
Lecture 3

Last time Today
D The setting & Convex functions
D convex sets D

> separation I
D Continuiti

Convex functions
We can bootstrap ourselves from the set
definitions. I

-
Def : Given a function fie-> IRUG *Y,
its epigraph is given by
epif := ((x, t)cE + 1 f(x) + t]

t
Example

#
-

Def : A function f :E-R is



convex if epif is convex
. +

We can also pass from functions
to sets.

Def : For any
set C

, define its
-

indicator function is

2(x) = 20 if XEC ,
- otherwise. +

Exercise : show that C is convex its
and only if , Ic is convex. t

Def : We say that f : C->R is

convex if f+ I is convex.

Equivalently , c is convex and

f(xX + (1-x)y) = Xf() + (1-X) f(y)
Yx
,yeS, Xe[0,1).

The functionf is strictly convex

if the inequality above is strict in(01).
t

Examples



1 Any norm is comex.

1 Anynorm squared 11 .1 is strictly
convex, why?( t

Def : We say that X
*EE is a

-

cybbal) minimizer of f :-E if
f(x*)1f(x) AXE .

We say X
*
is a local minimizer if

I 7820st X* is a minimizer

of f + In with U = X+SB. +

convex functions are particularly
nice for optimization.

Proposition For convexf, local mi-
nimizers are minimizers. t

Proof can be underfood
-

: convexity
through 1-dimensional lens.
[im(*) :Suppose that g : Rt- IR



is convex with glot=o . Then,
t is nondecreasing
Proof of the claim :
Take t , Ite , then ~

g(t) = g)(1
- E) 0 + E - +z)
= (1 - +(2) · 0 + Eg(tz)

local min any X I
↓

Define g(t) = f(* + +(x-*)) - f(x),
then

0 = g(o) - g(1) = f(x) - f(x),
which shows the result. I

Furthermore
, just like convex sets

,
con-

nex functions enjoy of reat topole-
gical properties.
Define

dom f := <xE1f(x) < D3·
The rem (4) Suposse f :E->R is can

-



nex with jedomf. Then , I is
locally Lipschitz near if , and
only if, I is bounded above

8 a neighborhood of E.on

78
,
130 s . t. (A)

((X) -f(y) 1 - LIX-y/l ExyeX+ SB.
Proof :""This follows trivially.-

"(4 WLOG suppose T=0 and f(0) -o.
Suppose there exist Q,E>0 S

.
t
.

f(x) = Ch YXE EB.

We will prove that (A) holds with
L = 28 and S = E/2.-

E

We can write 0 =EX + E(=x).
so
, 0 = f(x) = Ef(x) +& f(-X)

= f(x) = - f(-x)z -CYxB. (B)

Consider X, ye EB and

let z = y +g((yx) + EB .

ly-XII



--

· Thus , y belongsI to the segment 24, z].
Indeed we can write

x
=--

E 11y -XIIy =-X +
- Z

E + 11y-XI1 2 + 11y -XIl

By convexity
f(y) - f(x) += f(x) t Hy-XII f(z)

E + 11y- xll 2+ 11y-X/1

- f(x)
= Iy-XII (f(x)- f(z))

2 + ly-XII

↳ 2 ly-XII
An analogous argument yields
f(x) - f(y) = 2C X-y11 , proving
the result. E

I

We can extend this toresult
constrained functions.



corollary : Let CEE and f:c -> R
convex . Then

, of is continuous on
inf C.

Proof : Exercise. D

Gradients
Let's introduce standard definitions
of smoothness.
Def : Let USE be open , 8 : -IR-

and XEU . We say that I is
differentiable atif I get
S .
t.

lim*+ ty) - (f(x) + (g, h)) = 0.
h+0 1411

We write of(x)=g. If Of is continuous
we write Je ct

+
Given that we don't necessarily
have coordinates

, we can write

second derivatives in terms of ID
slices.



Def : We say that I is twice

continuously differentiable (fEC2) if
hy(x) =(y , 0f(x)) E C+ Fy-E.
Further we write
02 f(x) <y, yj = <y , 0hy()).

t
In RRd this matches yTVI(x)y.

+
Theorem (Taylor Approximation(
suppose fecz and letyee. If
we let p(t) := f(x + ty), we have

p(t) =f(x) + + (0f(x) , y) +Ev2f(x)[y,y] + o(t))
with pech and p"(0) = 0

<

f(x) <y,y]·
-

Lemma (smooth convex functions)
Suppose that f :E-IR is differentiable.
Then

,
the following are equivalent :

(1) f is convex.

12) NX
, yeE f(y)-f(x) + (0f(x), y -X)

(3) Y X
, yeE (of(x) -Of(y) , X -y) 20.

+



Moreover if fee? these are equire
kuf to
(4) YX

, yeE 02f(X) Cy , y] 20
I

Both of these were proved in
Nonlinear 1.


