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Clarke subdifferential
One awkward issue with the limi-

fing subdifferential is that it doesn't
yield convex sets. Recall

Def : For any set SCE
convS = &Six : 1x: E,Xi,[it]

Carutheodor &MEX : / XiE,didTheorem T

Proposition : If s is compact , so is convs
Def (Clarke subdifferential) : For a
locally Lipschitz function fit-RUG-*]
define

8cf(x) = conv2f(x) ·L t



Remark :Clarke introduced this defini
tion and developed theory for it in
his PhD thesis in 1973.

This subdifferential is often used
in to establish algorithmic convergence. -

We will establish an intuitive characterization.

Interlude : Basic facts from
Measure Theory

bef : Let SER! We say that this set
-

has measure zero if for all Eso
there is a countable sequence of
boxes B1 , B2, ... with SEVBist.
& vol Bi = E .
We say that a property holds almost

everywhere (a .e.) If it holds in the
complement of a measure zero set
Examples
"A countable set has measure zero

xexponentially decaying sidesi ...



"Any affine subspace SCE with dime
> dims has measure zero.

# =
i Polyhedral functions are differentia
be almost everywhere.

1I
-

Y

This last example is not just a
happy coincidence.

Theorem (Radamacher's Theorem) :

Locally lipschitz functions are
differentiable almost ever where.Y t



We will we one more classical
result.
Theorem (Fubini's Theorem) : Suppose
that SCE has measure zero, then

for almost all X
,
the set

StERR1X + +z]
has measure zero for all z. +
Back to Clarke
Theorem : Let 8 : E-IR be Lipschitz
and SEE be the set where f
is not differentiable. Then

Gaf(x) = Glimf(xn)(Xu+ X
,
YneSy

f(x)
Exercise: f(x) is nonempty and compact.

Proof : We start with a claim :

-Frechet
Claim (8t) : 2f(x) 5f(x) ·
Before proving this claim, let



us see how it implies the result.

By the claim grph of graphIf.
It is easy to showdo it's that

graph of is closed. By taking
the closure of grph of, we
obtain that grph af? grphet.
Hence acf(x) = Ef(X) and so
convacf(x) Ef(X).

For the opposite direction, noti
ce that if of is differentiable at
4 = 98f(Xnig = 2 f(x) and so

conv2rf(x)- f(X) .

Proof of Claim (B) : Suppose
seeking contradiction that
-yecf(x) (8f(x) · Since If(x)
is convex andclosed, there is
Zee , Eso sit.

< y,z) = max (g , z) + 25.
ge [f(x)



So for points YES" close to X

(2) (y ,z) =<OfE , z7 + E . (Why?)

By definition fexetz)-f(x)2 ty, z)
+ o (ty.

Thus, for small to

- (f(x ++z) - f(x)) = (y,z)-
By Fubini's there is a point I
arbitrarily close to X s .t.

Gt1 &+zeSY has measure zero.

choose I so that

E(f(x++z) - f(x)) = (y , z) - 2,
-

which can be done since everything
is continuous in X.

Now by the fundamental theorem
of calculus

f(x +tz) - f(x) = So COI++z) , z)di



= f((y, z) + E) ,
which contradicts (7).

I

This concludes the proof of the
theorem. I





Intuition

·inff+E-S
Proof: We want to find a conic mino-
rant as in our intuition. Define the

function
((x) = f(x) - SIX-FII .

If f(x) > ((X) EXEX, then, we

can take X =X . Suppose that this
is not the case. Define
w := < x 1 f(x) = C()
= (x1 f(x) + 81X-T1 = f(x)) .
= [x1G/-*11 f(x)-inffg
= Gx1ly-* 1 - E/g]

Notice that W is nonempty , bounded



-since 1 + S11 . -XII is closed

and closed. Therefore, the function
f(x) + 2w(X) achieves a minimizer
Y . Since JEW

,
we have that

(i f(x) + S1lX-* 1 < f(*) .
It is they immediate that 1 . and 2.

hold. Moreover , for X-WI we have

f(x) = f(x) and so

f(x) + 0 < f(x) + 51X-Y1.
For XEWY

,
then

x(i)
f(x) : f(x)-SIX-T1
- < f(x) + 6 /X- Y I-SIX-TII
Xew

= f(x) - SIX-XII
where the last live follows by the
reverse triangle inequality. Thus 3.
follows.

I



Mean Value Theorem
Next we will cover a applications
of these subdifferentials and
their calculus rules.

Theorem (Mean value 1) consider
a proper closed function f :E-Ruso),
and fix two pointsXo, X, Edomf.
Then
, for Faso , there exists a

subgradient weaf(x) with XE[X
,X1]

+ E I

f(x1)- f(xo) = <v, x, - Xo7 + E.

Proof : Consider the mapC, (t)

Xo + + (X, - Xo)
c(t) = (T I · (i)



and

h(y , tr , tu) = f(y) - f(x)- t , (f(x)-f(x))+[201](t2)

Then, the function
y(t) = h(c(t)) = f(c,(t)) - f(x)

- t(f(x,) - f(x)) +22,2](t)

Since this function is proper closed
proper and bounded, it admits a
minimizer &[0, 1]. Applying
the fuzzy sum rule we get JEl,
tzE [0,1) , XeE sit.

max <It, -El , Its-El , 11x-CCE)ll ,
If(x) - A(CCEII/} = E .

and

OE < Gf(x) , X . - Xo] - (f(x) -f(x)) (M)
- Nco

,1] (tz) + [- E , E] .

We consider two cases

↓Case 1 : E 1. In that case (b)
reduces to JvE2f(X) and SelR- S .t.

f(x1) - f(x) ! (v, X , -X) + S + q5e(-2,2)



[ (V, X , -X0) + E.

b Case 2 : E =1.. Then, noticed that

Y(1) = 4 (0) = 0 and so O is

also a minimizer and we can gold
back to case

1
. D


