Lecture 10 P Recap Last time b Linear programming revisited o initial point o Extreme points > Optimality o intro to Simplex. > Pivoting > Finishing Pecall our high level description SIMPLEX (INFORMAL) o Pick a basis Bo s.t. X(Bo) is Hor to feasible. How to reasible. Find this guy? b Loop KZO: b Updale BK+1 = BK+1 / 1/1/2 s.t. How to 1. X(BKH) is feasible. this 2. $C^{T} \times (B_{K_{1}}) \leq C^{T} \times (B_{K})$ o if a (BKI) is optimal: How to return X(BK+1,). check this? How to guarantee simplex finishes? At what rate of convergence?

Recall our primal and clual Feasible region (P) P' = 0 inf $\langle C, \chi \rangle$ s.t. $A\chi = b$ $A \in \mathbb{R}^{m_{1}}$ $\chi \geq 0$ (0) $d^{*} = \begin{cases} \sup \langle b, \psi \rangle \\ \sup \langle s.t. A^{*}y \leq 0. \end{cases}$ Strong duality for LPS Proposition: There are exactly 4 possibilities for LPs: 1) Both primal and clual are alaxed achieved and p*=d*. 2) The primal is feasible and the dual infeasible p*=-00=d*. 3) The dual is feasible and the dual infeasible. 4) Both primal and dual are infea sible $p^* = \infty$ and $d^* = -\infty$.

Proof: Exercise. How to find an initial feasible point? To find xo we can define on auxiliary problem (Phase I approach): min IS; s.t. Ax + S = bXZO, SZO. Note that we can always assume b > 0 (otherwise we can regate the corresponding constraint in (P)). In this case, we trially have that s=b X = 0 , point. So me is a peasible point. So we could use simplex to find an optimal solution. If the solution \overline{x} , \overline{s}

such that

5=0 =) We run simplex for (P) with $x_0 = \overline{X}$. 5>0 > Declare infeasibility. flow to check if we reached an optimum? Pe call from last time that each standard form BFS & is asso crated to a basis B X uniquely solves { ABXB=b XBC=0. This basis doesn't have to be unique! Indeed, ve might have two bases B and B's.t. $\int A_{\mathbf{B}} \overline{\mathbf{x}}_{\mathbf{B}} = b \quad \text{and} \quad \int A_{\mathbf{B}'} \overline{\mathbf{x}}_{\mathbf{B}'} = b \\ \overline{\mathbf{x}}_{\mathbf{B}'} = 0 \quad \overline{\mathbf{x}}_{\mathbf{B}'} = 0.$ In such case, all ie B^c U(Bⁱ)^c have $\overline{x_i} = 0$. Thus if iEB\B', ve have $\overline{X}_i = 0$. (We are getting zeros ve didn't enforce).

Inhubion
$$\chi_{320}$$
 determined by
any 2 of 3 const.

 χ_{120}

Def: We say that BFS is not
degenerate if for an associated
basis b, we have $\chi_{B} > 0$. -1
To check optimality we can use
the following dual solution
 $\chi = A_{B}^{T}C_{B}$.

Recall χ is feasible iff
 $Recall \chi$ is for a BFS χ^{*}
associated with a basis B
and reduced costs \bar{c} .

1) If ZZO => x* is a minimizer. 2) If x' is nondegenerale and a minimizer => EZO. Proof: 1) If EZO, then x* and y=zABCB are feasible solutions and $c^{\mathsf{T}} \chi^* = c_{\mathsf{B}}^{\mathsf{T}} \chi_{\mathsf{B}} = c_{\mathsf{B}}^{\mathsf{T}} A_{\mathsf{B}}^{\mathsf{T}} b = (A_{\mathsf{B}}^{\mathsf{T}} c_{\mathsf{B}}) b = y^{\mathsf{T}} b.$ Thus, x' and y' have to be optimal. 2) Suppose Ij s.t. Ej <0. let's imagine ve were to more within the constraint set to make $\chi_j = \varepsilon > 0$ for $j \in B^c$. Let $\hat{\chi}(\varepsilon)$ be the unique solution 10 $\begin{cases} Ax = b \\ x_j = \varepsilon \qquad (=) \\ x_{B^{c} \setminus j} = 6 \end{cases}$ $\begin{cases} A_{B} \times_{B} = b - A_{j} \times_{j} \\ \chi_{j} = \varepsilon \\ \chi_{B} \times_{j} = 0 \end{cases}$

= $C_B A_B (b - A_j \varepsilon) + C_j \varepsilon$ $= c_{B}^{T} \chi_{B}^{*} + (c_{j} - c_{B}^{T} A_{B}^{T} A_{j}) \varepsilon$ $= C^{T} \chi^{*} + (C_{j} - A_{j}^{T} y) \varepsilon$ Cjed $< C^{T} \chi^{*},$ which contradicts the optimaliry of X. Thus, we can use EZO to check optimality. Pivoting and reduced costs E. Let x be a BFS with basis B. Following our nose losing the previous proof) it seems natural to try to move in the direction $\chi(\varepsilon) = \overline{\chi} + \varepsilon d$ with

 $\begin{vmatrix} d_{\mathbf{B}} \\ d_{\mathbf{j}} \end{vmatrix} = \begin{bmatrix} -A_{\mathbf{B}} \\ A_{\mathbf{j}} \\ 1 \\ d_{\mathbf{a}' \mathbf{y}} \end{vmatrix}$ where $\overline{c_j} < 0$. There are three potential situations: o Unbounded care If dz0, we have a situation like: Te // T By construction $A x(\varepsilon) = b$ and $\chi(\varepsilon)$ 20 $\forall \varepsilon$. Thus, $C^{\intercal} \chi(\varepsilon) = c^{\intercal} \overline{\chi} + c_{j} \varepsilon \rightarrow -\infty$ as $\varepsilon \uparrow \infty$. v Bounded and nondegenerate case If $\exists i \quad s.t. \quad d_i < 0 \quad and \quad \chi_B > 0$, => X(E) violales X(E); 20

if, and only $if, \ \overline{x}_i + \epsilon d_i < 0.$ $\left(\frac{\varepsilon > -\frac{X_i}{d_i}}{d_i}\right)$ So we can take $\mathcal{E}^* = \min_{\substack{i \in B}} \left\{ \frac{-\overline{x_i}}{d_i} \mid d_i < 0 \right\}$ and $i \in B$ and $\frac{1}{d_i} \left\{ \frac{\overline{x_i}}{d_i} \mid d_i < 0 \right\}$. & Bounded and degenerate If Bi st. dico and X is degenerate. Then, we can have that $\varepsilon^*=0$. In which case we should take a different d. Lemma: Pick jeb^c if dzo,

then X(e*) is a BFS with associated bosis B'= Bugig Zi*g. Proof: X(E") solves $\begin{cases} A \times = b \\ X B \cdot = 0 \end{cases} \begin{cases} A_{B'} \times_{B'} = b \\ X_{B'} = 0 \end{cases} \end{cases} \begin{cases} A_{B'} \times_{B'} = b \\ X_{B'} = 0 \end{cases}$ We need to show that AB' is inverible. Note that B' is $AB' = \begin{bmatrix} A'_{B_1} & \dots & A_{B_m} \end{bmatrix}$ replaced A: (assume it was in the kth column = $A_{B} + (A_{j} - A_{i}) e_{K}^{T}$ sherman - Morrison states this is invertible if AB is invertible and $1 + e_{k} A_{e}^{-1} (A_{j} - A_{i}) \neq 0$. To check the last condition note $1 + e_{k}^{T} A_{\theta}^{-1} (A_{j} - A_{i}) = 1 + e_{k}^{T} (d - e_{k})$

=-di*>0. This completes the proof. 4