
Lecture 5 Scribe? HW1 : Due in 2 days .
Last time Today
~ More convexity i subdifferential Calculus.
↳ Characterization ↳ What's to come?
smooth convex functions I Gradient Descent
I subgradients

Subdifferential calculus
.

Proposition : Subdifferential calcul
-

Suppose that I,n : Rd-IR are convex

functions · Then the following
holds
1(Sums) G(1+ h) (x) = Gf(x) +2h(x) .
2 .
(chain rule) If A : 1R"->IR" linear

8 (f
,
0A)(X) = A 81(Ax) .

3 . (Scalings)
G(xf)(x) = x 2f(x) .

5 . (smooth functions) If f diff,
28(x) = 28f(x)) .

+



2
. (Max) For all x , define M(x) = G : / fill) = max[f(x), felxib]↑

2 max [8, fr3(x) = conv[ge2fil it Mexs] .
↑

convex hull >
ab---

③.

s . (Smooth functions) Assume that I , is diff at X.

Gf, (x) = G8f(x)3 . - This one
you should prove .

We will not prove this result, as we need
additional machinary from convex geometry .
But you are free to use it.

What's next? Algorithms !
We will cover Smooth first

Gradient Descent
Descent Lemmae I Stepsizes / Lineseachi
Nonconvex smooth op

f guarantees
&

Better guarantees for convex
N complexity Lower Bounds

Acceleration



Bread & Butter
Gradient Descent - of opt . theory .
Gradient Descent (GD) updates

xx+ , xx - xxyf(xx)(i)
↑

Follow descent
direction !

-

Another view of GD ha

-
x1+1 = min(f(x)+ <0f(x,) , x - xic

en

+ 1 IX-4xll 3 .

22

Why are (i) and (B) the same?

The loss function is convex

ThxCXx+) = 0 = DfCXx) + 1 Yi)#
xx+ 1 = xx - xxXf(x,)

Intuition
M ↳

This will be a
↑

⑨)i f recurrent theme
f dIWk2 in algorithm--
" + 1

design .

25 i . ...



Bread & Butter
Descent Comma -

of opt . theory .
Lemma :

For any f with -Lipschitz↑

-

gradient, and KI0

f(x,+) = f(xx) - (Xx- ) 10fxll
+

Consequences
1 . Decrease when (N, -2) so

↑
W
I

& k<I
2 . Best decrease when Ni

L
of -it 118f (Xia)/I ·

2

Proof : We use the Taylor approximation-

bound

1 f([,+1) - (f(xx) + <Pf(x,) , Xxx , -Xx)/

-E IXk+ 1
- X 112

subtituting ↳

f(x x +) - f(xx) + 2x18f(Xll" = 10f(X ,/R



IMPRACTICAL

Rearranging
-

(=> f(x+) = f(Xx) - Jax - 1) 10 f(x I?
I

How to pick stepsizes?

Natural idea
According to DL , we should pick
xx = Y1 - - 18 f(x)/l2 descent

.

The problem is that we don't know

1 a priori !

Exact lineseach
we know we have descent if we

fellow - f(X ,2) .

Let's pick the best
descent : 1D problem

a = argmin f(xx -40f(xx))
XEIR

It outperforms fist since

f(xx + 1) = 1(Xx - xVf(xx)) #X



IMPRACTICAL

If(Xx - Xf(xx)) .

It requires solving an

optimization problem at each iter!

Backtracking Linesearch

Idea : How about we try
-

smaller

stepsizes until we see sufficient
descent? ↑ (2)

What is sufficient?
How do we-make them (i)

small ?

(1) Decrease exponentially fast .
Pick a ERd and If (0,1)
and try

Gr = a Th for mel2, ...

(2) To measure descent we use



could not findpicture↳

the so-called Armijo Condition:

Pick ye (0 ,1) , declare sufficient
descent when

/

f(xx - x8f(xx))[f(xx) - 44 lVf(x)IR (A)
e

Intuition I(x)

f(x)
0()-#E 2

Armijo Holds

M

121
f(x)

#
- I
E JA-

Multiple itervals .



The full backtracking algorithm

Pick = sup(at)!an
Lemma The Armijo condition
holds for

2 = Co , 2)I
Prof : By the DL

f(x, - x0f(xx)) = f(x)) - (x- /I
!
= f(x ,) - 2x 10fex
-

would hold if (x-2") = 4xI
EI X ↳ 2(1 -4)

I
-

L ⑰



PRACTICALConsequence
1
. Backtracking only require

flog
insteps

to stop .

T
↑Check this ! Armijos

I original
If we take y = T = Iz choice

a = #

and L = 106 - Function
is very unstable

=> 20 steps are enough .

2 . Note that & mind a , 2-71y
Then

f(xx+ 1) = f(X,) - y x, 11Xf(xx)112

If(x) - 4minga , 2 NYHOK



Thus
, if a = 1 and y = T=L

-
Reasonable

,
= f(x,) - I minEl , 310fx

a = 1 = E
= f(XR) - 1 118f(X ,

)1l
2

If 22 1
. 44

A
Only lost constant fraction .


