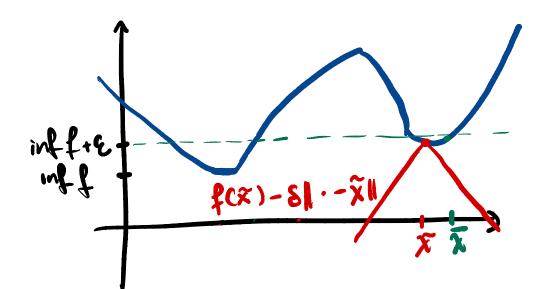
Intuition



Proof: We want to find a conic minorant as in our inhuition. Define the function

 $c(x) = f(x) - S \|x - \overline{x}\|.$

If f(x) > c(x) $\forall x \neq x$, then, we can take $\hat{x} = x$. Suppose that this is not the cause. Define

 $W := \{ x \mid f(x) \le C(x) \}$ = $\{ x \mid f(x) + s \mid x - \overline{x} \mid \le f(x) \}.$

 $\in [X | S | | X - X | | \leq f(X) - inf f g$

⊆ {x | ||x-x|| ≤ €/s }
Notice that W is nonempty, bounded

and closed. Therefore, the function fix) + Twix) achieves a minimizer x. Since xeW, we have that (=) $f(x) + S(x - \overline{x}) \leq f(\overline{x})$. It is then immediate that 1. and 2. hold. Moreover, for xEWIX me have $f(\hat{x}) \leq f(x)$ and so $f(\hat{x}) + 0 < f(x) + s(x - \hat{x}).$ For XEW, then $f(\vec{x}) \stackrel{(=)}{=} f(\vec{x}) - S \|\vec{x} - \vec{x}\|$ $x \in \widehat{W} \leq f(x) + s \|x - \overline{x}\| - S \|\widehat{x} - \overline{x}\|$ $\leq f(x) - S \|x - \overline{x}\|$ where the last line follows by the reverse triangle inequality. Thus 3. Pollones follows. It is often enough to take $\delta = \sqrt{\epsilon}$. The following is a useful corollary.

Corollary. For a closed f, if $f(\overline{x}) \leq \inf f + \varepsilon$. Then, there is $\widehat{x} \in \overline{x} + \sqrt{\varepsilon} \varepsilon$ and $y \in \partial f(\tilde{x})$ with $\|y\| \leq \epsilon$. Proof: Apply Ekeland's with the chain rule to conclude that $OE = \partial_L f(\tilde{x}) + \nabla E B.$ ロ Inverse Problems One of the core goals of variational analysis is to understand the behavior of solutions of equations (P) F(x) = yfor a given y. As a first step let's assume that $F: E \rightarrow y$ is C^1 and suppose there exist (x, y) E Exy s.t. $F(x) = \overline{y}$. The inverse function theorem gives a way to "reason about "nearby problems".

Theorem (Inverse Function Theorem): Suppose F is a C^{2} map and $\nabla F(\vec{x})$ is an invertible operator onto y. Then, there is a map G: V-> E defined in a neighbor hood V of y = F(x) s.t. if is differentiable around y and DG(J) = DF(x) and FoG(y) = y YyEU. Inhitively, if we perturb ju to y, there will be a nearby solution x to F(x) = y. Corollary: There exists a constant K>0 (σ_{min} ($\nabla F(x)$)/2) such that if (x,y) are close to (x,y) then (x) in $f \| z - x \| =: dist(x, F^{-1}(y)) \le K \| F(x) - y \|.$ zef'(y) Hint: Start with F linear and then use the fact that you can

linearly approximate G. -Avestion: What happens when ue have more general equations F(x)=y? What properties imply (*)? We will take a more general template where we consider a set-valued map Q:E=Y. Cel: We say that I is metrially regular at \bar{x} for $\bar{y} \in \mathcal{D}(\bar{y})$ if there exists k>0 so that (\star^2) dist $(x, \Phi^{-1}(y)) \leq K dist(\Phi(x), y),$ for all (x,y) near $(\overline{x},\overline{y})$. -In optimization this is useful when ever we are interested in finding a critical point OE 2flx), (or a saddle). It tells us that the problem is rather stable. In turn it also name algorithmic consequences (that we will cover next

To try to answer our guestion, let's take a step back and consider F C¹. Note that x solves (P) if and only if it minimizes IIF(.)-yll. Moreover, & solves (P) if and only if it minimizes ||F(.) - y ||+ S ||.- x| for any \$>0 small enough. To see this, suppose & minimites $||F(\cdot) - y|| + 8 ||\cdot - x||$ but F(x) ≠ y. Then, subdifferential calculus yield $\nabla F(x)^T u \in SB.$ (3) unit norm Since DF(.) is continuous we have ∥ ∇ F(x)^Tull z Omin(∇F(X)) for x close to x and so (??) fails for 8 small. This characterization motivated Ioffe to generalize the invertibility of DFCX).

Lemma (Ioffe 179) Suppose 5 is where F is continuous and SSE is a closed set. Suppose that \overline{P} is not metrically regular at $\overline{X}ES$. Then, there is an arbitrarily small \$>0, a y close to y=FIX) and x close to x minimizing ||F(.)-y|| + 8 ||. - x || over S, but F(x) ≠ y.