TAs:

- Thabo Samakhona (tsamakh 1@jhu.edu) OH: - am
- Pedro Izquierdo (pizquie 1 Q jh.edn) OH: Tu 9:15 - 10:00 pm

Resources - Canvas - Website (mateodd 25.github.io/ - Piazza nonlinear 2. - Grade scope 1 Ask your guestions Delete this 2 here for resources from Nonlinear 1.

Agenda

- D Syllabus
- Motivation
- + Overview

Syllabus

- Four components:
 - Homework
 - Midterm
 - Final
- 5 total Takehome () Volhome () , Jhangi Takehome
 - Might change

(3 g's about theory

(Python) please)

1 code question

- Participation in class, OH, Piazza. - Engaging

Grading System Let CH, CM, CF, Cp denote your normalize grades (0-1).

Motivation The goal of this class is to study problems of the form unlike in nonlinear 1 we will assume $C \neq \mathbb{R}^{a}$. This adds additional complications but gives rise to beautiful theory. We consider two types of constrained sets: Inequality constrains $C = d \propto e \mathbb{R}^d | g_i(x) \leq O \mathcal{G}$ with $g_i: \mathbb{R}^d \to \mathbb{R}$ differentiable. a structured convex we let C be a "structured" convex set. structured comes in different flavors, i.e., a) We can project to C.

History Aside: These problems and algorithms to solve them were one of the first appli-cations of computers in the 140s. are shon: How can we certify that a solution is optimal?

Let's consider two students

O Student 1: Suppose Arisu obtained

I claim that the grade Arisu should get is 65 out 100given by weights (H, M, F, P) = (20, 15, 65, 0)

How can I show this is the best? $1 \cdot (M + F \leq 80)$ + -1·(M ≥ 15) For every rubic ~ F < 65 $\langle (H, M, F, P), (C_{H}, C_{M}, C_{F}, C_{P}) \rangle$ D Student 2 Normalized Suppose Boris got (CH, CM, CF, Cp) = (50, 50, 100, 0)/ Seems like nobody participates! l claim Boris would get 82.5 out of 100 by (20, 15, 65,0) How to certify this? $\frac{1}{2} \cdot (H + M + F \leq 100)$ - 1/2 · (MZ 15) + 1/2 · (M+F < 80)

 $\frac{1}{2}$ H + $\frac{1}{2}$ M + F ≤ 82.5 « once again for every rubric. It seems like this goes beyond trese two students, ve could have $\lambda_1, \ldots, \lambda_7 \in \mathbb{R}$ $\lambda_1 \cdot (H + M + F)$ £ 100) Z 15) $\lambda_2 \cdot (H)$ 215) $\lambda_3 \cdot (M)$ (05 $\lambda_{y} \cdot (-M + F)$ λ_{5} (M+F 220) $\lambda_{G} \cdot (M + F)$ <u> < 80)</u> $\lambda_{I} \cdot (H + M + F)$ z 90) + We want $(\lambda_1 + \lambda_2 + \lambda_3) \cdot H$ (C_H -C_P) H + $(\lambda_1 - \lambda_4 + \lambda_5 + \lambda_6 + \lambda_7) \cdot M^{\sharp}$ $+(C_m-C_p)M$ + $(\lambda_1 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6 + \lambda_7) F_+ (c_F - c_P) F$ $\leq 100 \lambda_{1} + 15 \lambda_{2} + 15 \lambda_{3} + 50 \lambda_{5} + 80 \lambda_{6}$ 1 90 XZ

In order to have a valid bound ve need two things: a) The coefficients in front of H, M and F have to match the grades. b) The λ'_{3} have to satisfy for each " \leq " constraint ve need λ_{20} for each "z" " " λ_{150} This leads to the problem min 100 λ_1 + 15 λ_2 + 15 λ_3 + 50 λ_5 + 80 λ_6 + 90 λ_7 5.4. $\lambda_1 + \lambda_2 + \lambda_7 = C_H - C_P$ $\lambda_1 - \lambda_4 + \lambda_5 + \lambda_6 + \lambda_7 = C_M - C_p$ $\lambda_1 + \lambda_3 + \lambda_4 + \lambda_5 + \lambda_6 + \lambda_7 = C_F - C_p$ $\lambda_1 z_0, \lambda_2 \leq 0, \lambda_5 \leq 0, \lambda_4 \leq 0, \lambda_5 \geq 0$ $\lambda_{6} \leq 0$, $\lambda_{7} \leq 0$. This is another LP called

the dual!

Variational Analysis
Nonconvex calculus
Inverse problems & metric regularity
Time permitting.