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DClarke subdifferential D Ekeland's variatio
Basic measure theory· I not principle

D Inverse Problems.
Ekeland Variational principle
To prove many of the theorems we

have covered we used the existence of
a minimizer for closed, coercive functions.
The following principle gets ride of coercivity.
Theorem : Let 8 :- RUG-Ay be
-

a proper closed function. Fix a

point St . f(x) - inff + E for
some so. Then for any 80 ,
there is a point X satisfying
1 . - * 11 E

S

2. f(x) = f(X)
3. <y = argmin[f(x) + S1x-X1]



Intuition

i
Proof: We want to find a conic mino--

rant as in our intuition. Define the

function
((x) = f(x) - SIX-FII .

If f(x) > ((X) EXEX, then, we

can take X =X . Suppose that this
is not the case. Define
w := < x 1 f(x) = C()
= (x1 f(x) + 81X-T1 = f(x)) .
= [x1G/-*11 f(x)-inffg
= Gx1ly-* 1 - E/g]

Notice that W is nonempty , bounded



-Since I + S11 . -XII is closed

and closed. Therefore, the function
f(x) + 2w(X) achieves a minimizer
Y . Since JEW

,
we have that

(i f(x) + S11X-TIE f(x) .
It is they immediate that 1 . and 2.

hold. Moreover, for X-WIX we have

f(x) = f(x) and so

f(x) + 0 < f(x) + 51X-Y1.
For XEWY

,
then

x(i)
f(x) : f(x)-SIX-T1
- < f(x) + 6 /X- Y I-SIX-TII
Xew

= f(x) - SIX-XII
where the last live follows by the
reverse triangle inequality. Thus 3.
follows.

I

It is often enough to take8=.
The following is a useful
corollary.



corollary. For a closed I, if
-

fex) & inf 2 + E . Then
, there is

* - X +B and

ye2f(x) with llyl 1E .

Proof : Apply Ekeland's with
-

the chain rule to conclude that
Of 2,f(x) + -B .

I

Inverse Problems
One of the core goals of variational
analysis is to understand the
behavior of solutions of equations
(P) I(X) = Y
for a given y . As a first step
let's assume that F : EFY is Ch

&

and suppose there exist (F, /GEXY
S .t. F(X) = j . The inverse function
theorem gives a way to reason

about "nearby problems."



Theorem Inverse Function Theorem) :
-

Suppose F is a C+ map and
DF(X) is an invertible operator
onto %. Then, there is a map
G : U-E defined in a neighbor-
hoodvof = F(x) S .F. it is

differentiable around T and

*G(j) = OF(x)" and FOG(y) = y FyeU.
I

Intuitively , if we perturb I to
y , there will be a nearby solution
X to F(x) = y.

Corollary : There exists a constant
K >0 (Omin (VF(X)) such that
if (,y) are close to (x,y) then

(A) inf 1lz-X 11 =: dist(X, F
+

(y)) 1 KIIF(x)-yll .
ZEF"Cy)
Hint : Start with F linear and
then use the fact that you can



linearly approximate G. t

Question : What happens when
we have more general equations
F(x) =y ? What properties imply (A)?
We will take a more general
template where we consider Ch

set-valued map :=Y .
Def We that I is metrially: say
regular at I for EEL) if there
exists kso so that
(A2) dist(X

, E"(y)) - K dist(I(x) ,y),
for all (X,y) near (X, j). +

In optimization this is useful when
ever we are interested in finding
a critical point Ot 2 f(x) , los
a saddle) . It tells us that the
problem is rather stable.
In turn it also have algorithmic
consequences (that we will cover nextclass)

.



To try to answer our question, let's
take a step back and consider F Ct-
Note that X solves (P) if and

only if it minimizes IIFC. ) -yll.
Moreover, X solves (P) if and
only if it minimizes (IFC) -y11+ S11 . -XII
for any S20 small enough. To see

this, suppose * minimizes
IIFC . P -y11 + 811 . -XII

but FCX)Fy - Then, subdifferential
calculus yield

OF(X) T uESB . (8%)
unit norm

Since VF(. ) is continuous we have

118 F(XPull =&(VFCX)) for X close
2

to > and so (8%) fails forS small.

This characterization motivated
soffe to generalize the invertibli-
City of DFCX) .



Lemma (loffe 179) Suppose is
given by F(X) XES

G(X) =E o otherwise

where F is continuous and SEE is
a closed set. Suppose that I is not
metrically regular at YES. Then,
there is an arbitrarily small so , a y close to
y=F(X) and X close to minimizing

IlF() -y1) + 211 - -X11 over S,
but F(x) - y. t


