
Nonlinear Optimization 2, Spring 2025 - Homework 2
Due at 11:49PM on Friday 2/28 (Gradescope)

Your submitted solutions to assignments should be your own work. You are al-
lowed to discuss homework problems with other students, but should carry out the
execution of any thoughts/directions discussed independently, on your own. Ac-
knowledge any source you consult. Do not use any type of Large Language Model,
e.g., ChatGPT, to blindly answer this assignment. If you do, your submission will
be voided and you will get zero as a grade.

Problem 1 - Directional derivative formulae

(a) Let f : E → R be continuous and directionally differentiable at zero such that there exists
g ∈ E satisfying f ′(x; v) = ⟨g, v⟩ for all v ∈ E. Find a counterexample to show that this
does not necessarily imply that f is differentiable at zero.

(b) Let f : E → R ∪ {+∞} be a proper, closed, convex function. Let x ∈ dom f , show that
for any v, the directional derivative f ′(x, v) exists and, moreover, it is equal to

f ′(x; v) = sup
g∈∂f(x)

⟨g, v⟩ for all x, v ∈ E.

(c) Let f1, . . . , fk : E → R be differentiable functions and define h(x) = maxj∈[k] fj(x). Prove
that h is directionally differentiable for any v ∈ E. Further, prove that

h′(x; v) = max
j∈M(x)

⟨∇fj(x), v⟩ for all x, v ∈ E,

where M(x) = {i ∈ [k] | fi(x) = h(x)}.

Problem 2 - Arguments that we missed

Show the following two things we did not prove in class.

(a) Let f : E → R ∪ {+∞} and g : E → R ∪ {+∞} be convex functions, and A : E → Y be a
linear map. Define the value function ν : Y → R ∪ {±∞} given by ν(z) = infx∈E f(x) +
g(Ax+ z).

(1) Show that ν is a convex function.

(2) In Lecture 6, we concluded that if v(0) is finite and 0 ∈ int {dom(g)−Adom(f)},
then there exists a y ∈ ∂ν(0). To do this we used the "Existance of subgradients"
Theorem from Lecture 4. However, this theorem only applies to functions whose
image land in R∪{+∞}, why can we apply it to ν? (Recall that we saw an example
where ν(1) = −∞ in Lecture 7).

(b) Let a1, . . . , am ∈ E be an arbitrary collection of points. Consider the following three
statements.

(1) The function f(x) = log
(∑

i∈[m] exp (⟨ai, x⟩)
)

is bounded below.
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(2) There exists a vector λ ∈ Rm
+ such that

∑
i∈[m] λi = 1 and

∑
i∈[m] λiai = 0.

(3) There is no vector x ∈ E such that ⟨ai, x⟩ < 0 for all i ∈ [m].

In class we proved that (1) implies (2). Show that (2) implies (3) and (3) implies (1).

Problem 3 - Duality with cones

(a) (Krein-Rutman Theorem) Consider a linear map A : E → Y, and the indicator func-
tions of convex cones K ⊆ E and H ⊆ Y. Compute ∂ιK(0) and use subdifferential calculus
to find conditions guaranteeing

(
K ∩A−1H

)+
= K+ + A∗H+ where A−1H = {x ∈ E |

Ax ∈ H}.

(b) Given a nonempty set K ⊆ E, by considering ι∗∗K , prove K = K++ if, and only if, K is a
closed convex cone.

(c) Suppose that the closed convex cones K ⊆ E and H ⊆ E satisfy the condition K+ ∩
intH+ ̸= ∅. Prove K +H is closed.

(d) Prove the sum of the closed convex cones in R2 ×R

{(x, r) | ∥x∥2 ≤ r} and {(x, r) | x1 = 0, r = x2}

is not closed. Hint: consider the point −(1, 1, 1).

Problem 4 - Von Neumann Minimax Theorem

Suppose the sets C ⊆ E and D ⊆ Y are nonempty and convex, with D closed.

(a) By considering the Fenchel problem

inf
x
{ιC(x) + ι∗D(Ax)}

prove that if either of the next conditions hold

(i) D is bounded,

(ii) A is surjective and 0 ∈ intC,

then
inf
x∈C

sup
y∈D

⟨Ax, y⟩ = sup
y∈D

inf
x∈C

⟨Ax, y⟩

where the supremum on the right is attained whenever finite.

(b) If both C and D are compact, prove

min
x∈C

max
y∈D

⟨Ax, y⟩ = max
y∈D

min
x∈C

⟨Ax, y⟩

where all the maxima and minima are attained.
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