
Lecture 11
Last time Today
D Recap D Complexity of Simplex
↳ Initial point ↓ ①Intro to interior-Optimality point methods
is Pivoting D Remembering Newton

.

complexity of Simplex
With what we learned we

can write a complete simplex
method

Simplex method

I Start with a BFS * (Bo)
associated to Bo (Use Phase1)

- Loop for K = 0, 1, . . .
is compute deal solution

y (B, = AGBK
If y (B) is feasible (520)
return X(Bis) and y (Bic).



↳ Else

①Pick any j with 5jO and

compute
d =[ As7 .

↳
-If d = G
Return "unbounded LP.

"

D Else set

Brei = BaU55314i]
with it arging-B (d

, ]

Q : How do we know that the

loop stops ?
In order to guarantee that
we need to use Bland's rule :
a Pick jeB" with 5, o to be

the smallest such index.

①Pick : the smallest index in

arguing-do



Using this rule, simplex always
finishes. We will not prove that
in this class.

C. How fast is simplex?
"In the worst case it can

take exponential time in
the dimension (Klee and Minty
172).

3 For random problems it
takes O(nem) iterations on avera

-

ge (Borgwardt
87
,
Smale '83)

"For randomly perturbed pro
blems

S
it finishes after

↑

poly (n , m) many iderations.

(smoothed Analysis , Spielman
& Teng 104)

Intro to interior point methods
The Simplex has to fundamental



-

drawbacks :
1 . It only applies to linear progra
mining.2. It might take exponential time.
Researchers in the '80s and
190s aimed to design a method
to tackle 2 and unadvertidly
fand a method to tackle 1 as
well.

History interlude
D In 179Khatchiyan proved that
the Elipsoid method converges
in polynomial time for LPs.
This algorithm doesn't work
well in practice (way worst
them Simplex) . BUT Knafchigan's
paper was extremly influential
leven appearing in the New

York times ( and got



many mathematicians inte
rested in developing practical
provably efficient methods
for LPS .

↳ In 184 Karmarka developed
an Interior Point Method (IPM)
for LPs that was theoretic

cally on par with the Ellip
said Method and had good
practical performance
(Also appeared on the New
York Times C .

Later work by Renegar,
Nesterov

,
and others led

to IPM for other Conic

optimization problems (socp
and SDP).

D It took some years andU

more practical insights, but



eventually IPM implementations
were competitive with Simplex
and today these two are the

basis of more LP commercial
solvers .

key insight
We describe the methods for
LPs . Assume I wanted to
solve

min c+ X (i)
sit. AX = b.

Instead of directly solving
this problem , we could consider

an unconstrained problem
min y cix + B(x)

P
(Ly)

where B satisfies
1 . dom(B) = inthx/Ax = b)
2. FqebdB we have



lim B(X) = 0.
x ->q

3. B is strictly convex

Intuition
B By 3 , (12) has
a unique minimizer
X that lies in intoI As yuo that
minimizer approa-

ches a solution X
* to (2)

This defines a path of inte
vior solutions - called

the central-ech) pathI
of Leop
If we started at X

*10)
,
we

could aim to find numerically



approximate X*) for small
a using an iterative method

initialized at X * (0) .
I .PM (informal)
1 Pick No sufficiently closeto X*(0)
and pick no20 small.

Loop K =0, 1, ..., T :

D Find an approximate sola
tion X

Kel
to (Ly) using

K

Xk for initialization.

D Increase 71 = q4k
for q > 1.

↳ Return XT

Once more, we arrive to a
lot of questions :
Go : What B function to use?
21: How to find Xo ? What



is sufficiently close?

C2: What method to use to

find XK+ 1 ? How well do
we need to approximate Xi) ?

C3 : How to show that the
method finds an approxi
mate solution in polynomial
time?

Remembering Newton
In Nonlinea ↓ we covered
Newton's method

, which given
a problem fec

min f(x)NERO

updates
xi+1 Xp - (5+(x)) "Of(

This method turned up



to be extremly fast near a
minimizer. Let ** Eargmin f.

Theorem ( : Suppose that I- *
is such that VX wear X

dI7f4x)BI
A

2-strongly convex ↑ S-smooth
Then, foo any point Xo sufficient
ly close to X* = argmin I
we have

1X1-X*111x0-X* +
2 2-

In particular when

11 %o -x
* 11 [,

we have guadratic convergence.
This seems like a natural
candidate for answering
G2 . But note that
the number of steps to



achieve good accuracy depends
on the constants a and

B , which depend on B
,

I

since

52(x) = 52B(X).
Let's answer Go to see

how does thisSession look

like. For LPs it is reaso
nable land in fact a good
idea) to use :

M

B(x) = -[log (bi - a[X) ·
=0

Recall-log(t) looks like

M

#



so B satisfies the properties
we want and

V B(x) =-2
(bi - a[x)

V
= B(y) = + [a-

2

(bi -a[x)

Then, our convergence rate
will depend on Amin(V2B(**(4)
and Smax (82B(X*(1)) and so

the convergence will depend
on both

a) The conditioning of AA
b) How close we are to

the boundary of P.

Both are terrible because we
can have a badly conditioned

representation of the problem
(A, b, c) that leads to



arbitrarily slow convergence.Further, we don't want our

complexity blowing up as

we approach the boundary
of B.
We cannot use Theorem (D).
The solution will turn out to
be the affine invariance
of Newton's method .


