Lecture 13 Today Last time o Back to IPM DAffine invariance O A "complete" IPM DA new guaran tec for Newton's. D Answering our grestions Back to IPM Recall the n problem min $f_n(x)$ with $f_n(x)=nc^{T}x + B(x)$ and our informal template: IPM (Informal) 17 Pick xoeint P sufficiently close to x"(0) and pick nor small. ∇ Loop K = 0, 1, ..., T: o tind an approximate minimizer xxx, of fnx using x_k for initialization D Increase NK+1 = 97K with q>1.

v Return 27 and we had several greations Cho: what B function to use? Ca,: How to find xo? What is sufficiently close? Ch2: What method to use to Cas: How to pick q? Cay: How to show that the method finds an approxima te solution to the original LP in poly time? « Intuition Answering guestions Description New questions Today ve answer all these questions except a (Exercise). Our uthinate goal is to find CTX - CTX SE with XEP. We will like to follow the

A.: $B(x) = -\log \sum_{i=1}^{n} \log(b_i - a_i x)$. The reason for this is that B is Sc. Lemma: The log barrier function $B(x) = - \int \log(b_i - a_i^T x)$ is self concordant. r:(x) Proof: Recall that $H(\chi) = \sum_{i=1}^{m} \frac{a_i a_i}{s_i (\chi)^2}$ Let $8 = \|\chi - \chi\|_{\chi} < 1$, then $\delta^{2} = (y - x)^{T} H(x)(y - x) = \sum_{i=1}^{\infty} \left(\frac{a_{i}^{T}(y - x)}{s_{i}(x)} \right)^{T}$ Hence, each individual term $\left(\frac{S_i(y) - S_i(x)}{S_i(x)}\right)^2 = \left(\frac{a_i^T(y - x)}{S_i(x)}\right)^2 \leq S^2.$ There fore, $(1-8)|s_i(x)| \le |s_i(y)| \le (1+8)|s_i(x)|$ which implies

 $\frac{(1+8)^{-2}}{S_{i}(x)^{2}} \leq \frac{1}{S_{i}(y)^{2}} \leq \frac{(1-8)^{-2}}{S_{i}(x)^{2}}$ Tws $\frac{(1+8)^{-2}a_{i}a_{i}^{T}}{S_{i}(x)^{2}} \xrightarrow{a_{i}a_{i}^{T}} \frac{a_{i}a_{i}^{T}}{S_{i}(y)^{2}} \xrightarrow{(1-8)^{-2}} a_{i}a_{i}^{T}}{S_{i}(x)^{2}} \xrightarrow{s_{i}(x)^{2}} a_{i}a_{i}^{T}}$ Summing over all i and using the fact that $(1-38) \leq (1+8)^{-2} \leq (1-8)^{-2} \leq 1+38$ for all SECO, 1], yields the result. This means that the theory ue developed in Lecture 12 applies. Let $n_n(x) = -\left[\nabla^2 f_n(x)\right] \nabla f(x).$ Lemma +: For a given χ , let $\chi_{+} = \chi + n_{\pi}(\chi)$. Then if $\|n_{\eta}(x)\|_{\chi} \leq \frac{1}{6}$ we have $\|n_n(x_1)\|_{x_1} \leq 3 \|n_n(x_1)\|_{x_2} \leq \frac{1}{12}$

A₁: We do not answer how
to get
$$x_0$$
. But we notice
it will suffice for it to
satisfy
 $\|n_{N_0}(x_0)\|_{X_0} \leq \frac{1}{6}$.
A₂: We will run Newton's
method for how many itera
trons are necessary to
ensure $\|n_{N_{k+1}}(x_{k+1})\|_{X_{k+1}} \leq \frac{1}{6}$.
At the last iteration we
might run it for longer
to ensure
 $\|c\tau\hat{\chi} - c^{\tau}\chi^*\| \leq \varepsilon$.
emma η : For every $\chi \varepsilon$ int ρ and
 $\eta', \eta_{>0}$, we have
 $\|n_{\eta'}(\chi)\|_{\chi} \leq \frac{\eta'}{\eta} \|n_{\eta}(\chi)\|_{\chi} + \sqrt{m} \left|\frac{\eta'}{\eta} - 1\right|$.
Before proving this result.

notice that, it tells us now
to increment
$$\mathcal{N}$$
, since
$$\| \mathcal{N}_{\mathcal{N}_{k,1}}(\chi_{k,1}) \|_{\chi_{k,1}} \leq \frac{q}{q} \| \mathcal{N}_{\mathcal{N}_{k}}(\chi_{k,1}) \|_{\chi_{k,1}}}{\sqrt{m}} \| \frac{q-1}{\chi_{k,1}} - \sqrt{m} \| \frac{q-1}{q} + 1 \|.$$

$$A_{a}: We set \quad q = \left(1 + \frac{1}{20\pi}\right)$$

$$\| \mathcal{N}_{\mathcal{N}_{k,1}}(\chi_{k,1}) \|_{\chi_{k,1}} \leq \frac{1}{12} + \frac{1}{240\pi} + \frac{1}{20}$$

(%) The step $a \leq \frac{1}{6}$.

Proof of Lemma $\mathcal{N}: We$
use $H(\chi) = \nabla^{2} B(\chi)$ and $q(\chi) = \nabla B(\chi)$. Then
 $\mathcal{N}_{1}(\chi) = -H(\chi)^{-1} (\mathcal{N}_{k}^{-1} - q(\chi))$
 $= -\frac{\mathcal{N}_{1}}{\mathcal{N}_{k}} H(\chi)^{-1} (\mathcal{N}_{k}^{-1} - q(\chi))$
 $= -\frac{\mathcal{N}_{1}}{\mathcal{N}_{k}} H(\chi)^{-1} (\mathcal{N}_{k}^{-1} - q(\chi))$

+ $\left(1 - \frac{\eta}{h}\right) H(x)^{-1}g(x)$ Taking the II. II, and applying triangle inequality yields $\|n_{n'}(x)\|_{x} \leq \frac{n'}{n'} \|n_{n}(x)\|_{x}$ + $\left|\frac{n'}{n} - 1\right| \|H(x)^{-1}g(x)\|_{\chi}$ It suffices to bound ||H(x)'g(x)||_x $\leq \sqrt{m}$ for any $x \in int P$. Applying Cauchy - Schnarz: $\|z\|_{x}^{2} = g(x)^{T}H(x)^{T}g(x)$ $z^T g(x)$ $= \sum_{i=1}^{n} 1 \cdot \frac{(z^{T}a_{i})^{2}}{(b_{i} - a_{i}^{T}x)^{2}}$ $\sqrt{m} = \int_{i=1}^{m} \frac{(z^{T}a_{i})^{2}}{(b_{i} - a_{i}^{T}x)^{2}}$ 5

$$= \sqrt{m} \sqrt{z^{T} \left(\sum_{i=a_{i}a_{i}}^{T} \sum_{i=a_{i}a_{i}a_{i}}^{T} \right) z}}$$

$$= \sqrt{m} \| z_{\chi} \|.$$
We conclude $\| z_{\|_{\chi}} \leq \sqrt{m}.$
Finally we need to decide how many steps to run for the last execution of Newton so that
$$C^{T} \chi_{T_{H}} - C^{T} \chi^{*} \leq \varepsilon.$$
Proposition(b) Suppose $\chi \varepsilon intf$
and $\chi > 0$ s.t. $\| \ln \eta(\chi) \|_{\chi} < 1_{\chi_{H}}$
then
$$C^{T} \chi - C^{T} \chi^{*} \leq \frac{m}{\eta} \left(1 - 4 \| \ln \eta(\chi) \|_{\chi} \right).$$

Notice that this proposition implies that if $\|n_{\mathcal{X}}(x)\|_{\mathcal{X}} \leq \frac{1}{24}$ $\frac{m}{2\varepsilon} \leq \mathcal{N}$ Then, we obtain $C^T \chi - C^T \chi^* \leq \varepsilon.$ Recall that $\|n_{n_{\tau}}(x_{\tau})\|_{x_{\tau}} < \frac{1}{6}$. The fore after 2 iterations of Newton $\|n_{\eta_{\tau}}(\hat{x})\|_{\hat{x}} \leq 3\|n_{\eta_{\tau}}(x_{\tau}^{+})\|_{\hat{x}^{+}}$ $\leq 27 \| n_{\eta_{\tau}}(\chi_{\tau}) \|_{\chi_{\tau}}^{4}$ < 1 48 Thus,

	стя -	د ^۳ ۲*	$\frac{12}{11}$	r < r	٤.
In	turn,	if u	se ev	ablis	h
Prop	position wer	n (B) for (, ve 24.	, will	hare an
Th T=	eorm = 0(1 +puts	A4: m log a po	IPM Beno) Sint X	(Full) ilerad	using tions,
sat	rsfyir CT	е <u>у</u> 2 - с	^T X* 4	٤.	
For solution	ther, ing .ch	eaev a li can	n step inear be	p inv syst execut	olves em, ed
ih	polyn	omial	tin	مو.	4