Lecture 3 Last time Today D The setting D convex sets & convex functions p Continuity 7 Separation p Gradients Convex functions We can bootstrap ourselves from the set definitions. Def: Given a function $f: E \rightarrow IRUdof$, its epigraph is given by epi $f := d(x, t) \in E \times IR \mid f(x) = ef$. Example Neer 4 Def: A function $f: E \rightarrow \overline{R}$ iS

convex if epif is convex. We can also pass from functions to sets. Def: For any set C, define its indicator function is $Z_{C}(x) = \begin{bmatrix} 0 & \text{if } x \in C, \\ \infty & \text{otherwise.} \end{bmatrix}$ + Exercise: Show that C is convex if, and only if, Zc is convex. + Def: We say that $f: C \rightarrow \mathbb{R}$ is convex if $f+Z_C$ is convex. Equivalently, C is convex and $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda) f(y)$ $\forall x, y \in S, \lambda \in [0, 1].$ The function f is strictly convex if the inequality above is strict in (0,1). T Examples

Any norm is comex. Any norm squared 11.11,2 is strictly convex (uny?) Ocf: We say that $x^* \in E$ is a (global) minimizer of $f: E \rightarrow \mathbb{R}$ if $f(x^{*}) \leq f(x)$ $\forall x \in E.$ We say x^{*} is a local minimizer if if $\exists \delta > 0 \ \text{st} \quad x^{*}$ is a minimizer of $f + z_{u}$ with $u = x^{*} + SB.$ Convex functions are particular ly nice for optimization. Proposition For convex f, local mi-nimizers are minimizers. 1 **Proof:** Convexity can be indertood through 1-dimensional lens. $Claim(A): Suppose that g: \mathbb{R}^+ \to \mathbb{R}$

is convex with g(o)=0. Then, t +> g(t) is nondecreasing Proof of the claim. Take tiste, then $g(t_1) = \vartheta\left(\begin{pmatrix} 1 - \frac{t_1}{t_2} \end{pmatrix} \cdot 0 + \frac{t_1}{t_2} \cdot t_2\right)$ $\leq (1 - \frac{t_{1}}{t_{2}}) \cdot 0 + \frac{t_{1}}{t_{2}} g(t_{2})$ Define $g(t) = f(\bar{x} + t(\bar{x}-\bar{x})) - f(\bar{x})$ then $0 = g(0) \leq g(1) \leq f(x) - f(\bar{x}),$ which shows the result. D Furthermore, just like convex sets, con-vex punctions enjoy of reat topols -gical properties. Define dom $f := \{ x \in E \mid f(x) < \infty \}$ Theorem (4) Suposse f: E -> R is con

ver with XEdomf. Then, f is locally Lipschitz near $\bar{\mathbf{x}}$ if, and only if, f is bounded above on a neighborhood of \overline{X} . $\exists S, L>0 \quad s.t.$ $|f(x) - f(y)| \leq L||x-y|| \quad \forall x, y \in \overline{x} + SB.$ (*) Proof: "=>" This follows trivially. "(=" WLOG suppose $\overline{x} = 0$ and f(0) = 0. Suppose there exist Q, E>O s.t. We will prove that (A) holds with $L = \frac{2(a)}{\epsilon}$ and $S = \frac{\epsilon}{2}$. We can write $0 = \frac{1}{2}x + \frac{1}{2}(-x)$. 50, $0 = f(x) \le \frac{1}{2} f(x) + \frac{1}{2} f(-x)$ $\Rightarrow f(x) \ge -f(-x) \ge -Q \quad \forall x \in EB.$ (b) Consider x, y e = B and let z = y + e(y - x) e e B. 114-211

Thus, y belongs
to the segment
$$[x,z]$$
.
Indeed we can write
 $y = \frac{\varepsilon}{\varepsilon + \|y-x\|} = x + \frac{\|y-x\|}{\varepsilon + \|y-x\|} = z$.
By convexity
 $f(y) - f(x) \le \frac{\varepsilon}{\varepsilon + \|y-x\|} = f(x) + \frac{\|y-x\|}{\varepsilon + \|y-x\|} = f(z)$
 $= \frac{\|y-x\|}{\varepsilon + \|y-x\|} = (f(x) - f(z))$
 $\varepsilon + \|y-x\|$.
An analogous argument yields
 $f(x) - f(y) \le 2a$ $\|x-y\|$, proving
the result.
We can extend this result to
constrained functions.

Corollary: Let $C \subseteq E$ and $f: C \rightarrow R$ convex. Then, f is continuous on int C. Proof: Exercise.

Gradrents

Let's introduce standard definitions of smoothness. Of: Let USE be open, $f: U \rightarrow R$ and $\overline{x} \in U$. We say that f is differentiable at \overline{x} if $\exists g \in E$ s.t. $\lim_{h \rightarrow 0} \frac{f(\overline{x} + tg) - (f(\overline{x}) + (g, h))}{\|h\|} = 0$.

We write Of(x)=g. If Of is continuous we write fec². Given that we don't necessarily have coordinates, we can write second derivatives in terms of 10 slices.

Oef: We say that f is twice continuosly differentiable (fec2) if $h_y(x) = \langle y, Df(x) \rangle \in C^1$ $\forall y \in E.$ Further me write $\nabla^2 f(x) [y, y] = \langle y, \nabla h_y(x) \rangle.$ In 1Rd this matches y TV f(x) g. Theorem (Taylor Approximation) Suppose fEC² and let 2, y EE. If we let p(t) := f(x + ty), we nave $p(t) = f(x) + t < \nabla f(x), y > + \frac{t^2}{2} \nabla^2 f(x) [y, y] + o(t^2)$ with $p \in C^2$ and $p''(0) = \nabla^2 f(x) [y, y]$. Lemma (Smooth convex functions) Suppose that $f: E \rightarrow R$ is differentiable. Then, the following are equivalent: (1) I is convex. (2) $\forall x, y \in E f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$ (b) $\forall x, y \in \mathcal{L} \setminus \mathcal{P}(x) - \nabla f(y), x - y \geq 0.$

Moreover if fec^2 , these are equivalent to (4) $\forall x, y \in E$ $\nabla^2 f(x) [y, y] \ge 0$. Both of these were proved in \exists Nonlinear 1.