$\lambda_n \rightarrow \overline{\lambda}$, $\gamma_n \rightarrow \overline{\gamma}$ and (C) $dist(x_n, S \wedge F^{-1}(y_n)) = dist(x_n, \phi^{-1}(y_n))$ > $n \parallel F(x_n) - y_n \parallel \cdot$ Next, we apply Ekeland's priciple to $f_n(.) = \|F(.) - y_n\| + Z_S(.)$. We take En = IIF(xn)-yn and Sn= max1-vEn, -} Herefore 3 2n ES that minimizes fn(.) + Sn 11. - Xn 11 that is, it minimites 11F(.) - yn11 + Sn11. - Xn11 over S. By construction $\delta_n \rightarrow 0$ as $n \rightarrow \infty$. Moreover, $\|\bar{x}_n - x_n\| \leq \frac{\varepsilon_n}{s_n}$ Further, we claim F(Xn) = yn. Otherwise we would have $x_n \in S \cap F'(g_r)$, and (() would give $\|X_n - X_n\| > n \in n \ge \frac{\epsilon_n}{2}$ which yields a contradiction. \Box

Next we will use this lemma to construct conditions under which metric regularity holds. Theorem (Identifying metric regularity): Suppose that F: E>R is Lipschitz, S $\leq E$ and $\int e^{f(x)} f(x) = \int e^{f(x)} f(x) = \int e^{f(x)} e^{f(x)$ Then, **©** is metrically regular at \bar{x} provided that the following implication holds $0 \in \partial \langle w, F(\cdot) \rangle (\bar{x}) + \partial \zeta (\bar{x}) \Rightarrow \omega = 0.$ Intrition This condition replaces the one we used for the Inverse Function Theorem. Indeed

if F is smooth, this reduces to Ker $\nabla F(\overline{x}) = fof$.

Proof: Assume searching contradiction that metric regularity fails. Then, there exist sequences $x_n \rightarrow \overline{x}$, $y_n \rightarrow \overline{y}$

= F(x), Sn > 0 such that xn minimizes $\|F(.) - y_n\| + S_n \| \cdot - \gamma_n \| + 2_s(.)$, which implies thanks to the sum rule that $0 \in \partial \|F(.) - y_n\|(x_n) + S_n B_n + \partial z_s(x_n)$ = $\partial \langle W_n, F(\cdot) \rangle \langle X_n \rangle + \delta_n \beta_n + \partial z_s \langle X_n \rangle$ where $w_n = (F(x_n) - y_n) / ||F(x_n) - y_n||$ and the second line fellows from the next lemma. Lemma: Suppose f(x) = hoF(x) with F Lipschitz at x and h smooth around $F(\mathbf{x})$. Then $\partial(h \circ F)(\bar{x}) = \partial(\langle \nabla h(F(\bar{x})), F(\cdot) \rangle)(\bar{x})$

Proof of the huma: By assumption near \overline{X} ho F(x) = h(F(\overline{x})) + (Vh(F(\overline{x})), F(x) - F(\overline{x})) + O(||F(x) - F(\overline{x})|)

 $F \text{Lipschitz} = h(F(\bar{x})) + \langle \nabla h(F(\bar{x})), F(x) - F(\bar{x}) \rangle \\ + O(\|x - \bar{x}\|).$

Thus, the two functions are equal up to constant terms and $O(11\times -\overline{\times}11)$. A simple computation yields they have the same subdifferentials. \Box WLOG, we can assume wn -> w and so

 $0 \in \partial \langle w, F(\cdot) \rangle (\chi_n) + \partial \langle w_n - w, F(\cdot) \rangle (\chi_n) \\+ \delta_n \beta + \partial z_3 (\chi_n).$

Note that $(w_n - w, F(\cdot))$ is an $L_n - L_{ips}$ Chitz function with $L_n \rightarrow 0$ as $n \rightarrow \infty$, and further $S_n \rightarrow 0$. Then, there exist sequences

un $\in \Im(W, F(\cdot))(X_n)$ and $V_n \in \Im(X_n)$ with $U_n + V_n \to 0$. Once more, we can assume that both sequences converge. Therefore, $U_n \to U \in \Im(W, F(\cdot))(\overline{X})$ and $V_n \to V \in \Im(\overline{X})$ (why? use that granz is closed). Therefore, we established $0 \in \Im(W, F(\cdot))(\overline{X}) + \Im(\overline{X})$ and $w \neq 0$, which is a contradiction.

Algorithmic consequences. The presense of regularity often leads to faster convergence (akin to strong convexity).

Theorem: Suppose that we are interested in finding a solution to $O \in \Phi(X)$ with $\Phi: E \ni E$. Further assume (\emptyset) dist(x, $\overline{\Phi}^{-1}(0)$) $\leq K dist(\overline{\Phi}(x), 0)$ for all rEE, and ve have an algo rithm that generates a sequence $x_{t+1} \leftarrow a(x_t)$ and guarantees (1) dist $(\overline{\varphi}(x_t), 0) \in M \operatorname{dist}(x_0, \overline{\varphi}^{-1}(0))$. Then, we have dist $(x_{t}, \overline{\Phi}^{-\prime}(0)) \leq \underline{M}e^{-\frac{1}{2}\left(\frac{1-1-\rho}{\rho}\right)} dist(x_{o}, \overline{\Phi}o),$ with $p = e \sqrt{m/\kappa}$. Remarks regularity (note that we only vary x and not y). o The convergence rate (1) is sotis fied by several algorithms (GD,

PPM, PDHG, AOMM*). 17 this result boost sublinear convergen ce of dist $(\Phi(x_t), 0)$ to linear convergence of dist $(x_t, \Phi'(0))$. decap We covered a number of topics & Convex Analysis o Duality & Classical algorithms for LP 4 simplex 4 Interior Point Methods » First order Methods 4 KM iteration 4 Examples: PPM, OR, ADMM, PDHG. a Intro to variational analysis. Optimization is a very broad field, there are several topics we didn't mention. But ropefully you now have the tools to explore them on your 0 w N :)