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Maximal monotone operator
Recall that given a monotove·

operator T : EEE we defined
-Ithe resolvant asR:= (I + xT).

When T- 2f we showed that
R was well-defined.
C : How do we know R(X) + 0 ?
Let's think about this
in E = 1. Monotonicity in
1D makes the graph



grph T
=< (X , y) 1 ye T(x)}

look like a monotonously non-
decreasing function (with jumps

---gro
+

.
·Y
-x +Y

Then
,
the the following is solvable by
y -Xe T (x) (9)

if , and only if the graph of
x 1) -X +y intersects grph T
for all y . Thus , we want
T to be as "large" as



possible.

Proposition : Let T:EIE a mo
-

notone operator andso be
arbitrary. Assume (2) is solve
be fy . Then, T is maximal

X
i.e
., ifT: E's monofore sit

TW)[T'CX)X = TET!

Proof : Suppose yet'ex) , we-

want to show yet(). Note
that xyexTICX) and by
assumption
(x+ xy) -z E xT(z) EXT'(z):

By monotonicity
-1x - y(k = < (X+ ay - z)

-

xy , z-X)
2 0 .



Therefore z =X, and so

xy = (x+xy) -Xe xT(x).

Proving the result. I

A direct implication ofthis
result is:

corollary : For a closed
, can

vex , proper f : E-RUGNY,
we have that of is maximal
monotone. t
In fact the opposite also
holds.

Theorem (Minty 1962). Let
T :EJE be a monotone opera
for and so. Then, T is

maximal if, and only if, (2)



is solvable for all y. t
We will not prove this result
It is usually simpler to show
directly that R is well-defined.

Baby steps : Smooth optimization
Consider the problem of minimi
zing :E-IR a smooth convex

function with L-Lipschitz
gradient. A natural strategy
is gradient descent
X1Xk - X8f(X),

Theorem : Let f be an L-smooth
-

convex function. Then , we have
<X- y , of(x) -Ofcy))= 110f(x)-Of(y)/P (x)

XX,y



Therefore ,
Tx(x = X- xJf(x)

is non expansive if XE[03] and
it is averaged if xe(0,2).
Thus, if xelo,2) , gradient
descent converges.
Proof : We derived (N) in Lecture
-

6 of Nonlinear 1 (see notes).

Then , we can prove non expansiveness

1lX - x5f(x) - y +x8f(y)(
= 11x-yl - 2x(x - y , 5f(x) - -fly)]

+ a 110fex - ofCy) /13
= 11x-y11- (2- -x2) 10f(x) -Ofcy)11
Ex um
( 20 iff x 10,]



Moreover
, if Xe (0,)

Tx(x) =0x + (1 -0)(X - XVf(x))
-(1-0)

We can pick O so that
& e [0 ,<] ·
(1-0)

convergence follows immediately
via the kM iteration result. #

Augmented Lagrangian method
Let us go back to the problem
of solving & smouth

and convex.
min f(x)
S .t. g(x) = 0 ViE[m].j

Before presenting the algorithms letus
motivate it. Notice

inf[f(1 get a
= inf(f(x) (g(x)+z =0]
zo



= inf(f(x)+ g(x) +z(g(x)tz

=inf sop(f(x)+ g(x)+z+(g)

2 sup inf(f(x) +1 11g(x)+z1k+ X (g(x)+z))
(why?) & zo
I
X

Sup inf(f(x)+(x +g(x))l-EX]-m
Augmented Lagrangian [(X;X)

Recall that we defined , the standard

Lagrangian in Lecture 5

((X; z) = f(x) + zTg(x) .
Proposition : Suppose f , g :: F-IR are
-

convex
,
and X20 , z = (z + g(x))+. Then,

x minimizes [1., x) if , and only if,
X minimizes LC., z).

Proof : Exercise. I



This motivates a natural alternating
algorithm where we minimize [C . jx)

and then maximize [(X· ) · Let's

understand how the maximizer of

[(X ;. ) looks like via:

Claim : If h :E- convex then so is

hi and 2 (hi)(x) = 2h+ (x)2h() . +
For any fixed XEE, the function
X - (xi + gi(x))Y - EX?

is concave and by first order optima

lify conditions it is maximized at
(xi+ gi(X))+- Xi = 0.

Thus I is a fixed point of TC)
= (x + g(x))+ · With this we can

now introduce the Augmented Lagrangian
method.



Augmented Lagrangian Method (ALM)
Pick XotE , do E Rm

Loop K20 :

Y+1 -angmin [(X , (k)
X

↑ f (Xx+ g(Xk+1))+

Let's make a couple of remarks :
1) What did we gain? We reduce
a constrained problem into a

sequence of unconstrained ones.

If we have an effective solver for
-

LC; Xn) , this might be a rea
sonable algorithm.

2) Notice that in general , X
is not well-defined since



the minimizer might not be well
defined.
However

,
if, we assume that

X(X) argmin [(x; ) is

well-defined for all the is
we see, then we can analyze
this method via the KMitra

tion
.
Consider the function

↑(x) = E
- inf((x, x) if y zo,
+ X otherwise.

Proposition : suppose that Yee is
-

well-defined for all1 in an

execution of ALM. Then,

+1 < proxy (1) K20.

consequently , Im converges . +



The proof is left as an exerci
-

se . The final conclusion follows

from our kM iteration result

since I is convex. One can

also show that any cluster point
of the iterates [X] is a solution

to the original problem-

Warning These results are some-

what unsatisfactory since we needed

to assume the well-posedness of the

primal iterates. Next we will see methods
that do not suffer from this issue.


