
Lecture 25
Last time Today
-Ekeland's variatio I D Sufficient conditionsnot principle for metric regularity.
D Inverse Problems. Algorithmic implications.

Sufficient conditions for metric
regularity &

Lemma (Ioffe 179) Suppose is
given by F(X) XES

G(X) =E o otherwise
where F is continuous and SEE is
a closed set. Suppose that I is not
metrically regular at YES. Then,
there is an arbitrarily small so, a y close to
y=F(X) and X close to minimizing

IlF() -y1) + 211 - -X11 over S,
but F(x) - y. t
Proof : Since metric regularity doesn't
-

hold, 7 (Xnin3S and CyniasY s .
t.



Xn- X , Yn+i and

(6)
dist(Xn , SuF

+

(yn)) =dist(Xn , &"(yn) (
> n1F(X) -yull .

Next, we apply Ekeland's principle
to ful) = (IFC) - Yull + Zg( .).

We take En = 1IFIn)-yull and Su= maxens by
therefore = In ES that minimizes

fn() + Su 11 - -Yull
that is, it minimizes

11F) .) - yull + Sull - -Full over S.

By constructionIn to as n->0.

Moreover,
11in-Yull1 En/ou

Further
,
we claim . F(X) Fyn · Other-

wise we would have IneSIF "Cyr),
and (8) would give
1IXn-XnII) new n
which yields a contradiction.

I



Next we will use this lemma to
construct conditions under which

metric regularity holds.

Theorem Identifying metric regularity) :
suppose that F : EER is Lipschitz, S
IE and

F(X) = LEFY If XES

① otherwise.
Then, I is metrically regular at X provided
that the following implication holds

o 2(w, F(.)((* ) +22g() - w =0. +

Intuition
This condition replaces the one we used

for the Inverse Function Theorem. Indeed
if F is smooth

, this reduces to

Ker VF(x) = 504.

Proof : Assume searching contradiction
-

that metric regularity fails. Then,
there exist sequences Xn-X , yn

->



= F(X)
.
On to such that In minimizes

IIF(.) - yull + Sull--Yull + Ig() , which
implies thanks to the sum rule that
of 21F). 1 -yell (xn) + SpBn + 22g(Xn)
=> o (Was F(.)) (Xn)+ SnBn + 22g(Xn)

where Wh = (F(xi) -Yn)/1F(Xn)-Yull and the
second live follows from the next lemma.

Lemma : Suppose f(x) : hoF(X) with

↑ Lipschitz at 5 and h smooth around

F(X). Then

2(hOF(() = 2(Vh(F) , FC .1))(*)

Proof ofthe Lemma : By assumption near &-
noF(x) = h(F(1) + <Ph(F()) , F(x) -F(X))

+ 0 (11 F(x) - F(x)/1)
-

Flipschitz . = h(F(X)) + [0 n(F(x)) , F(x) -F(x))
+ 0 (lIX-y11) .

Thus
, the two functions are equal up

to constant terms and oly-I. A
simple computation yields they have
the same subdifferentials . I



WLOG
,
we can assume wn-w and so

O 2(W ,
F(.))(Xn) + 2 (wn-w, FC.)) (Xn)

↓ GnB + GEg(Xn) ·
Note that Swn-w , FC .1) is an Lu-lips
Chitz function with In to as nee

,

and further In to . Then
,
there exist

sequences
UnE8(W, FC.1) (n) and UnEGIs(Xn)

with Un + Un- 0. Once more, we can

assume that both sequences converge.

Therefore, untue2 <w , F(.) (*) and

Un-vects(N) (why? Use that gophts
is closed). Therefore, we established
0 2(W, F( ·7) (X) + 22s(X) and wo ,
which is a contradiction.

I

Algorithmic consequences.
The presence of regularity often
leads to faster convergence Lakin

to strong convexity) .



Theorem : suppose that we are
interested in finding a solution to

OE(X) with :ESE . Further assume

(B) dist(X
, E
+(0)) - I dist(f(x) ,0)

for all XEE , and we have an algo
rithm that generates A sequence
via ↓ Ch:E-E

Yf+ E Ch(u+)

and guaran tees

(N) dist([(+), 0) = M Dst ,C)
Then, we have

dist(x, "(0))<-dist(x,Eco),
K

erwith p = u/K · t
Remarks
↳ Condition (D) is known as metric sub

regularity Chole that we only vary X and
not

y).
D The convergence rate (H) is satis

fied by several algorithms CGD ,



PPM
,
PDHG ,

ADMM).
1) this result boost sublinear convergen
ce of dist(E1) , 01 to linear

convergence of dist(X+ "(0)) +
Recap
We covered a number of topics
D Convex Analysis
↳ Drality
D Classical algorithms for LP
↳Simplex
↳ Interior Point Methods

① First order Methods
↳ kn iteration
↳ Examples : PPM , DR, ADMM , PDHG.
-Intro to variational analysis.
Optimization is a very broad field,
there are several topics we didn't

mention. But hopefully you now have

the fools to explore them on your
own :)


