Subgradients
How do we generalize gradients for
nonsmooth convex functions?
Recall that for smooth convex functions
we have

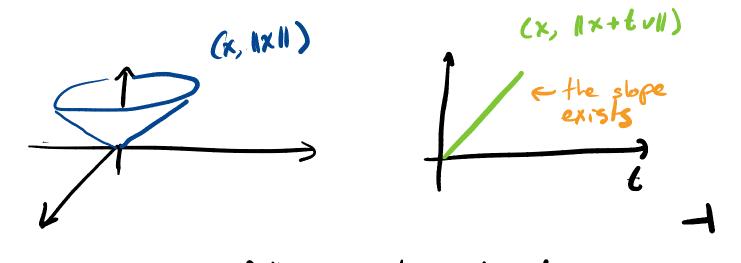
$$f(x) \ge f(x), x - \overline{x}$$
.
Inspired by this property:
Def: Let $f: E \rightarrow \mathbb{R}$ be a convex func-
tion and let $\overline{x} \in \text{dom } f$. The set
of subgradients (or subdifferential)

of
$$f$$
 at \overline{x} is
 $\partial f(\overline{x}) = \int g \in E[f(\overline{x}) + \langle g, y - \overline{x} \rangle \leq f(y)] \forall y \leq -4$

This concept generalizes gradients. Proposition: Let f:E -> R be a convex fonction. If f is differenticuble at x, then, $\partial f(\bar{x}) = \langle \nabla f(\bar{x}) \rangle$. Moreover, they give simple optimality conds. Lemma (unconstrained optimality condition) let f:E→IR be convex. Then, x*isa minimizer if, and only if, OEDF(x*). a. But de subgradients exist? Theorem (Existance of subgradients). Let f: E > R be a convex function and xe int domf. Then, of(x) is not empty. Previous lecture. Proof: By Corollary (4), since

f: dom f→R is convex, ve have f is Lipschitz at X. Consider the sequence (x, f(x) - 1/n) & epif, therefore (x, f(x)) E bd epif. Using that f is locally Lipschitz we can show $(\overline{x}, f(\overline{x})+1)$ Eintepif (Why?), thus intepif $\neq \emptyset$. Hence, Hann-Banach ensures the existence of a=(h, 8) E E*x R **S.**+. $\langle \alpha, (\overline{x}, f(\overline{x})) \rangle \leq \langle \alpha, (\overline{x}, t) \rangle \quad \forall (\overline{x}, t) \in epif.$ Moreover, the inequality is strict for $(x, t) \in int epi f (Why?)$. Since $(\overline{x}, f(\overline{x})+i)$ is in the interior of epif, we conclude $0 < \gamma$. Then we an rescale $\bar{a} = \frac{1}{\gamma}a$ to obtain that $\langle \overline{h}, \overline{x} \rangle + f(\overline{x}) \leq \langle \overline{h}, x \rangle + f(x) \quad \forall x \in E$ $f(x) + \langle (-\bar{h}), x - \bar{x} \rangle \leq f(x) \quad \forall x \in E.$

Thus, $(-h) \in \partial f(X)$.
First order optimality conditions We come back to one of our problems
We come back to one of our problems
of interest:
min fax)
s.t. xEC convex and closed.
A critical grantity for our conditions
will be the directional derivative.
Def: Given a function $f: E \rightarrow \overline{R}$ a point
x e dom f and a direction VEE". We
say that f is directronally differentiable
at x in the direction v if the
following limit exists.
$f'(x;v) = \lim_{t \to 0} \frac{f(\bar{x}+tv) - f(\bar{x})}{t}$
Example
p The norm 11.11 is not differentiable
al zero. But it is directionally diffe
al zero. But it is directionally differentiable for all VEE*

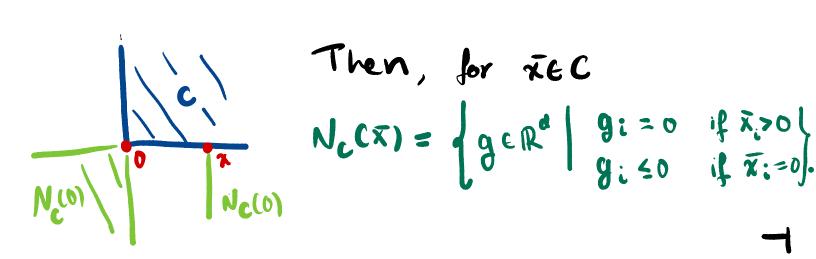


Lemma: The following two hold. 1) if f: E → R is differentiable, then f'(x; v) = (∇f(x), v) ∀x.EE vE E*. 2) if f: E→R is connex, then f'(x; v) = sop (g,v) ∀x cint dom f geof(x) VE E*.

Proof: Exercise.

We need one extra ingredient. Off: Given a closed, convex set C. The normal cone of C at $\overline{x} \in C$ is given by: $N_{C}(\overline{x}) = qg \in E \mid \langle q, x - \overline{x} \rangle \leq 0$ $\forall x \in Ga f$. If $\overline{x} \in C$ we let $N_{C}(\overline{x}) = \emptyset$. -1Intuition $N_{C}(x)$

In HW1 you'll prove that N_c(x) is a closed convex cone (and some extra proper hes). **Examples** $b \text{ Subspace } C = dx | Ax = b \int_{-\infty}^{\infty} b \in F$ Linear map $A: E \to F$ f another Euclidean space Then for $\overline{x} \in C$ we have $Na(\overline{x}) = \langle A^* y \mid y \in F \mathcal{G}.$ Adjunction i.e., $\langle Ax, g \rangle = \langle x, A^*y \rangle \forall x g.$ o Half space $C = \{ \chi \mid \langle a, \chi \rangle \leq \beta \}$ $a \in \epsilon^*$ $\beta \in \mathbb{R}$. Then, for $\overline{x} \in C$, $N_c(\overline{x}) = \begin{cases} \log i \int \langle a, \overline{x} \rangle \langle \beta, \beta \rangle \\ \langle \lambda a | \lambda 2 0 \rangle \\ \text{otherwise.} \end{cases}$ v Nonvegative orthant C = R^d = d xER^d | X; =0 Vie Ed] y.



Proposition (Vecessary condition): Suppose $C \in E$ closed and convex and $\overline{x} \in IS$ a local minimizer of f over C. Then, if $f'(\overline{x}; x - \overline{x})$ exists for some $x \in C$, it has to be nonvegative: In particular, if f is differentiable $a \overline{x}$, Hen $-\nabla f(\overline{x}) \in N_{\mathcal{R}}(\overline{x})$. Intuition

c///z

Proof: Seeking contradiction suppose $\exists x \in C$ s.t. $f'(x, x - \overline{x}) < 0$. Then, there is a S > 0 sufficiently small s.t. $\forall t \in (0, S)$ we have

 $f(\bar{x} + t(x - \bar{x})) - f(\bar{x}) \leq 0$ t \rightarrow f(x+t(x-x)) \leq f(x). Since C is convex, we have $\overline{x}+t(x-\overline{x})\in C$. Therefore X is not a local minimizer. Q When f is differentiable $0 \leq f'(x, x-x) = \langle \nabla f(x), x-x \rangle$ \Leftrightarrow - $\nabla F(x) \in N_{c}(x)$. This completes the proof. ロ The converse is not true, in general. But it holds if we assume fis also convex. Proposition (Sufficient condition): suppose C and f are closed and comex. Suppose that for XEC we have f(x; x-x) 20 ∀26Q. Then, x is a minimizer of f over G. In particular if f is differentiable at Χ, - vf(x) \in N_c(x) = x e argmin f(x). 1

Proof: Recall a claim from the previous lecture. Claim(A): Suppose that g: Rt→ R is convex with g(o)=o. Then, $t \rightarrow \underline{g(t)}$ is nondecreasing. -1For any $x \in C$, the function $g_x(t) = f(x + t(x - x)) - f(x)$ satisfies that $g_{\chi}(t)/t$ is nondecreasing. Thus, by assumption, for any sufficiently small 6 we have $0 \stackrel{!}{\leq} \frac{g_{x}(t)}{f} \stackrel{!}{\leq} g(1) = f(x) - f(\bar{x})$ $\stackrel{!}{\leftarrow} \stackrel{!}{\int} \frac{1}{(laim(x))}$ Thus, $f(\bar{x}) \leq f(x)$ for all $x \in C$. Ū