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Last time

↳Accelerated gradient I Todayover bod a

descent
. 1 Review of smooth optimization

↳ Lower bounds is structured nonsmooth
optimization

↳rundscontinued

Assumption : The given method produces
--

iterates satisfying subspace spannedI

I- by
Xx = No+ span G Pf(X), ..., Pf(Y,]

Dimension dependent
.

↓Theorem For any 11
= = ed-1)

-

and LI0 ,
there exists a function

f : R
*
-R with L-Lips grad such that

foranyalgo . Satisfying Assumptioa

fexe) -minf oe



11Xx-X2 = 1 IXo-XPI
.
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Proof : Next
,
we will build . "The worst

function in the world ."
K d-k
nee

Let
-1

A = I i 1·in
e

L
Let

fix) = (*Anx- eix]-
By the HW1

- f(x) = [A, - ei] ,
02 f(X) = 4 An

WLOG we take Xo C
otherwise

we could define I, (x) = fx(X-Xo) .



Intuition
-

If No = 0
,
then xi can only have .

the first ith components being
nonzero . But we will see that the solution
XA has nonzeros in its first Kentries.

Clam1 : Any algo satisfying
X : C spand &fexol , ..., "f ...Y:

k k j

d-i-1

Spankofu(to) , ..., vfX:)g = IR" + 90}has ↳

for all i< K .

Proof Claim 1 : We use induction
-

Base cuse : i = 0 => 0f(x) = -e.
-

Inductive case : Assume it holds for it1
-

=> Xfx(Xi-) = (Ax- e1]i-1

= A . span48fx(Yello
Since Ak = A . 1R" 40yd- i

- d - i - 1is tridiagonal L IR
i+
1x 207 .Icheck ! ) =
I



Claim 2 : The function fr is
-

convex and have L-Lipschitz
gradients .

Proof : By our characterizations
-

these amounts to
showing

0 =X
min (04X)) <xmax (08x))= L

↑
1Ak clearly positive
↳ I

-1
-> SARS =

I [Isl+ (Sci) -Scitil" Ii =1

- (S-x))

I L

I (an +2 on+st+San]
I ↳4 SiI
I ↳ IIs 112 I

Claim 3 : The vector x with entries
-

E
1 - i = 41

, ..., k],
Y = k+1

(i)
·O otherwise

,



satisfies 8 f(x) = 0
.

prof : Follows by verifying Axx=et,scheck!

There fore ,
minfr= filY )

= "A,- ex)
=

( = ex-eix) (:)
= - elX

I* - )1-
2

1511 = (1-) = -1 (k-i+1)
(K+1) i= 1

sum of K squares

=- :2 = 1 + 1
2

1k+1) (k+1)
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Armed with these facts we can now

prove the lower bound .

For any fixed K , set d= 2 K+1 and

f(x)
= fext (4) .

Let Xn be the output of an algo
satisfying Assumption 1 . Then

f(xx) = fex+ , (X) = fX,) = minf
Claim 1

Then
,

Aminfa minfant
11x0 - X 112

I

xeargmin &
I-ir
A

(i)(B) RR+21/3 +1
e

I
32 (2k+2 - k- 1)
-

2⑧ 12k +2) (k+ 1)
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To prove the second part of the
theorem

,
let's lower bound

Claim 1
24+ 1 2k + 1

↓ 2
11X
,
- * 112 I E (Xuk : [ 11-1)
↑ i

= k+1 I= k+1 2k +2

argmin fak+1 1 2k+1

(2k + 2 - i)
·kt1 - [

1
I- 2 : 2 2k+2 i= k+ 1

(2k+22 i= 1

=s+(+1)(2)(2k+2)-
EBy - 1 (2k + 2)e

(B) 3 . 2

I = (No-XIIY A

Summary of guarantees
for smooth optimization .

So far we have proved
the following table of results

·



Method Generic rate Quadratic
1-smooth) growth

Gradient Descent I .. 11871)= ⑦(E) f(x+) - f(x*)=0(11 -x))
(for noncourex f) (Local rate for V f(x* ) >0)

Gradient Descent
f(x+) - min 8 = & (1) f(x) - minf = O(A)

(for convex f)
8 M-strongly convex)

Accelerated Gradient
1(y+)-min =0() f(x-1-minf =/* )*2

(for convex 8)
X Mm-strongly convex

Optimal HW2 P3
(Also optimall .

What's next ? Structured nonsmooth optimization
1 . Motivating problems
2 . The proximal operator
3. Constraints and projections
4 . Proximal gradient method
5 . Acceleration

6 . More proximal methods .


