
Lecture 17

Last time Today
↓ Douglas-Rachford I ·AlternatingDirections
① Concensus optimiza method of
tion Multipliers

↳ Examples
Alternating Directions

Method of Multipliers
Following the general idea of
DRM we consider a more "splitted
template" :

E f(x) + g(z)po minut. Ax + BE = C
where X, z are Euclidean

spaces 8 :X-R , g :-R are

closed
, convex and proper, the



maps A :X-I B : z- 1"are
linear

,
and cer

The augmented Lagrangian in

this case corresponds to
[ (X, z; x)

= f(x) + g(z) + xi(Ax+Bz -c)
compleating+ allAx +BE - c /13
the square

= f(x)+ g(z) +11AX +Bz - C+26/13
und

- I* /13 u

z
W

- [ (x
, z ; w) .

Just as we did before, it is

easy to show
1

px = inf supL(X , z ; n)MX
, z WEIR



This naturally suggests an
algorithm where we alternate
between minimizing for X and z,
and then maximize for :
ADMM
Input : Yo , Yo , No
Loop K20 :
Yet argmin E(X ,z : W,)

X

zkt < argmin -(X ,
E ;M

UK Mr Flykn + Bzm - C)
This is akin to ALM

,
but

now we are "splitting" the

objective into two variables.

Remark just as with
ALM

, the Xke , En , updates
might not be well-defined.

They can be taken to be any



minimizer. To analyze this

algorithm let's try to reformula
to the problem as that of
finding the zero of the sum

of operators . For this , notice
that the Fenchel deal of ps
is (Why?)
d* = sup cTy-f

*(A*y) - g
* (B*y).

Y
If a constrained qualification
condition holds

,
i. ee., cinth

Adomf + Boongy , then po-d*
Moreover

, if aminimizer (, 2) of ps
is attained

, then a minimizery
of the dual exist and it satisfies :

XE2 *(** y) and zE2g
+(B*Y)



Therefore we get that

y is dual optimal
77

ceA2fy) + Bag+ (Bly)
[]

of A2f
+(A+y) + Bag (By) - Cunz
T S

Claim : Sand 7 are monature·
↑

Therefore, we could apply
DRM .

ADMM via DRM

Input : go ERRY, Rs , Ry
Loop K20: When is

maximal?
DWrxFR+ (Y1))
N

D Wre Rg(2Wr+ - Yr)
M

DYo < Ye - Whe Wre



Thanks to the theory we deveto
ped , we know that yo-y

*

a solution to the dual problem.
In turn

,
ADMM and ADMM

via DRM are essentially
the same algorithm.
To see this, note that

w = R+ (y)
-ye (I + xT)w
- y -we -Aff

* (ATw)

E)JX2%A
*W) with

y
- w =xAx

= A *webf(x) with
w = y

- GAY



- Adly- *Ax)Eff(x) with
w = y - xAX

↳ 02f(x) - Ay + XA
+

AX
with w = y

- x Ax

- XE argmin f( . ) - <y , A)
Implies Ax is unique + EIA . 112
2 with w = y

- xAX

What we have discovered is

that if we can minimize
(8) fl . ) - <y , A .) + EIA . 112

then
,
we can compute

Ry (y) = y - xAX.
A similar argument applies
for Rs.



In turn
, after the change

of variables y = x (n+ c -BN)
one can show the X-step
in ADMM is equivalent
to minimizing (8) . Some

extra dry algebra yields
that the two algorithms
are equivalent after this
change of basis.

This argument yields on
vergence of Wa . Under
additional conditions Xin
and Z

R
also converge,

but we will not cover
that here.



Examples
There are a number of impor-
fant examples that we can
cover if we take

min f(x) + g(z)* EIR"
ZEIRh X = z5
(B = -I , c =0)

In this case the X, z updates
compute proximals.
I Intersections
If we take f =c, , g = to
with G , G comex

,
closed,

non empty sets .
Then ADMM recovers the

so-called Dykstra's alternating
projection method.



a compressed sensing
If we set f = 11 . 111 and

g = [MXAx =by() , then
ADMM receivers the po
polar Basis pursuit method.

DLASSO

If we set f = /A .
-bl?

and g = /11 . 111 ADMM solves

the famous Lasso problem.

ILinearProgrammingas
f = ( . ) + x/Ax =by)
g = [R( :)



then, we can solve linear

programming.
Conic programming
More generally if weset
g
= [H with N

a cone
, we obtain an

algorithm for conic
programing.
Remark : ADMM is the
-

back bone of popular
solvers such as

OSCP and SCS .


