Lecture 9 HW 2 due Friday. Scribe. Last time

o Accelerated gradient descent. D Lower bounds

Today d froof lover bound

D Review of smooth optimization

D Structured nonsmooth optimization

Lower bounds continued

Assumption: The given method produces iterates satisfying Subspace spanned by $\nabla f(x_0), ..., \nabla f(x_k)$ Dimension dependent

Theorem For any $1 \le k' \le \frac{1}{2} (d-1)$ and Lzo, there exists a function f: Rd -> 1R with L-Lips grad such that for any algo satisfying Assumption 1, ve have

> 3L 11x . - x 12 Pexx) - min f ? 32 (K+1)2

$$\|\chi_{k} - \chi^{*}\|^{2} \geq \frac{1}{2} \|\chi_{0} - \chi^{*}\|^{2}$$

Proof: Next, we will build "the worst

Let
$$f_{\kappa}(x) = \frac{1}{4} \left[\frac{x^{T}A_{\kappa}x - e^{T}x}{2} \right].$$

By the HW 1

$$\nabla f(x) = \frac{1}{4} \left[\Delta_x x - e_i \right],$$

$$\nabla^2 f(x) = \frac{1}{4} A_k.$$

WLOG we take xo, otherwise we could define $f_{\kappa}(x) = f_{\kappa}(x-x_0)$. Intuition

If $x_0 = 0$, then x_i can only have. the first ith components being nonzero. But we will see that the solution x^4 has nonzeros in its first k entries.

Claim 1: Any algo satisfying

Claim 1: Any algo satisfying $\chi_i \in \text{Spand} \ \nabla f(x_0), \dots, \nabla f(x_{i-1}),$ has span $\{\nabla f_k(x_0), \dots, \nabla f(x_i)\} \subseteq \mathbb{R}^{i+1} \times \{0\}^{d-i-1}$ for all $i \in k$.

Proof Claim 1: We use induction
Base cuse: i=0 > Of(x0) = -4 ex.

Inductive case: Assume it holds for i-1

 $\Rightarrow \nabla f_{\kappa}(\chi_{i}) = \frac{1}{4} \left[A \chi_{i-1} - e_1 \right]$

Since A_k $\subseteq L$ $A \cdot 1R \times 10 J^n$.

is tridiagonal \Rightarrow = L $R^{i+1} \times 10 J^{i-1}$.

Lineak!

Claim 2: The function fk is convex and have L-Lipschitz gradients. Proof: By our characterizations these amounts to showing 0 & \ \min (\P(x)) & \max (\P(x)) & L LAK Clearly positive $\Rightarrow SA_{k}S = \frac{L}{4} \left[(S_{(i)})^{2} + \sum_{i=1}^{k-1} (S_{(i)} - S_{(i+1)})^{2} + (S_{(i+1)})^{2} \right]$ 4 [Sii) +2 [(Sii) + Siii) + Sii) + Sii) $\frac{4}{4}\sum_{i=1}^{k}4S_{ii}^{2}$ < L 115112

Claim 3: The vector \overline{X} with entries $\overline{X}_{(i)} = \int_{0}^{1} \frac{1 - i}{\kappa^{4}i} \int_{0}^{1} \frac{1}{\kappa^{4}i} \frac{1}$

satisfies
$$\nabla f_{\kappa}(x) = 0$$
.

Proof: Follows by verifying Axx=e,

Therefore,
min
$$f_{K} = f_{K}(\bar{X})$$

$$= \frac{1}{4} \left(\frac{1}{2} \bar{X}^{T} A_{K} \bar{X} - e_{1}^{T} \bar{X} \right)$$

$$= \frac{1}{4} \left(\frac{1}{2} e_{1}^{T} \bar{X} - e_{1}^{T} \bar{X} \right)$$

$$= -\frac{1}{8} \left(1 - \frac{1}{K+1} \right).$$

$$(3)$$

$$\|X\|^{2} = \sum_{i=1}^{K} \left(1 - \frac{i}{k+1}\right)^{2} - \frac{1}{(k+1)} \sum_{i=1}^{K} (k-i+1)^{2}$$

$$= \frac{1}{(k+1)} \sum_{i=1}^{K} i^{2} = \frac{1}{(k+1)^{2}} \frac{K \cdot (k+1) \cdot (2k+1)}{6}$$

$$\leq \frac{2k+1}{6} \leq \frac{k+1}{3}. \quad (0)$$

Armed with these facts we can now prove the lower bound.

For any fixed k, set d=2k+1 and $f(x) = f_{2k+1}(x)$.

Let x_k be the output of an algosatisfying Assumption 1. Then

f(xk) = f2k+1 (xk) = f(xk) = minfk

Claim 1

Then,

$$\frac{f(x_{k}) - min f}{\|x_{0} - x\|^{2}} \ge \frac{min f_{k} - min f_{2k+1}}{\|x\|^{2}}$$

$$x \in argmin f$$

$$= \frac{1}{8} \left(\frac{1}{2k+1} - \frac{1}{2k+2} \right)$$

$$= \frac{2k+2}{2k+2} - \frac{1}{2k+2}$$

8 (2K+2)2(K+1)

$$\geq \frac{3L}{3L} \frac{1}{(k+1)^2}$$

To prove the second part of the theorem, let's lover bound claims akti

$$\|\chi_{K} - \overline{\chi}\|^{2} \stackrel{2}{\nearrow} \qquad \sum_{i=K+1}^{2k+1} (\overline{\chi}_{ii})^{2} = \sum_{i=k+1}^{2k+1} (1 - \frac{i}{2k+2})^{2}$$

arg min f_{2k+1} $= \frac{1}{(2k+2)^2} \sum_{i=1}^{k+1} i^2 \frac{2k+1}{2k+2} \frac{2k+1}{i=k+1}$

 $\frac{8y}{(9)} > \frac{1}{3 \cdot 2} (2K + 2)$

$$\geq \frac{1}{2} \| \chi_0 - \overline{\chi} \|^2.$$

Summary of guarantees for smooth optimazation.

So for we have proved the following tobbe of results

Chradratic Generic rate Method growth (L-smooth) Gradient Descent + 2 110 FOR MIS O(+) $\xi(x^4) - \xi(x_4) \in \Theta\left(\left(\Gamma - \frac{n_F}{W_F}\right)_{\downarrow}\right)$ (for nonconvex p) (Local rate for $\nabla f(x^*) > 0$) Gradient Descent $f(x_{-1}) - min f \in \Theta\left(\left(\frac{x_{-1}}{x_{+1}}\right)^{2}\right)$ f(x+) - min f · 〇(十) (for convex f) (M-strongly convex) Accelerated Gradient $f(x_1)$ - minf $\subseteq \Theta\left(\left(\frac{TK-1}{TK+1}\right)^2\right)$ (M-strongly convex) $f(y_T)$ - min $f \in \Theta\left(\frac{1}{72}\right)$ (for convex f) (Also optimal).

What's next? Structured nonsmooth optimization

- 1. Motivating problems
- 2. The proximal operator
- 3. Constraints and projections
- 4. Proximal gradient method
- 5. Acceleration
- 6. More proximal methods.