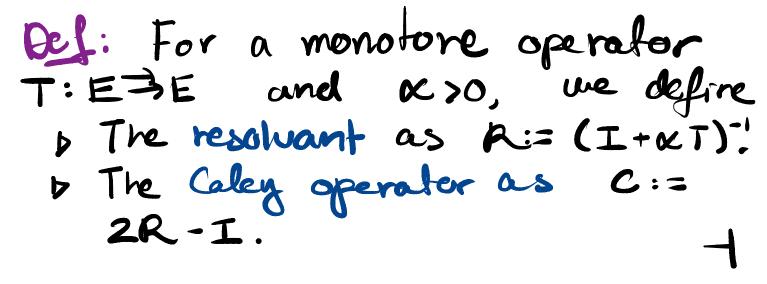
Lecture 15 Today Last time > Fixed points p Finish proof o set-valued mappings d New topic o Proximal point wethod o Krasnozelskir - Mann ideration Fixed Point Iteration The next result is key for our smift in perspective. Proposition »: A point x" mini mizes f rf, and only if it is a fixed point of $T(x) := prox_{af}(x)$ for some $\alpha > 0$. (e.g., $\chi^{=} = T(\chi^{=})$). Proof: Damn it, another exercise! Notice that PPM is just the fixed point iteration

 $(\diamond) \qquad \chi_{k+1} = T(\chi_k).$ Thus, to study its convergence it suffices to understand when does (d) for general operators T:E >E. Def: A set-value mapping F:E===E is a mapping from E to 2E (sub-sets of E). Its inverse F": E=3, E defined via xef "(y) ⇒ yef(x). + Remark: T(x) can be empty. Example Notice that prox_e(x) = y <>> set value map (x -y) Exdf(y) $y \in (I + \kappa \partial f)^{(x)}$ 勾 <u>Resolvant</u> D In the particular case where

f=zc for some convex set C. $prox_{\alpha z_c}(x) = y \notin (x - y) \in N_c(y)$ (x) = y.Def: A set-valued map F rs non expansive if for all yEF(X) y'EF(X') we name $\|y - y'\| \leq \|x - x'\|.$ We say that F is a contraction if the inequality is strict. I For instance projections are nonexpansive (HW1). From analysis ve know that if (Itadf) is a contraction then by the Banach contraction Mapping Theorem, it converges linearly towards a unique fixed point. But, ue rarely have a

contraction, e.g., take
$$C = E$$
.
Warning Iterating noncontractive
mappings might fail to conver-
ge. Take F: $\mathbb{R}^2 \to \mathbb{R}^2$ be given
by $T(x) = \operatorname{Rot}_{\pi_1}(x)$ by a 90° de-
gree clakenise rotation.
Then, $T^{K}(1,1) \in \{(1,-1), (-1,-1), (-1,1), (-1,1), (-1,-1), (-1,1)$

of F (or equivalently G) if one
exists.
But, why do we care? Resolvants
$$(I + R \partial f)$$
 one always averaged.
Def: A set-valued map
 $T: E \exists E$ is monotone if for
all yet(x), y'ET(x') we have
 $(y - y', x - x') \ge 0$.



Lemma: R and C are nonexpansive and hence R is averaged. Proof: C'mon, prove something. Exercise. 4

We are now ready to prove an enhanced version of the KM iteration theorem. Theorem: Suppose F:E=E is averaged and that X=dx1x=Fxf $\neq \phi$. Let $\chi_{k+1} = F(\chi_k) \quad \forall K \in \mathbb{N}.$ Then, (1) (convergence) The iterates $\chi_{\mu} \rightarrow \chi^{*}$ to some $\chi^{*} \in \chi$. (2) (Fejér monotonicity) For all KEIN and XEX $\|\chi_{k+1} - \chi\| \leq \|\chi_{k} - \chi\|.$ (3) (Rate) Let $F = (1-\theta)I + \theta G$, we have min $\|\chi_{k} - G(\chi_{k})\| \leq dist(\chi_{0}, \chi).$ $i \in \{0, \dots, k\}$ $\|\chi_{k} - G(\chi_{k})\| \leq \frac{dist(\chi_{0}, \chi)}{(1 - \Theta)\Theta \sqrt{k + 1}}.$ Proof: Notice that (2) follows trivia ly from the fact that F is non-expansive. We prove a slightly

stronger version. Take XEX, then $\|\chi_{k+1} - \bar{\chi}\|^2$ $= \| F(\chi_{L}) - \overline{\chi} \|^{2}$ $\| (1-\theta) \chi_{k} + \theta G(\chi_{k}) - (1-\theta) \overline{\chi} + \theta G(\chi_{k}) \|_{.}^{2}$ Here we need a claim Claim: For any a, bee and GER. $\|(1 - \Theta)a + \Theta b\|^2 = (1 - \theta)\|a\|^2 + \Theta \|b\|^2$ (1-0) 0 11a - b11? Proof of He Claim: Both terms are guadratic in θ , it suffices to check three points: 0, 1/2, 1. D Using this claim we get $\|\chi_{K+1} - \chi \|^2$ $= (1 - \theta) \| \chi_{k} - \overline{\chi} \|^{2} + \theta \| G(\chi_{k}) - \overline{\chi} \|^{2}$ - $(1-\theta) \theta \|(x_k - \bar{x}) - (G(x_k) - G(\bar{x}))\|^2$ $\leq (1-6) \| \chi_{k} - \tilde{\chi} \|^{2} + 6 \| \chi_{k} - \tilde{\chi} \|^{2}$

 $-(1-0)\theta \|\chi_{k}-G(\chi_{k})\|.$ = $\|X_{k} - \bar{X}\|^{2} - (1 - \Theta)\Theta \|X_{k} - G(\bar{X}_{k})\|^{2}$ Then, taking a telescoping sum $(1-\theta) \Theta \sum_{i=0}^{\infty} \|x_i - G(x_i)\|^2 \le \|x_0 - \bar{x}\|^2$ Dividing by K+1 and wing that a minimum is smaller than an average, gields (3). To prove (1), notice that by (2) the sequence is bounded. Then, there is a convergent subsequence with limit point x*. Notice that along this subsequence $\|\chi_{k} - G(\chi_{k})\| \rightarrow 0$ and G is continuous, hence $x^* \in X$. Moreover, by c_2) $\|x_k - x^*\| \neq 0$ along the full sequence, hence $x_k \rightarrow x^*$, completing the proof.