overline{x} \in int domg$.
2. There is $\overline{x} \in int dom f$ st. $A\overline{x} \in domg$, and
A is surjective.
Proof: Weak duality follows from
Fenchel - Young since $\forall (x,y) \in Ex Y$
 $f(\overline{x}) + g^*(A^*y) \ge \langle \overline{x}, A^*y \rangle$
 $+ g(A\overline{x}) + g^*(-\overline{y}) \ge \langle A\overline{x}, -\overline{y} \rangle$
 $f(\overline{x}) + g(A\overline{x}) + f^*(A^*y) + g^*(y) \ge 0$
Taking an inf yields $f^* \ge d^*$.
The key object to prove strong duali-
by is the value function
 $Y(z) := \inf \{f(x) + g(Ax + z)\}$ for $\overline{z} \in \gamma$.

So
$$p^* = V(0)$$
. Note that if $p = -00$, we are
strong clubling holds trivially by weak
dwality. Assume that $z \in dom Y$, thus the
infimum is not too. Therefore, zeedom Y
iff $x \in dom f(x)$ and $Ax + z \in dom g$.
Thus, $z \in clom g - A dom f$. Hence, constraint
gealification is equivalent to $0 \in int dom Y$.
Claim (Exercise): The function V is convex.
Then, since $0 \in int dom Y$, we have $V(0)$
is finite and by HW1 P1c, v is never
-so in int dom f. Thus, there exists $-y \in \partial V(0)$.
Moreover,
 $V(0) + Y^*(-y) = (0, -y) = 0$.
Therefore,
 $d^* \leq p^* = V(0)$
 $= -V^*(y)$
 $= inf inf f(x) + g(Ax + z)f + (y, z)$
 $= inf inf f(x) + g(Ax + z)f + (y, -Ax) + f(x)$
 $-g^*(-y)$

$$= -g^*(-y) + int (A^*y, x) + f(x)$$

$$= -g^*(-y) - p^*(A^*y)$$

$$\equiv d^*$$

Thus, by weak duality $p^* = -g^*(y) - f^*(A^*y) = d^*$
Complementary stackness ensures that the
inequalities in (::) become equalities.
Now, let's prove that constraint gualication
holds given (1) or (2). If (1) holds
Then, $0 \in \text{domg} - A \text{domf}$ and since $A^*x =$
int domg $\exists x > 0 \text{ s.t. } 0 \in A^*x + rB - A^*x$
 $\in \text{domg} - A \text{dom } f$, thus $0 \in \text{intfdom } g$. Adomfy
If (2) holds, then we can use the following.
Theorem (Open Mapping) Any surjective
mapping $A: E \rightarrow Y$ maps open sets to open
sets.
We have that $\exists x > 0 \text{ s.t. } x + rB \in \text{dom } f$.
Therefore $A^*x + r^*A^*B$ is an open map
contained in $A \text{ dom } f$. A similar argument
as before, yields that constraint gualifi-
cation holds.
The holds.

We start by assuming dim y = dim E. Notice it suffices to show Offint AB. Seeking contradiction assume Of intAB, $\exists \exists (x_n) \in B^{c}$ s.t. $(Ax_n)_n \in (A^{c}B)^{c}$ with Axn > 0. Therefore, $A_{\chi_n} \rightarrow 0.$ WLOG assume $\frac{\chi_n}{\|\chi_n\|} \rightarrow \chi^{*}$. This is a contra diction since Ax* =0. If dim E > dim Y, we reduce b the previous case. Again assume Okint AB. From Linear Algebra ve know A (Ker A) = range A and A(Bn(ker A)) = AB. We can run the same argument setting $E' = (\text{ker } A)^{\perp}$