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Fuzzy Calculus

The properties of the Frechet subdifferential are weaker
than what wehad for convex subdifferentials
How about calculus rules? Well, it
turns out that they can also

fail spectacularlyy
Example: Consider two simple funs
-

tions f : R-RR and g:R-IR

given by f(t) = It and g(t) = -It) .

2f(x) =Gi# #



# -
-
->

o

Then f+ g =O and

2(f+ g((d) = 503 and 2f(0) + 2 g(d) = %-

+

However
, there are "fuzzy" calculus

rules.

Theorem (Fuzzy chain rule) : Consider the-

function f(x) = h(c(x)) where h:y- Rose
is a proper, closed function and ciEzy
is differentiable around a pointGE.
Then

,
the inclusion holds :

(G) 2 f(x) -ve(y)
*
2h(c(*)).

conversely , for every subgradient reafCX)
and E20

,
there exists points XE

and yeY such that

1IX-* 19
, lly-CIS , Ihy)-hCkd,

and

(2) veyah(y) + aB . +

+



Before we proved this result
we note that it implies a sum

role thanks to the following
separable som rule.

Lemma (separable sum rule)
Let f : Ex-> IRUSES be a closed

proper function st fe....)= f:(xi)i< I

withfi closed, proper. Then,
2 f.(X , )

2 f (X .. . . .,
X
,
) = [ : J+2 f,(i)

Theorem (Fuzzy Sum rule) : Consider
a pair of closed , proper functions
8. f2 : E-Rud .

Then,

2 (fi+ fr) (x) - 2 f ,(x) + 2 fz(x) *X.
Moreover

, for any vegfi + fz)(X) and
Eso
,
we have JX ,, X2EX +EB S .

t.

veafi(X) + 2fn(x) + EB.

Proof : Apply the fuzzy chain rule
-

with f(x, x2) = f, (X) + fz(x2) and



((x) = 1) . Then
, Jy=(e ((x) + &B

and Xc(x(* [I I] and so

X,, xzX + EB

and ve vc(x
+ 2f(y) + EB

Separable-> 12 IS[i]
sum we

= 2 f(x)+ 2 fz(x2) + EB.
I

Proof ofFuzzy Chain Rule: Before
we state a nontrivial fact about freeket
subclifferentials.
claim eviscosity subgradients) : Consider
a function fiE-RUSto] and xedomf.
Then

, VEGf(X) if , and only if, there
exists a c'-function w : U-RR defined
on a neighborhood U of X satisfying
w(x) = f(x) , OW(x) =v, and w(y) < f(y)
for all yeUKXY. ↑
We leave this claim as an exer-

cise.



Inclusion (2) is easy
to prove using

simply the definitions of subdifferent
tials and Jacobiams. we focus
on (C)

.
Let veafCY). By the

claim above Iw : U + R a c'fung
tion with (1) =V , f(x) = w(),
and f(x1 > wex) Ex EUK*Y .

Thus,
X is the unique minimizer of

min f(x) - w(X)
XEU

with f(x)-w(x) = 0 . Shrinking U,
we might assume it is closed and
c is differentiable on U . Let V= Y
be a closed ball around(x) such
that h(y) = h((x)) - 1 FyeV.
Consider the sequence of problems

(A)min-((x)+ 11 y -cex)11
YeU , yeV

Fn(X, y)
Since these losses are closed and
coercive, then there exists a



sequence of minimizers En , Yn).
Let us show this sequence converges
to (X, CC*)). Since the sequen-
ce is bounded

, we might assume
we (xn

,
c(X)) -> (x*, y9) . Note

that
Fn(Xn> Yn) < F(x, C(y)) =0 .

Thus,

Ellyn-((Xn)1 = w(xn) - h(yn)·
the right-hand is bounded since w
is Cand -h(yn)-h(c() + 1 An.

Then , dividing by n and taking
limits yields yo = c(X

*).

closedness ensures

f(x
*) - w(X*)
= h(ym) -w(y

+ )

-
> liming h(yn)-w(Xn) -Ellyn - c(Xn)IP

(f) n-X

= liminf En(xn , yn)
n-x



=> liming In (X , c(y)) = 0 .

A
noX ->min f(x) -w(X)

XEU

Hence
,
** minimizes f-w over U.

Since X was the unique minimizer

of this problem,***. Then, eque
lity holds throughout and so

hlyn) -h(y . Since Xu+ Y, then

for large n , XneintU
, optimality can

ditions for (N) read

0 -Ow(Xn) - n0c()* (yn - c(Xn))
Of 2 h(yn) + n(yn - c(Xn))

Substituting the second inclusion in the

first one and adding and substracting
v on both sides yield
veOc(

*

Oh(yn) + v- vw(Xn)
um
-0 as n-o

The theorem follows immediately. I


